skip to main content
10.1007/978-3-642-39140-8_11guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Modeling and detecting community hierarchies

Published: 03 July 2013 Publication History

Abstract

Community detection has in recent years emerged as an invaluable tool for describing and quantifying interactions in networks. In this paper we propose a theoretical model that explicitly formalizes both the tight connections within each community and the hierarchical nature of the communities. We further present an efficient algorithm that provably detects all the communities in our model. Experiments demonstrate that our definition successfully models real world communities, and our algorithm compares favorably with existing approaches.

References

[1]
Airoldi, E. M., Blei, D. M., Fienberg, S. E., Xing, E. P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981-2014 (2008)
[2]
Arora, S., Ge, R., Sachdeva, S., Schoenebeck, G.: Finding overlapping communities in social networks: toward a rigorous approach. In: Proceedings of the 13th ACM Conference on Electronic Commerce (2012)
[3]
Balcan, M. F., Borgs, C., Braverman, M., Chayes, J., Teng, S. H.: Finding endogenously formed communities. In: SODA 2013 (2013)
[4]
Balcan, M. F., Gupta, P.: Robust hierarchical clustering. In: Proceedings of the Conference on Learning Theory, COLT (2010)
[5]
Bounova, G., de Weck, O. L.: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 85(016117) (2012)
[6]
Clauset, A., Moore, C., Newman, M. E. J.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98-101 (2008)
[7]
Clauset, A., Newman, M. E. J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 066111+ (2004)
[8]
Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75-174 (2010)
[9]
Girvan, M., Newman, M. E. J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821-7826 (2002)
[10]
Girvan, M., Newman, M. E. J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12) (2002)
[11]
Gleiser, P., Danon, L.: Community Structure in Jazz. Advances in Complex Systems 6(4), 565-573 (2003)
[12]
He, J., Hopcroft, J., Liang, H., Suwajanakorn, S., Wang, L.: Detecting the structure of social networks using (a, ß)-communities. In: Frieze, A., Horn, P., Pralat, P. (eds.) WAW 2011. LNCS, vol. 6732, pp. 26-37. Springer, Heidelberg (2011)
[13]
Ho, Q., Parikh, A. P., Xing, E. P.: A Multiscale Community Blockmodel for Network Exploration. Journal of the American Statistical Association 107(499), 916-934 (2012)
[14]
Huang, J., Sun, H., Han, J., Deng, H., Sun, Y., Liu, Y.: Shrink: a structural clustering algorithm for detecting hierarchical communities in networks. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 219-228. ACM (2010)
[15]
Kim, M., Leskovec, J.: Latent multi-group membership graph model. In: ICML (2012)
[16]
Kleinberg, J.: Complex networks and decentralized search algorithms. In: Proceedings of the International Congress of Mathematicians, ICM (2006)
[17]
Knuth, D. E.: The Stanford GraphBase: a platform for combinatorial computing. ACM, New York (1993)
[18]
Krebs, V.: http://www.orgnet.com/ (unpublished)
[19]
Cosentino Lagomarsino, M., Jona, P., Bassetti, B., Isambert, H.: Hierarchy and feedback in the evolution of the Escherichia coli transcription network. Proceedings of the National Academy of Sciences 104(13), 5516-5520 (2007)
[20]
Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E 80(1), 016118 (2009)
[21]
Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics 11(3), 033015 (2009)
[22]
Leskovec, J., Lang, K. J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 631-640. ACM, New York (2010)
[23]
Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., Dawson, S. M.: Behavioral Ecology and Sociobiology 54, 396-405 (2003)
[24]
McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems 25, pp. 548-556 (2012)
[25]
Mishra, N., Schreiber, R., Stanton, I., Tarjan, R. E.: Clustering social networks. In: Bonato, A., Chung, F. R. K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 56-67. Springer, Heidelberg (2007)
[26]
Mishra, N., Schreiber, R., Stanton, I., Tarjan, R. E.: Finding strongly knit clusters in social networks. Internet Mathematics 5(1), 155-174 (2008)
[27]
Narasimhan, G., Smid, M.: Geometric spanning networks. Cambridge University Press (2007)
[28]
Newman, M. E. J.: Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems 38(2), 321-330 (2004)
[29]
Newman, M. E. J.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103(23), 8577-8582 (2006)
[30]
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America 101(9), 2658-2663 (2004)
[31]
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., Barabási, A. L.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297(5586), 1551-1555 (2002)
[32]
Schweinberger, M., Snijders, T. A. B.: Settings in social networks: A measurement model. Sociological Methodology 33, 307-341 (2003)
[33]
Shen, K., Song, L., Yang, X., Zhang, W.: A hierarchical diffusion algorithm for community detection in social networks. In: 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 276-283. IEEE (2010)
[34]
Spielman, D. A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 81-90. ACM, New York (2004)
[35]
Yang, B., Di, J., Liu, J., Liu, D.: Hierarchical community detection with applications to real-world network analysis. Data & Knowledge Engineering (2012)
[36]
Zachary, W. W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452-473 (1977)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SIMBAD'13: Proceedings of the Second international conference on Similarity-Based Pattern Recognition
July 2013
296 pages
ISBN:9783642391392
  • Editors:
  • Edwin Hancock,
  • Marcello Pelillo

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 July 2013

Author Tags

  1. community detection
  2. hierarchical structure

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media