skip to main content
10.1007/978-3-642-36095-4_19guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Solving BDD by enumeration: an update

Published: 25 February 2013 Publication History

Abstract

Bounded Distance Decoding (BDD) is a basic lattice problem used in cryptanalysis: the security of most lattice-based encryption schemes relies on the hardness of some BDD, such as LWE. We study how to solve BDD using a classical method for finding shortest vectors in lattices: enumeration with pruning speedup, such as Gama-Nguyen-Regev extreme pruning from EUROCRYPT '10. We obtain significant improvements upon Lindner-Peikert's Search-LWE algorithm (from CT-RSA '11), and update experimental cryptanalytic results, such as attacks on DSA with partially known nonces and GGH encryption challenges. Our work shows that any security estimate of BDD-based cryptosystems must take into account enumeration attacks, and that BDD enumeration can be practical even in high dimension like 350.

References

[1]
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99-108 (1996)
[2]
Babai, L.: On Lovász' Lattice Reduction and the Nearest Lattice Point Problem (Shortened Version). In: Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13-20. Springer, Heidelberg (1984)
[3]
Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505-524. Springer, Heidelberg (2011)
[4]
Chen, Y., Nguyen, P. Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D. H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1-20. Springer, Heidelberg (2011)
[5]
Gama, N., Nguyen, P. Q.: Predicting Lattice Reduction. In: Smart, N. P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31-51. Springer, Heidelberg (2008)
[6]
Gama, N., Nguyen, P. Q., Regev, O.: Lattice Enumeration Using Extreme Pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257-278. Springer, Heidelberg (2010)
[7]
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC 2009, pp. 169-178. ACM (2009)
[8]
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc. STOC 2008, pp. 197-206. ACM (2008)
[9]
Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B. S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112-131. Springer, Heidelberg (1997)
[10]
Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer, Heidelberg (2011)
[11]
Regev, O.: Lattice-Based Cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131-141. Springer, Heidelberg (2006)
[12]
National Institute of Standards and Technology (NIST). Fips publication 186:digital signature standard (1994)
[13]
Nguyên, P. Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto'97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288- 304. Springer, Heidelberg (1999)
[14]
Nguyen, P. Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryptography. Contemporary Mathematics, vol. 477, AMS-RSME (2009)
[15]
Nguyen, P. Q., Shparlinski, I.: The insecurity of the digital signature algorithm with partially known nonces. J. Cryptology 15(3), 151-176 (2002)
[16]
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proc. STOC 2009, pp. 333-342. ACM (2009)
[17]
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. STOC 2005, pp. 84-93. ACM (2005)
[18]
Regev, O.: The learning with errors problem (invited survey). In: Proc. IEEE Conference on Computational Complexity, pp. 191-204 (2010)
[19]
Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145-156. Springer, Heidelberg (2003)
[20]
Schnorr, C.-P.: Lattice Reduction by Random Sampling and Birthday Methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145-156. Springer, Heidelberg (2003)
[21]
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming 66, 181-199 (1994)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CT-RSA'13: Proceedings of the 13th international conference on Topics in Cryptology
February 2013
404 pages
ISBN:9783642360947
  • Editor:
  • Ed Dawson

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 25 February 2013

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media