skip to main content
10.1007/978-3-642-34109-0_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Computing the maximal-exponent repeats of an overlap-free string in linear time

Published: 21 October 2012 Publication History

Abstract

The exponent of a string is the quotient of the string's length over the string's smallest period. The exponent and the period of a string can be computed in time proportional to the string's length. We design an algorithm to compute the maximal exponent of factors of an overlap-free string. Our algorithm runs in linear-time on a fixed-size alphabet, while a naive solution of the question would run in cubic time. The solution for non overlap-free strings derives from algorithms to compute all maximal repetitions, also called runs, occurring in the string. We show there is a linear number of maximal-exponent repeats in an overlap-free string. The algorithm can locate all of them in linear time.

References

[1]
Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice-Hall, Englewood Cliffs (1990)
[2]
Berkman, O., Iliopoulos, C.S., Park, K.: The subtree max gap problem with application to parallel string covering. Information and Computation 123(1), 127-137 (1995)
[3]
Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding Maximal Pairs with Bounded Gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 134-149. Springer, Heidelberg (1999)
[4]
Brodal, G.S., Pedersen, C.N.S.: Finding Maximal Quasiperiodicities in Strings. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397-411. Springer, Heidelberg (2000)
[5]
Christou, M., Crochemore, M., Iliopoulos, C.S., Kubica, M., Pissis, S.P., Radoszewski, J., Rytter, W., Szreder, B., Waleń, T.: Efficient Seeds Computation Revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 350-363. Springer, Heidelberg (2011)
[6]
Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, 392 pages. Cambridge University Press (2007)
[7]
Crochemore, M., Ilie, L.: Maximal repetitions in strings. Journal of Computer and System Sciences 74, 796-807 (2008).
[8]
Crochemore, M., Ilie, L., Tinta, L.: The "runs" conjecture. Theoretical Computer Science 412(27), 2931-2941 (2011)
[9]
Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors. Information Processing Letters 111, 291-295 (2011)
[10]
Currie, J.D., Rampersad, N.: A proof of Dejean's conjecture. Mathematics of Computation 80(274), 1063-1070 (2011)
[11]
Dejean, F.: Sur un théorème de Thue. Journal of Combinatorial Theory, Series A 13(1), 90-99 (1972)
[12]
Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, Cambridge (1997)
[13]
Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3), 288-297 (1996)
[14]
Kolpakov, R., Kucherov, G.: On maximal repetitions in words. Journal of Discrete Algorithms 1(1), 159-186 (2000)
[15]
Kolpakov, R., Kucherov, G., Ochem, P.: On maximal repetitions of arbitrary exponent. Information Processing Letters 110(7), 252-256 (2010)
[16]
Rao, M.: Last cases of Dejean's conjecture. Theoretical Computer Science 412(27), 3010-3018 (2011)
[17]
Rytter, W.: The number of runs in a string. Information and Computation 205(9), 1459-1469 (2007)
[18]
Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I Math-Nat. Kl. 7, 1-22 (1906)
[19]
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression 23, 337-343 (1977)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SPIRE'12: Proceedings of the 19th international conference on String Processing and Information Retrieval
October 2012
410 pages
ISBN:9783642341083
  • Editors:
  • Liliana Calderón-Benavides,
  • Cristina González-Caro,
  • Edgar Chávez,
  • Nivio Ziviani

Sponsors

  • Electro Software: Electro Software
  • Yahoo! Research
  • Google Inc.
  • Information Technology Research Group: Information Technology Research Group
  • Universidad Autónoma de Bucaramanga: Universidad Autónoma de Bucaramanga

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 21 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media