skip to main content
10.1007/978-3-642-33353-8_10guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The complexity of one-agent refinement modal logic

Published: 26 September 2012 Publication History

Abstract

We investigate the complexity of satisfiability for one-agent Refinement Modal Logic ($\text{\sffamily RML}$), a known extension of basic modal logic ($\text{\sffamily ML}$) obtained by adding refinement quantifiers on structures. It is known that $\text{\sffamily RML}$ has the same expressiveness as $\text{\sffamily ML}$, but the translation of $\text{\sffamily RML}$ into $\text{\sffamily ML}$ is of non-elementary complexity, and $\text{\sffamily RML}$ is at least doubly exponentially more succinct than $\text{\sffamily ML}$. In this paper, we show that $\text{\sffamily RML}$-satisfiability is 'only' singly exponentially harder than $\text{\sffamily ML}$-satisfiability, the latter being a well-known PSPACE-complete problem. More precisely, we establish that $\text{\sffamily RML}$-satisfiability is complete for the complexity class AEXP$_{\text{\sffamily pol}}$, i.e., the class of problems solvable by alternating Turing machines running in single exponential time but only with a polynomial number of alternations (note that NEXPTIME⊆ AEXP$_{\text{\sffamily pol}}$⊆ EXPSPACE).

References

[1]
Alur, R., Henzinger, T. A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672-713 (2002)
[2]
Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., De Lima, T.: 'Knowable' as 'known after an announcement'. Review of Symbolic Logic 1(3), 305-334 (2008)
[3]
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science 53. Cambridge University Press, Cambridge (2001)
[4]
Bozzelli, L., van Ditmarsch, H., French, T., Hales, J., Pinchinat, S.: Refinement modal logic (2012), http://arxiv.org/abs/1202.3538
[5]
Chandra, A. K., Kozen, D.C., Stockmeyer, L. J.: Alternation. Journal of the ACM 28(1), 114- 133 (1981)
[6]
Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM Journal on Computing 4(1), 69-76 (1975)
[7]
Fine, K.: Propositional quantifiers in modal logic. Theoria 36(3), 336-346 (1970)
[8]
French, T.: Bisimulation quantifiers for modal logic. PhD thesis, University of Western Australia (2006)
[9]
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
[10]
Hollenberg, M.: Logic and bisimulation. PhD thesis, University of Utrecht (1998)
[11]
Johnson, D. S.: A catalog of complexity classes. In: Handbook of Theoretical Computer Science, pp. A:67-A:161. MIT Press (1990)
[12]
Kupferman, O., Vardi, M.Y.: Verification of Fair Transisiton Systems. In: Alur, R., Henzinger, T. A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 372-382. Springer, Heidelberg (1996)
[13]
Papadimitriou, C. H.: Computational Complexity. Addison Wesley (1994)
[14]
Parikh, R., Moss, L., Steinsvold, C.: Topology and epistemic logic. In: Handbook of Spatial Logics, pp. 299-341. Springer (2007)
[15]
Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Expressive Constraints on Strategies. In: Namjoshi, K. S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253-267. Springer, Heidelberg (2007)
[16]
Rybina, T., Voronkov, A.: Upper Bounds for a Theory of Queues. In: Baeten, J.C. M., Lenstra, J. K., Parrow, J., Woeginger, G. J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 714- 724. Springer, Heidelberg (2003)
[17]
van Ditmarsch, H., French, T.: Simulation and Information: Quantifying over Epistemic Events. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605, pp. 51- 65. Springer, Heidelberg (2009)
[18]
van Ditmarsch, H., French, T., Pinchinat, S.: Future event logic - axioms and complexity. In: Proc. 7th Advances in Modal Logic, vol. 8, pp. 77-99. College Publications (2010)
[19]
Visser, A.: Bisimulations, model descriptions and propositional quantifiers. Logic Group Preprint Series 161, Department of Philosophy, Utrecht University (1996)

Cited By

View all
  1. The complexity of one-agent refinement modal logic

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    JELIA'12: Proceedings of the 13th European conference on Logics in Artificial Intelligence
    September 2012
    495 pages
    ISBN:9783642333521
    • Editors:
    • Luis Fariñas Cerro,
    • Andreas Herzig,
    • Jérôme Mengin

    Sponsors

    • iRit: Institut de Recherche en Informatique de Toulouse
    • UPS: UPS
    • CNRS: Centre National De La Rechercue Scientifique
    • LEA IREP: LEA IREP

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 26 September 2012

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media