skip to main content
10.1007/978-3-642-25566-3_40guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Sequential model-based optimization for general algorithm configuration

Published: 17 January 2011 Publication History

Abstract

State-of-the-art algorithms for hard computational problems often expose many parameters that can be modified to improve empirical performance. However, manually exploring the resulting combinatorial space of parameter settings is tedious and tends to lead to unsatisfactory outcomes. Recently, automated approaches for solving this algorithm configuration problem have led to substantial improvements in the state of the art for solving various problems. One promising approach constructs explicit regression models to describe the dependence of target algorithm performance on parameter settings; however, this approach has so far been limited to the optimization of few numerical algorithm parameters on single instances. In this paper, we extend this paradigm for the first time to general algorithm configuration problems, allowing many categorical parameters and optimization for sets of instances. We experimentally validate our new algorithm configuration procedure by optimizing a local search and a tree search solver for the propositional satisfiability problem (SAT), as well as the commercial mixed integer programming (MIP) solver CPLEX. In these experiments, our procedure yielded state-of-the-art performance, and in many cases outperformed the previous best configuration approach.

References

[1]
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186-202. Springer, Heidelberg (2010).
[2]
Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: A heuristic repair method for constraint-satisfaction and scheduling problems. AIJ 58(1), 161-205 (1992).
[3]
Gratch, J., Dejong, G.: Composer: A probabilistic solution to the utility problem in speed-up learning. In: Proc. of AAAI 1992, pp. 235-240 (1992).
[4]
Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1), 99-114 (2006).
[5]
Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an overview. In: Empirical Methods for the Analysis of Optimization Algorithms. Springer, Berlin (2010).
[6]
Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Proc. of GECCO 2002, pp. 11-18 (2002).
[7]
Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proc. of AAAI 2007, pp. 1152-1157 (2007).
[8]
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. JAIR 36, 267-306 (2009).
[9]
Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142-157. Springer, Heidelberg (2009).
[10]
Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting Verification by Automatic Tuning of Decision Procedures. In: Proc. of FMCAD 2007, pp. 27-34 (2007).
[11]
KhudaBukhsh, A., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: Automatically building local search SAT solvers from components. In: Proc. of IJCAI 2009 (2009).
[12]
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black box functions. Journal of Global Optimization 13, 455-492 (1998).
[13]
Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: Proc. of CEC 2005, pp. 773-780. IEEE Press, Los Alamitos (2005).
[14]
Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: An experimental investigation of model-based parameter optimisation: SPO and beyond. In: Proc. of GECCO 2009 (2009).
[15]
Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.P.: Time-bounded sequential parameter optimization. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 281-298. Springer, Heidelberg (2010).
[16]
Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001).
[17]
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration (extended version). Technical Report TR-2010-10, UBC Computer Science (2010), http://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf.
[18]
Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world applications: A regression tree based approach. In: Proc. of CEC 2004, pp. 1111-1118 (2004).
[19]
Baz, M., Hunsaker, B., Brooks, P., Gosavi, A.: Automated tuning of optimization software parameters. Technical Report TR2007-7, Univ. of Pittsburgh, Industrial Engineering (2007).
[20]
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. JAIR 32, 565-606 (2008).
[21]
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology and a case study on combinatorial auctions. Journal of the ACM 56(4), 1-52 (2009).
[22]
Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, 2nd edn. Springer Series in Statistics. Springer, Heidelberg (2009).
[23]
Nell, C., Fawcett, C., Hoos, H.H., Leyton-Brown, K.: HAL: A framework for the automated analysis and design of high-performance algorithms. In: LION-5 (to appear, 2011).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
LION'05: Proceedings of the 5th international conference on Learning and Intelligent Optimization
January 2011
636 pages
ISBN:9783642255656
  • Editor:
  • Carlos Coello Coello

Sponsors

  • Sapienza: Sapienza University of Rome
  • Microsoft Research: Microsoft Research
  • IEEE Computational Intelligence Society: IEEE Computational Intelligence Society

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 17 January 2011

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media