skip to main content
10.1007/978-3-642-03658-3_40guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Designing Novel Image Search Interfaces by Understanding Unique Characteristics and Usage

Published: 20 August 2009 Publication History

Abstract

In most major search engines, the interface for image search is the same as traditional Web search: a keyword query followed by a paginated, ranked list of results. Although many image search innovations have appeared in both the literature and on the Web, few have seen widespread use in practice. In this work, we explore the differences between image and general Web search to better support users' needs. First, we describe some unique characteristics of image search derived through informal interviews with researchers, designers, and managers responsible for building and deploying a major Web search engine. Then, we present results from a large scale analysis of image and Web search logs showing the differences in user behaviour. Grounded in these observations, we present design recommendations for an image search engine supportive of the unique experience of image search. We iterate on a number of designs, and describe a functional prototype that we built.

References

[1]
André, P., Teevan, J., Dumais, S.T.: From X-Rays to Silly Putty via Uranus: Serendipity and its Role in Web Search. In: CHI 2009 (2009).
[2]
Cai, D., He, X., Li, Z., Ma, W., Wen, J.: Hierarchical clustering of WWW image search results using visual, textual & link information. In: MM 2004, pp. 952-959 (2004).
[3]
Chen, Z., Wenyin, L., Hu, C., Li, M., Zhang, H.: iFind: a Web image search engine. In: SIGIR 2001, p. 450 (2001).
[4]
Cui, J., Wen, F., Tang, X.: Real time google and live image search re-ranking. In: MM 2008, pp. 729-732 (2008).
[5]
Ding, H., Liu, J., Lu, H.: Hierarchical clustering-based navigation of image search results. In: MM 2008, pp. 741-744 (2008).
[6]
Fogarty, J., Tan, D., Kapoor, A., Winder, S.: CueFlik: interactive concept learning in image search. In: CHI 2008, pp. 29-38 (2008).
[7]
Gao, Y., Luo, H., Fan, J.: Searching and browsing large scale image database using keywords and ontology. In: MM 2006, pp. 811-812 (2006).
[8]
Getty Catalyst Search, http://www.gettyimages.com/Catalyst/Default.aspx
[9]
Goodrum, A.A., Bejune, M.M., Siochi, A.C.: A State Transition Analysis of Image Search Patterns on the Web. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 281-290. Springer, Heidelberg (2003).
[10]
Goodrum, A., Spink, A.: Image searching on the Excite Web search engine. Inf. Process. Manage. 37(2), 295-311 (2001).
[11]
Google Chrome Web Browser, http://www.google.com/chrome/
[12]
Hung, T.-Y.: Search Moves and Tactics for Image Retrieval in the Field of Journalism: A Pilot Study. J. of Educational Media & Library Sciences 42(3), 329-346 (2005).
[13]
Idée Colour Search, http://labs.ideeinc.com/multicolr/
[14]
Jörgensen, C., Jörgensen, P.: Image querying by image professionals. Journal of the American Society of Information Science & Technology 56(12), 1346-1359 (2005).
[15]
Liu, H., Xie, X., Tang, X., Li, Z., Ma, W.: Effective browsing of Web image search results. In: MIR 2004, pp. 84-90 (2004).
[16]
Liu, Y., Qin, T., Liu, T., Zhang, L., Ma, W.: Similarity space projection for Web image search and annotation. In: MIR 2005, pp. 49-56 (2005).
[17]
Markkula, M., Sormunen, E.: End-User Searching Challenges Indexing Practices in the Digital Newspaper Photo archive. Information Retrieval 1(4), 259-285 (2000).
[18]
Porta, M.: Browsing large collections of images through unconventional visualization techniques. In: AVI 2006, pp. 440-444 (2006).
[19]
Viewzi Search Engine, http://viewzi.com
[20]
Wang, C., Zhang, L., Zhang, H.: Learning to reduce the semantic gap in Web image retrieval and annotation. In: SIGIR 2008, pp. 355-362 (2008).
[21]
Wang, S., Jing, F., He, J., Du, Q., Zhang, L.: IGroup: presenting Web image search results in semantic clusters. In: CHI 2007, pp. 587-596 (2007).
[22]
Westman, S., Oittinen, P.: Image Retrieval by End-Users and Intermediaries in a Journalistic Work Context. In: IIiX 2006, pp. 171-187 (2006).
[23]
Westman, S., Lustila, A., Oittinen, P.: Search strategies in multimodal image retrieval. In: IIiX 2008, vol. 348 (2008).
[24]
White, R.W., Drucker, S.M.: Investigating behavioral variability in Web search. In: WWW 2007, pp. 21-30 (2007).
[25]
Zavesky, E., Chang, S., Yang, C.: Visual islands: intuitive browsing of visual search results. In: CIVR 2008, pp. 617-626 (2008).
[26]
Zhang, L., Chen, L., Jing, F., Deng, K., Ma, W.: EnjoyPhoto: a vertical image search engine for enjoying high-quality photos. In: MM 2006, pp. 367-376 (2006).

Cited By

View all
  1. Designing Novel Image Search Interfaces by Understanding Unique Characteristics and Usage

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    INTERACT '09: Proceedings of the 12th IFIP TC 13 International Conference on Human-Computer Interaction: Part II
    August 2009
    984 pages
    ISBN:9783642036576
    • Editors:
    • Tom Gross,
    • Jan Gulliksen,
    • Paula Kotzé,
    • Lars Oestreicher,
    • Philippe Palanque,
    • Raquel Oliveira Prates,
    • Marco Winckler

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 20 August 2009

    Author Tags

    1. design
    2. image search
    3. log analysis

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media