skip to main content
10.1007/978-3-642-02121-3_53guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Media Meets Semantic Web --- How the BBC Uses DBpedia and Linked Data to Make Connections

Published: 31 May 2009 Publication History

Abstract

In this paper, we describe how the BBC is working to integrate data and linking documents across BBC domains by using Semantic Web technology, in particular Linked Data, MusicBrainz and DBpedia. We cover the work of BBC Programmes and BBC Music building Linked Data sites for all music and programmes related brands, and we describe existing projects, ongoing development, and further research we are doing in a joint collaboration between the BBC, Freie Universität Berlin and Rattle Research in order to use DBpedia as the controlled vocabulary and semantic backbone for the whole BBC.

References

[1]
Auchard, E.: Flickr to map the world's latest photo hotspots. Reuters.com (2007).
[2]
Vander, T.: Folksonomy Coinage and Definition (2007), http://www.vanderwal.net/folksonomy.html
[3]
Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007).
[4]
Wikipedia: Tag cloud. Wikipedia, The Free Encyclopedia (2009).
[5]
Suchanek, F.M., Vojnovic, M., Gunawardena, D.: Social tags: Meaning and Suggestions. In: ACM Conference on Information and Knowledge Management (CIKM 2008), pp. 223-232. ACM, Napa (2008).
[6]
Mathes, A.: Folksonomies-Cooperative Classification and Communication Through Shared Metadata. Computer Mediated Communication, LIS590CMC (2004).
[7]
Stuckenschmidt, H., Harmelen, F.V.: Information Sharing on the Semantic Web. Springer, Heidelberg (2005).
[8]
A1-Khalifa, S., Davis, C.: Measuring the Semantic Value of Folksonomies. Innovations in Information Technology (2006).
[9]
Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics 5, 5-15 (2007).
[10]
Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Stanford InfoLab Technical Report (2006).
[11]
Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining Association Rules in Folksonomies. In: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization (2006).
[12]
Schwarzkopf, E., Heckmann, D., Dengler, D., Kroner, A.: Mining the Structure of Tag Spaces for User Modeling. In: Workshop on Data Mining for User Modeling (ICUM 2007) (2007).
[13]
Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624-639. Springer, Heidelberg (2007).
[14]
Damme, C.V., Hepp, M., Siorpaes, K.: FolksOntology: An Integrated Approach for Turning Folksonomies into Ontologies. In: Proc. of the ESWC Workshop Bridging the Gap between Semantic Web and Web (2007).
[15]
An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic Generation of Ontology from the Deep Web. Database and Expert Systems IEEE 2007 (2007).
[16]
Laniado, D., Eynard, D., Colombetti, M.: Using WordNet to turn a folksonomy into a hierarchy of concepts. In: Proc. of 4th Italian Semantic Web Workshop, Italy (2007).
[17]
Schreiber, A.T.G., Dubbeldam, B., Wielemaker, J., Wielinga, B.: Ontology-Based Photo Annotation. IEEE Intelligent Systems (2001).
[18]
Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proceedings of the Collaborative Web Tagging Workshop (WWW 2006), Edinburgh, UK (2006).
[19]
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data (1993).
[20]
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases (1994).
[21]
Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J., Yang, C.: Finding interesting associations without support pruning. Transactions on Knowledge and Data Engineering 13, 64-78 (2001).
[22]
Spertus, E., Sahami, M., Buyukkokten, O.: Evaluating similarity measures: a large-scale study in the orkut social network. In: Proceedings of the 11th ACM SIGKDD intl. conference on Knowledge Discovery in Data mining, Chicago, USA (2005).
[23]
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986).
[24]
Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61-75. Springer, Heidelberg (2004).
[25]
Wallace, M.: Jawbone (2007), http://mfwallace.googlepages.com/jawbone.html
[26]
Dellschaft, K., Staab, S.: Strategies for the evaluation of ontology learning. In: Buitelaar, P., Cimiano, P. (eds.) Ontology learning and population: Bridging the gap between text and knowledge. IOS Press, Amsterdam (2008).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ESWC 2009 Heraklion: Proceedings of the 6th European Semantic Web Conference on The Semantic Web: Research and Applications
May 2009
958 pages
ISBN:9783642021206
  • Editors:
  • Lora Aroyo,
  • Paolo Traverso,
  • Fabio Ciravegna,
  • Philipp Cimiano,
  • Tom Heath,
  • Eero Hyvönen,
  • Riichiro Mizoguchi,
  • Eyal Oren,
  • Marta Sabou,
  • Elena Simperl

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 31 May 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media