skip to main content
10.1007/978-3-642-01020-0_41guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Multiobjective Distinct Candidates Optimization (MODCO): A Cluster-Forming Differential Evolution Algorithm

Published: 21 April 2009 Publication History

Abstract

Traditionally, Multiobjective Evolutionary Algorithms (MOEAs) aim at approximating the entire true pareto-front of their input problems. However, the actual number of solutions with different trade-offs between objectives in a resulting pareto-front is often too large to be applicable in practice. The new field Multiobjective Distinct Candidates Optimization (MODCO) research is concerned with the optimization of a low and user-defined number of clearly distinct candidates. This dramatically decreases the amount of post-processing needed in the decision making process of which solution to actually implement, as described in our related technical repport "Multiobjective Distinct Candidates Optimization (MODCO): A new Branch of Multiobjective Optimization Research" [9].
In this paper, we introduce the first algorithm designed for the challenges of MODCO; providing a given number of distinct solutions as close as possible to the true pareto-front. The algorithm is using subpopulations to enforce clusters of solutions, in such a way that the number of clusters formed can be set directly. The algorithm is based on the Differential Evolution for Multiobjective Optimization (DEMO) algorithm versions, but is exchanging the crowding/density measure with two alternating secondary fitness measures. Applying these measures ensures that subpopulations are attracted towards knee regions while also making them repel each other if they get too close to one another. This way subpopulations traverse different parts of the objective space while forming clusters each returning a single distinct solution.

References

[1]
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on Evolutionary Computation 6, 182-197 (2002)
[2]
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2002)
[3]
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
[4]
Price, K.V., Storn, R.: Differential Evolution - a simple evolution strategy for fast optimization. Dr. Dobb's journal 22, 18-24 (1997)
[5]
Robič, T., Filipič, B.: DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520-533. Springer, Heidelberg (2005)
[6]
Robič, T., Filipič, B.: Differential Evolution versus Genetic Algorithms in Multiobjective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 257-271. Springer, Heidelberg (2007)
[7]
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multi-Objective Optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 825-830 (2002)
[8]
Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding Knees in Multi-objective Optimization. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722-731. Springer, Heidelberg (2004)
[9]
Ursem, R.K., Justesen, P.D.: Multiobjective Distinct Candidates Optimization (MODCO) - A new Branch of Multiobjective Optimization Research. Technical Report no. 2008-01, Dept. of Computer Science, University of Aarhus (2008), Download: http://www.daimi.au.dk/~ursem/publications/Ursem_EMO2009_MODCO.pdf
[10]
Kukkonen, S., Lampinen, J.: GDE3: The third Evolution Step of Generalized differential evolution. In: Proceedings of the 2005 Congress on Evolutionary Computation, CEC 2005, pp. 443-450 (2005)
[11]
Karthis, S., Deb, K., Miettinen, K.: A Local Search Based Evolutionary Multiobjective Optimization for Fast and Accurate Convergence. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 815-824. Springer, Heidelberg (2008)
  1. Multiobjective Distinct Candidates Optimization (MODCO): A Cluster-Forming Differential Evolution Algorithm

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      EMO '09: Proceedings of the 5th International Conference on Evolutionary Multi-Criterion Optimization
      April 2009
      583 pages
      ISBN:9783642010194
      • Editors:
      • Matthias Ehrgott,
      • Carlos M. Fonseca,
      • Xavier Gandibleux,
      • Jin-Kao Hao,
      • Marc Sevaux

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 21 April 2009

      Author Tags

      1. Clustering
      2. DEMO
      3. Differential Evolution
      4. Distinct Candidates
      5. Evolutionary Algorithms
      6. MODCO
      7. Multiobjective Optimization
      8. NSGA-II
      9. SPEA2
      10. Subpopulations

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media