skip to main content
10.1007/978-3-319-23528-8_9guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Ridge regression, hubness, and zero-shot learning

Published: 07 September 2015 Publication History

Abstract

This paper discusses the effect of hubness in zero-shot learning, when ridge regression is used to find a mapping between the example space to the label space. Contrary to the existing approach, which attempts to find a mapping from the example space to the label space, we show that mapping labels into the example space is desirable to suppress the emergence of hubs in the subsequent nearest neighbor search step. Assuming a simple data model, we prove that the proposed approach indeed reduces hubness. This was verified empirically on the tasks of bilingual lexicon extraction and image labeling: hubness was reduced with both of these tasks and the accuracy was improved accordingly.

References

[1]
Ács, J., Pajkossy, K., Kornai, A.: Building basic vocabulary across 40 languages. In: Proceedings of the 6th Workshop on Building and Using Comparable Corpora, pp. 52-58 (2013)
[2]
Akata, Z., Lee, H., Schiele, B.: Zero-shot learning with structured embeddings (2014). arXiv preprint arXiv:1409.8403v1
[3]
Al-Rfou, R., Perozzi, B., Skiena, S.: Polyglot: Distributed word representations for multilingual NLP. In: CoNLL 2013, pp. 183-192 (2013)
[4]
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N. (eds.): Predicting Structured Data. MIT press (2007)
[5]
Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: KDD 2001, pp. 245-250 (2001)
[6]
Dasgupta, S.: Experiments with random projection. In: UAI 2000, pp. 143-151 (2000)
[7]
Dinu, G., Baroni, M.: How to make words with vectors: phrase generation in distributional semantics. In: ACL 2014, pp. 624-633 (2014)
[8]
Dinu, G., Baroni, M.: Improving zero-shot learning by mitigating the hubness problem. In: Workshop at ICLR 2015 (2015)
[9]
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition (2013). arXiv preprint arXiv:1310.1531
[10]
Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR 2009, pp. 1778-1785 (2009)
[11]
Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Ronzato, M., Mikolov, T.: Devise: a deep visual-semantic embedding model. In: NIPS 2013, pp. 2121-2129 (2013)
[12]
Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods. Neural Computation 16, 2639-2664 (2004)
[13]
Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: CVPR 2007, pp. 1-8 (2007)
[14]
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR 2009. pp. 951-958 (2009)
[15]
Larochelle, H., Erhan, D., Bengio, Y.: Zero-data learning of new tasks. In: AAAI 2008, pp. 646-651 (2008)
[16]
Lazaridou, A., Bruni, E., Baroni, M.: Is this a wampimuk? Cross-modal mapping between distributional semantics and the visual world. In: ACL 2014, pp. 1403-1414 (2014)
[17]
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)
[18]
Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature space. In: NIPS 1998, pp. 536-542 (1998)
[19]
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Workshop at ICLR 2013 (2013)
[20]
Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation (2013). arXiv preprint arXiv:1309.4168
[21]
Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G.S., Dean, J.: Zero-shot learning by convex combination of semantic embeddings. In: ICLR 2014 (2014)
[22]
Palatucci, M., Pomerleau, D., Hinton, G., Mitchell, T.M.: Zero-shot learning with semantic output codes. In: NIPS 2009, pp. 1410-1418 (2009)
[23]
Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning Research 11, 2487-2531 (2010)
[24]
Schnitzer, D., Flexer, A., Schedl, M., Widmer, G.: Local and global scaling reduce hubs in space. Journal of Machine Learning Research 13, 2871-2902 (2012)
[25]
Socher, R., Ganjoo, M., Manning, C.D., Ng, A.Y.: Zero-shot learning through cross-modal transfer. In: NIPS 2013, pp. 935-943 (2013)
[26]
Suzuki, I., Hara, K., Shimbo, M., Saerens, M., Fukumizu, K.: Centering similarity measures to reduce hubs. In: EMNLP 2013, pp. 613-623 (2013)
[27]
Tomašev, N., Rupnik, J., Mladenić, D.: The role of hubs in cross-lingual supervised document retrieval. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013, Part II. LNCS, vol. 7819, pp. 185-196. Springer, Heidelberg (2013)
[28]
Vinokourov, A., Shawe-Taylor, J., Cristianini, N.: Inferring a semantic representation of text via cross-language correlation analysis. In: NIPS 2002, pp. 1473-1480 (2002)
[29]
Weston, J., Chapelle, O., Vapnik, V., Elisseeff, A., Schölkopf, B.: Kernel dependency estimation. In: NIPS 2002, pp. 873-880 (2002)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECMLPKDD'15: Proceedings of the 2015th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part I
September 2015
707 pages
ISBN:9783319235271

Sponsors

  • Huawei Technologies Co. Ltd.: Huawei Technologies Co. Ltd.
  • Zalando: Zalando
  • ONRGlobal: U.S. Office of Naval Research Global
  • BNPPARIBAS: BNP PARIBAS
  • Amazon: Amazon.com

Publisher

Springer

Gewerbestrasse 11 CH-6330, Cham (ZG), Switzerland

Publication History

Published: 07 September 2015

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media