skip to main content
10.1007/978-3-031-73497-7_14guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Pruning End-Effectors State of the Art Review

Published: 16 November 2024 Publication History

Abstract

Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.

References

[1]
Berners-Lee, M., Kennelly, C., Watson, R., Hewitt, C.N.: Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Sci. Anthropocene 6, 52 (2018).
[2]
Botterill, T., et al.: A robot system for pruning grape vines. J. Field Robot. 34(6), 1100–1122 (2017).
[3]
Cuevas-Velasquez, H., et al.: Real-Time Stereo Visual Servoing for Rose Pruning with Robotic Arm, pp. 7050–7056 (2020).
[4]
Funabashi M Synecological farming: theoretical foundation on biodiversity responses of plant communities Plant Biotechnol. 2016 33 4 213-234
[5]
He, L., Schupp, J.: Sensing and automation in pruning of apple trees: a review. Agronomy 8(10) (2018).
[6]
Kuta, L., Komarnicki, P., Łakoma, K., Praska, J.: Tomato fruit quality as affected by ergonomic conditions while manually harvested. Agriculture 13(9) (2023).
[7]
Miyazaki, R., Matori, W., Kominami, T., Paul, H., Shimonomura, K.: Multirotor Long-Reach Aerial Pruning with Wire-Suspended Saber Saw, Piscataway, pp. 1787–1793 (2022).
[8]
Oliveira, F., Tinoco, V., Magalhães, S., Santos, F.N., Silva, M.F.: End-effectors for harvesting manipulators - state of the art review. In: 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 98–103 (2022).
[9]
Oliveira, L.F.P., Moreira, A.P., Silva, M.F.: Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics 10(2) (2021).
[10]
Otani, T., et al.: Agricultural robot under solar panels for sowing, pruning, and harvesting in a synecoculture environment. Agriculture 13(1) (2023).
[11]
Presten, M., et al.: Automated Pruning of Polyculture Plants, Piscataway, pp. 242–249 (2022).
[12]
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A.: Yield trends are insufficient to double global crop production by 2050. PLOS ONE 8(6), 1–8 (2013).
[14]
Silwal, A., Yandun, F., Nellithimaru, A., Bates, T., Kantor, G.: Bumblebee: a path towards fully autonomous robotic vine pruning (2021).
[15]
Sukkar, F.: Fast, reliable and efficient database search motion planner (FREDS-MP) for repetitive manipulator tasks (2017). https://api.semanticscholar.org/CorpusID:67024488
[16]
Tinoco, V., Silva, M.F., Santos, F.N., Rocha, L.F., Magalhães, S., Santos, L.C.: A review of pruning and harvesting manipulators. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 155–160 (2021).
[17]
Yang Q, Du X, Wang Z, Meng Z, Ma Z, and Zhang Q A review of core agricultural robot technologies for crop productions Comput. Electron. Agric. 2023 206
[18]
You, A., Sukkar, F., Fitch, R., Karkee, M., Davidson, J.R.: An efficient planning and control framework for pruning fruit trees. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3930–3936 (2020).
[19]
Zahid, A., Mahmud, M.S., He, L., Choi, D., Heinemann, P., Schupp, J.: Development of an integrated 3r end-effector with a cartesian manipulator for pruning apple trees. Comput. Electron. Agricult. 179 (2020).
[20]
Zahid, A., Mahmud, M.S., He, L., Heinemann, P., Choi, D., Schupp, J.: Technological advancements towards developing a robotic pruner for apple trees: a review. Comput. Electron. Agric. 189, 106383 (2021).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Progress in Artificial Intelligence: 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3–6, 2024, Proceedings, Part I
Sep 2024
464 pages
ISBN:978-3-031-73496-0
DOI:10.1007/978-3-031-73497-7
  • Editors:
  • Manuel Filipe Santos,
  • José Machado,
  • Paulo Novais,
  • Paulo Cortez,
  • Pedro Miguel Moreira

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 16 November 2024

Author Tags

  1. Pruning
  2. End-Effector
  3. Precision Agriculture
  4. Robotics
  5. Automation
  6. Manipulator

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media