skip to main content
10.1007/978-3-031-49614-1_5guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Restricted Holant Dichotomy on Domains 3 and 4

Published: 15 December 2023 Publication History

Abstract

Holant(f) denotes a class of counting problems specified by a constraint function f. We prove complexity dichotomy theorems for Holant(f) in two settings: (1) f is any symmetric arity-3 real-valued function on input of domain size 3. (2) f is any symmetric arity-3 {0,1}-valued function on input of domain size 4.

References

[1]
Backens M A full dichotomy for Holantc, inspired by quantum computation SIAM J. Comput. 2021 50 6 1739-1799
[2]
Backens M and Goldberg LA Holant clones and the approximability of conservative Holant problems ACM Trans. Algorithms 2020 16 2 23:1-23:55
[3]
Bulatov AA A dichotomy theorem for constraint satisfaction problems on a 3-element set JACM 2006 53 1 66-120
[4]
Cai JY and Chen X Complexity of counting CSP with complex weights JACM 2017 64 3 19:1-19:39
[5]
Cai JY, Chen X, and Lu P Nonnegative weighted# CSP: an effective complexity dichotomy SIAM J. Comput. 2016 45 6 2177-2198
[6]
Cai, J., Guo, H., Williams, T.: The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18–21, 2014, pp. 601–610. IEEE Computer Society (2014).
[7]
Cai JY, Guo H, and Williams T A complete dichotomy rises from the capture of vanishing signatures SIAM J. Comput. 2016 45 5 1671-1728
[8]
Cai JY and Lu P Holographic algorithms: from art to science J. Comput. Syst. Sci. 2011 77 1 41-61
[9]
Cai, J.Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and Holographic reductions for hardness. In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 644–653 (2008).
[10]
Cai, J.Y., Lu, P., Xia, M.: Holant problems and counting CSP. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 715–724 (2009).
[11]
Cai, J.Y., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6–8, 2013, pp. 1278–1295. SIAM (2013).
[12]
Cai JY, Lu P, and Xia M Holographic algorithms with matchgates capture precisely tractable planar #CSP SIAM J. Comput. 2017 46 3 853-889
[13]
Dyer M and Richerby D An effective dichotomy for the counting constraint satisfaction problem SIAM J. Comput. 2013 42 3 1245-1274
[14]
Freedman M, Lovász L, and Schrijver A Reflection positivity, rank connectivity, and homomorphism of graphs J. Amer. Math. Soc. 2007 20 1 37-51
[15]
Fu Z, Yang F, and Yin M On blockwise symmetric matchgate signatures and higher domain #CSP Inf. Comput. 2019 264 1-11
[16]
Guo, H., Huang, S., Lu, P., Xia, M.: The complexity of weighted Boolean #CSP modulo k. In: 28th International Symposium on Theoretical Aspects of Computer Science, STACS, pp. 249–260 (2011).
[17]
Guo H, Lu P, and Valiant LG The complexity of symmetric Boolean parity Holant problems SIAM J. Comput. 2013 42 1 324-356
[18]
Hell, P., Nešetřil, J.: Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press (2004)
[19]
Kowalczyk M and Cai JY Holant problems for 3-regular graphs with complex edge functions Theory Comput. Syst. 2016 59 1 133-158
[20]
Szegedy B Edge coloring models and reflection positivity J. Am. Math. Soc. 2007 20 4 969-988
[21]
Szegedy B Edge Coloring Models as Singular Vertex Coloring Models 2010 Berlin Heidelberg pp Bolyai Society Mathematical Studies. Springer 327-336
[22]
Valiant, L.G.: Accidental algorithms. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 509–517. IEEE (2006).
[23]
Valiant LG Holographic algorithms SIAM J. Comput. 2008 37 5 1565-1594
[24]
Xia, M.: Holographic reduction: a domain changed application and its partial converse theorems. Int. J. Softw. Informatics 5(4), 567–577 (2011). https://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=i109

Index Terms

  1. Restricted Holant Dichotomy on Domains 3 and 4
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Combinatorial Optimization and Applications: 16th International Conference, COCOA 2023, Hawaii, HI, USA, December 15–17, 2023, Proceedings, Part II
        Dec 2023
        504 pages
        ISBN:978-3-031-49613-4
        DOI:10.1007/978-3-031-49614-1
        • Editors:
        • Weili Wu,
        • Jianxiong Guo

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 15 December 2023

        Author Tags

        1. Holant problem
        2. Dichotomy
        3. Higher domain

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 28 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media