skip to main content
10.1007/978-3-031-20068-7_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

PoseGPT: Quantization-Based 3D Human Motion Generation and Forecasting

Published: 23 October 2022 Publication History

Abstract

We address the problem of action-conditioned generation of human motion sequences. Existing work falls into two categories: forecast models conditioned on observed past motions, or generative models conditioned on action labels and duration only. In contrast, we generate motion conditioned on observations of arbitrary length, including none. To solve this generalized problem, we propose PoseGPT, an auto-regressive transformer-based approach which internally compresses human motion into quantized latent sequences. An auto-encoder first maps human motion to latent index sequences in a discrete space, and vice-versa. Inspired by the Generative Pretrained Transformer (GPT), we propose to train a GPT-like model for next-index prediction in that space; this allows PoseGPT to output distributions on possible futures, with or without conditioning on past motion. The discrete and compressed nature of the latent space allows the GPT-like model to focus on long-range signal, as it removes low-level redundancy in the input signal. Predicting discrete indices also alleviates the common pitfall of predicting averaged poses, a typical failure case when regressing continuous values, as the average of discrete targets is not a target itself. Our experimental results show that our proposed approach achieves state-of-the-art results on HumanAct12, a standard but small scale dataset, as well as on BABEL, a recent large scale MoCap dataset, and on GRAB, a human-object interactions dataset.

References

[1]
Agarwal A and Triggs B Recovering 3D human pose from monocular images IEEE Trans. Pattern Anal. Mach. Intell. 2005 28 1 44-58
[2]
Ahn, H., Ha, T., Choi, Y., Yoo, H., Oh, S.: Text2Action: generative adversarial synthesis from language to action. In: ICRA, pp. 5915–5920 (2018)
[3]
Ahuja, C., Morency, L.: Language2Pose: natural language grounded pose forecasting. In: 3DV, pp. 719–728 (2019)
[4]
Aksan, E., Kaufmann, M., Hilliges, O.: Structured prediction helps 3D human motion modelling. In: ICCV, pp. 7144–7153 (2019)
[5]
Badler, N.: Temporal scene analysis: conceptual descriptions of object movements. PhD thesis, University of Toronto (1975)
[6]
Badler NI, Phillips CB, and Webber BL Simulating Humans: Computer Graphics Animation and Control 1993 NY Oxford University Press
[7]
Baradel, F., Groueix, T., Weinzaepfel, P., Brégier, R., Kalantidis, Y., Rogez, G.: Leveraging mocap data for human mesh recovery. In: 3DV, pp. 586–595 (2021)
[8]
Barratt, S., Sharma, R.: A note on the inception score. arXiv preprint arXiv:1801.01973 (2018)
[9]
Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: CVPRW, pp. 1418–1427 (2018)
[10]
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)
[11]
Bowden, R.: Learning statistical models of human motion. In: CVPRW (2000)
[12]
Brégier, R.: Deep regression on manifolds: a 3D rotation case study. In: 3DV, pp. 166–174 (2021)
[13]
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)
[14]
Cao Z, Gao H, Mangalam K, Cai Q-Z, Vo M, and Malik J Vedaldi A, Bischof H, Brox T, and Frahm J-M Long-term human motion prediction with scene context Computer Vision – ECCV 2020 2020 Cham Springer 387-404
[15]
Chen, M., et al.: Generative pretraining from pixels. In: ICML, pp. 1691–1703 (2020)
[16]
Chen, X., Mishra, N., Rohaninejad, M., Abbeel, P.: PixelSNAIL: an improved autoregressive generative model. In: ICML, pp. 864–872 (2018)
[17]
Chorowski J, Weiss RJ, Bengio S, and Van Den Oord A Unsupervised speech representation learning using WaveNet autoencoders IEEE/ACM Trans. Audio Speech Lang. Process. 2019 27 12 2041-2053
[18]
De Fauw, J., Dieleman, S., Simonyan, K.: Hierarchical autoregressive image models with auxiliary decoders. arXiv preprint arXiv:1903.04933 (2019)
[19]
Delmas, G., Weinzaepfel, P., Lucas, T., Moreno-Noguer, F., Rogez, G.: PoseScript: 3D human poses from natural language. In: ECCV (2022)
[20]
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
[21]
Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: CVPR, pp. 12873–12883 (2021)
[22]
Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: ICCV, pp. 4346–4354 (2015)
[23]
Galata A, Johnson N, and Hogg D Learning variable-length Markov models of behavior Comput. Vis. Image Underst. 2001 81 3 398-413
[24]
Ghosh, A., Cheema, N., Oguz, C., Theobalt, C., Slusallek, P.: Synthesis of compositional animations from textual descriptions. In: CVPR, pp. 1396–1406 (2021)
[25]
Ghosh, P., Song, J., Aksan, E., Hilliges, O.: Learning human motion models for long-term predictions. In: 3DV, pp. 458–466 (2017)
[26]
Goodfellow I et al. Generative adversarial nets Commun. ACM 2014 63 11 139-144
[27]
Guo, C., et al.: Action2Motion: conditioned generation of 3D human motions. In: ACMMM, pp. 2021–2029 (2020)
[28]
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: CVPR, pp. 2255–2264 (2018)
[29]
Habibie, I., Holden, D., Schwarz, J., Yearsley, J., Komura, T.: A recurrent variational autoencoder for human motion synthesis. In: BMVC (2017)
[30]
Herda, L., Fua, P., Plankers, R., Boulic, R., Thalmann, D.: Skeleton-based motion capture for robust reconstruction of human motion. In: Proceedings Computer Animation 2000, pp. 77–83 (2000)
[31]
Holden D, Komura T, and Saito J Phase-functioned neural networks for character control ACM Trans. Graph. 2017 36 4 1-13
[32]
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)
[33]
Jegou H, Douze M, and Schmid C Product quantization for nearest neighbor search IEEE Trans. Pattern Anal. Mach. Intell. 2010 33 1 117-128
[34]
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
[35]
Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: CVPR, pp. 5253–5263 (2020)
[36]
Lee, H.Y., et al.: Dancing to music. Adv. Neural Inf. Process. Syst. 32 (2019)
[37]
Li, R., Yang, S., Ross, D.A., Kanazawa, A.: Learn to dance with AIST++: music conditioned 3D dance generation. arXiv preprint arXiv:2101.08779 (2021)
[38]
Lin, A.S., Wu, L., Rodolfo, C., Kevin Tai, Q.H.R.J.M.: Generating animated videos of human activities from natural language descriptions. In: Proceedings of the Visually Grounded Interaction and Language Workshop at NeurIPS (2018)
[39]
Lin, X., Amer, M.R.: Human motion modeling using DVGANs. arXiv preprint arXiv:1804.10652 (2018)
[40]
Loper M, Mahmood N, Romero J, Pons-Moll G, and Black MJ SMPL: a skinned multi-person linear model ACM Trans. Graph. 2015 34 6 1-16
[41]
Lucas, T., Shmelkov, K., Alahari, K., Schmid, C., Verbeek, J.: Adaptive density estimation for generative models. Adv. Neural Inf. Process. Syst. 32 (2019)
[42]
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: ICCV, pp. 5442–5451 (2019)
[43]
Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: CVPR, pp. 2891–2900 (2017)
[44]
Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity metrics for generative models. In: ICML, pp. 7176–7185 (2020)
[45]
Van den Oord, A., et al.: Conditional image generation with PixelCNN decoders. Adv. Neural Inf. Process. Syst. 29 (2016)
[46]
van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: ICML, pp. 1747–1756 (2016)
[47]
van den Oord, A., Oriol, V., Kavukcuoglu, K.: Neural discrete representation learning. In: ICML (2018)
[48]
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR, pp. 10975–10985 (2019)
[49]
Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion synthesis with transformer VAE. In: ICCV, pp. 10985–10995 (2021)
[50]
Punnakkal, A.R., Chandrasekaran, A., Athanasiou, N., Quiros-Ramirez, A., Black, M.J.: BABEL: bodies, action and behavior with English labels. In: CVPR, pp. 722–731 (2021)
[51]
Radford A, Wu J, Child R, Luan D, Amodei D, and Sutskever I Language models are unsupervised multitask learners OpenAI blog 2019 1 8 9
[52]
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)
[53]
Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. Adv. Neural Inf. Process. Syst. 32 (2019)
[54]
Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: HuMoR: 3D human motion model for robust pose estimation. ICCV, pp. 11488–11499 (2021)
[55]
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep, generative models. In: ICML, pp. 1278–1286 (2014)
[56]
Rogez G, Weinzaepfel P, and Schmid C LCR-Net++: multi-person 2D and 3D pose detection in natural images IEEE Trans. Pattern Anal. Mach. Intell. 2019 42 5 1146-1161
[57]
Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: ECCV, pp. 213–229 (2018)
[58]
Siyao, L., et al.: Bailando: 3D dance generation by actor-critic GPT with choreographic memory. In: CVPR, pp. 11050–11059 (2022)
[59]
Starke S, Zhang H, Komura T, and Saito J Neural state machine for character-scene interactions ACM Trans. Graph. 2019 38 6 1-14
[60]
Taheri O, Ghorbani N, Black MJ, and Tzionas D Vedaldi A, Bischof H, Brox T, and Frahm J-M GRAB: a dataset of whole-body human grasping of objects Computer Vision – ECCV 2020 2020 Cham Springer 581-600
[61]
Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. Adv. Neural Inf. Process. Syst. 19 (2006)
[62]
Carnegie Mellon University: CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/
[63]
Urtasun R, Fleet DJ, and Lawrence ND Elgammal A, Rosenhahn B, and Klette R Modeling human locomotion with topologically constrained latent variable models Human Motion – Understanding, Modeling, Capture and Animation 2007 Heidelberg Springer 104-118
[64]
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. Adv. Neural Inf. Process. Syst. 30 (2017)
[65]
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
[66]
Walker, J., Razavi, A., Oord, A.V.D.: Predicting video with VQVAE. arXiv preprint arXiv:2103.01950 (2021)
[67]
Weinzaepfel P, Brégier R, Combaluzier H, Leroy V, and Rogez G Vedaldi A, Bischof H, Brox T, and Frahm J-M DOPE: distillation of part experts for whole-body 3D pose estimation in the wild Computer Vision – ECCV 2020 2020 Cham Springer 380-397
[68]
Weissenborn, D., Täckström, O., Uszkoreit, J.: Scaling autoregressive video models. In: ICLR (2020)
[69]
Yuan Y and Kitani K Vedaldi A, Bischof H, Brox T, and Frahm J-M DLow: diversifying latent flows for diverse human motion prediction Computer Vision – ECCV 2020 2020 Cham Springer 346-364
[70]
Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: CVPR, pp. 3372–3382 (2021)
[71]
Zheng, C., et al.: Deep learning-based human pose estimation: a survey. arXiv preprint arXiv:2012.13392 (2020)
[72]
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: CVPR, pp. 5745–5753 (2019)
[73]
Zou, S., et al.: Polarization human shape and pose dataset. arXiv preprint arXiv:2004.14899 (2020)
[74]
Zou S et al. Vedaldi A, Bischof H, Brox T, Frahm J-M, et al. 3D human shape reconstruction from a polarization image Computer Vision – ECCV 2020 2020 Cham Springer 351-368

Cited By

View all

Index Terms

  1. PoseGPT: Quantization-Based 3D Human Motion Generation and Forecasting
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part VI
          Oct 2022
          803 pages
          ISBN:978-3-031-20067-0
          DOI:10.1007/978-3-031-20068-7

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 23 October 2022

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 08 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media