skip to main content
10.1007/978-3-030-98355-0_52guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

VISIONE at Video Browser Showdown 2022

Published: 06 June 2022 Publication History

Abstract

VISIONE is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). It uses a full-text search engine as a search backend. In the latest version of our system, we modified the user interface, and we made some changes to the techniques used to analyze and search for videos.

References

[1]
Amato G et al. Kompatsiaris I, Huet B, Mezaris V, Gurrin C, Cheng W-H, Vrochidis S, et al. VISIONE at VBS2019 MultiMedia Modeling 2019 Cham Springer 591-596
[2]
Amato G et al. The VISIONE video search system: exploiting off-the-shelf text search engines for large-scale video retrieval J. Imaging 2021 7 5 76
[3]
Amato G, et al., et al. Lokoč J, et al., et al. VISIONE at video browser showdown 2021 MultiMedia Modeling 2021 Cham Springer 473-478
[4]
Benavente R, Vanrell M, and Baldrich R Parametric fuzzy sets for automatic color naming JOSA A 2008 25 10 2582-2593
[5]
Berlin B and Kay P Basic Color Terms: Their Universality and Evolution 1991 Berkeley University of California Press
[6]
Berns, F., Rossetto, L., Schoeffmann, K., Beecks, C., Awad, G.: V3C1 dataset: an evaluation of content characteristics. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 334–338. Association for Computing Machinery (2019)
[7]
Boynton RM and Olson CX Salience of chromatic basic color terms confirmed by three measures Vision. Res. 1990 30 9 1311-1317
[8]
Gordo A, Almazan J, Revaud J, and Larlus D End-to-end learning of deep visual representations for image retrieval Int. J. Comput. Vision 2017 124 2 237-254
[9]
Heller S, et al., et al. Lokoč J, et al., et al. Towards explainable interactive multi-modal video retrieval with vitrivr MultiMedia Modeling 2021 Cham Springer 435-440
[10]
Lokoč J et al. Is the reign of interactive search eternal? Findings from the video browser showdown 2020 ACM Trans. Multimed. Comput. Commun. Appl. 2021 17 3 1-26
[11]
Messina, N., Amato, G., Esuli, A., Falchi, F., Gennaro, C., Marchand-Maillet, S.: Fine-grained visual textual alignment for cross-modal retrieval using transformer encoders. arXiv preprint arXiv:2008.05231 (2020)
[12]
Messina, N., Falchi, F., Esuli, A., Amato, G.: Transformer reasoning network for image-text matching and retrieval. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5222–5229. IEEE (2021)
[13]
Peška L, Kovalčík G, Souček T, Škrhák V, Lokoč J, et al. Lokoč J et al. W2VV++ BERT model at VBS 2021 MultiMedia Modeling 2021 Cham Springer 467-472
[14]
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
[15]
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018)
[16]
Revaud, J., Almazan, J., Rezende, R., de Souza, C.: Learning with average precision: training image retrieval with a listwise loss. In: International Conference on Computer Vision, pp. 5106–5115. IEEE (2019)
[17]
Rossetto L et al. Interactive video retrieval in the age of deep learning - detailed evaluation of VBS 2019 IEEE Trans. Multimedia 2020 23 243-256
[18]
Rossetto, L., Schoeffmann, K., Bernstein, A.: Insights on the V3C2 dataset. arXiv preprint arXiv:2105.01475 (2021)
[19]
Sturges J and Whitfield TA Salient features of munsell colour space as a function of monolexemic naming and response latencies Vision. Res. 1997 37 3 307-313
[20]
Van De Weijer J, Schmid C, Verbeek J, and Larlus D Learning color names for real-world applications IEEE Trans. Image Process. 2009 18 7 1512-1523
[21]
Zhang, H., Wang, Y., Dayoub, F., Sunderhauf, N.: VarifocalNet: an IoU-aware dense object detector. In: Conference on Computer Vision and Pattern Recognition, pp. 8514–8523. IEEE, June 2021

Cited By

View all

Index Terms

  1. VISIONE at Video Browser Showdown 2022
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      MultiMedia Modeling: 28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6–10, 2022, Proceedings, Part II
      Jun 2022
      613 pages
      ISBN:978-3-030-98354-3
      DOI:10.1007/978-3-030-98355-0

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 06 June 2022

      Author Tags

      1. Content-based video retrieval
      2. Video search
      3. Information search and retrieval
      4. Surrogate text representation

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media