skip to main content
10.1007/978-3-030-58219-7_21guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Overview of CLEF HIPE 2020: Named Entity Recognition and Linking on Historical Newspapers

Published: 22 September 2020 Publication History

Abstract

This paper presents an overview of the first edition of HIPE (Identifying Historical People, Places and other Entities), a pioneering shared task dedicated to the evaluation of named entity processing on historical newspapers in French, German and English. Since its introduction some twenty years ago, named entity (NE) processing has become an essential component of virtually any text mining application and has undergone major changes. Recently, two main trends characterise its developments: the adoption of deep learning architectures and the consideration of textual material originating from historical and cultural heritage collections. While the former opens up new opportunities, the latter introduces new challenges with heterogeneous, historical and noisy inputs. In this context, the objective of HIPE, run as part of the CLEF 2020 conference, is threefold: strengthening the robustness of existing approaches on non-standard inputs, enabling performance comparison of NE processing on historical texts, and, in the long run, fostering efficient semantic indexing of historical documents. Tasks, corpora, and results of 13 participating teams are presented.

References

[1]
Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: FLAIR: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (demonstrations), pp. 54–59. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://www.aclweb.org/anthology/N19-4010
[2]
Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 1638–1649. Association for Computational Linguistics, Santa Fe, New Mexico, USA, August 2018. http://www.aclweb.org/anthology/C18-1139
[3]
Bojanowski P, Grave E, Joulin A, and Mikolov T Enriching word vectors with subword information Trans. Assoc. Comput. Linguist. 2017 5 135-146 https://www.aclweb.org/anthology/Q17-1010
[4]
Bollmann, M.: A large-scale comparison of historical text normalization systems. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3885–3898. Association for Computational Linguistics, Minneapolis, Minnesota (2019).
[5]
Borin, L., Kokkinakis, D., Olsson, L.J.: Naming the past: named entity and animacy recognition in 19th century Swedish literature. In: Proceedings of the Workshop on Language Technology for Cultural Heritage Data (LaT-eCH 2007), pp. 1–8 (2007)
[6]
Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A. (eds.): CLEF 2020 Working Notes. In: CEUR Workshop Proceedings Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum (2020)
[7]
Chiron, G., Doucet, A., Coustaty, M., Visani, M., Moreux, J.P.: Impact of OCR errors on the use of digital libraries: towards a better access to information. In: Proceedings of the 17th ACM/IEEE Joint Conference on Digital Libraries JCDL 2017, pp. 249–252. IEEE Press, Piscataway (2017), http://dl.acm.org/citation.cfm?id=3200334.3200364
[8]
Chiu JP and Nichols E Named entity recognition with bidirectional LSTM-CNNs Trans. Assoc. Comput. Linguist. 2016 4 357-370
[9]
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805
[10]
Dupont, Y., Dinarelli, M., Tellier, I., Lautier, C.: Structured named entity recognition by cascading CRFs. In: Intelligent Text Processing and Computational Linguistics (CICling) (2017)
[11]
Ehrmann, M., Colavizza, G., Rochat, Y., Kaplan, F.: Diachronic evaluation of NER systems on old newspapers. In: Proceedings of the 13th Conference on Natural Language Processing KONVENS 2016, pp. 97–107. Bochumer Linguistische Arbeitsberichte (2016). https://infoscience.epfl.ch/record/221391?ln=en
[12]
Ehrmann, M., Romanello, M., Flückiger, A., Clematide, S.: Extended overview of CLEF HIPE 2020: named entity processing on historical newspapers. In: Cappellato, L., Eickhoff, C., Ferro, N., Névéol, A. (eds.) CLEF 2020 Working Notes. Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum CEUR-WS (2020)
[13]
Ehrmann, M., Romanello, M., Flückiger, A., Clematide, S.: HIPE - shared task participation guidelines (v1.1) (2020).
[14]
Ehrmann, M., Romanello, M., Flückiger, A., Clematide, S.: Impresso named entity annotation guidelines (2020).
[15]
El Vaigh, C.B., Goasdoué, F., Gravier, G., Sébillot, P.: Using knowledge base semantics in context-aware entity linking. In: 2019 Proceedings of the ACM Symposium on Document Engineering DocEng 2019, pp. 1–10. Association for Computing Machinery, Berlin, Germany, September 2019.
[16]
Galibert, O., Rosset, S., Grouin, C., Zweigenbaum, P., Quintard, L.: Extended named entity annotation on OCRed documents : from corpus constitution to evaluation campaign. In: Proceedings of the Eighth conference on International Language Resources and Evaluation, pp. 3126–3131. Istanbul, Turkey (2012)
[17]
Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2619–2629 (2017)
[18]
Grishman, R., Sundheim, B.: Design of the MUC-6 evaluation. In: Proceedings of the Sixth Conference on Message Understanding Conference (MUC-6), Columbia, Maryland (1995)
[19]
Hoffart, J., et al.: Robust disambiguation of named entities in text. In: EMNLP (2011)
[20]
Hooland SV, Wilde MD, Verborgh R, Steiner T, and Van de Walle R Exploring entity recognition and disambiguation for cultural heritage collections Digit. Sch. Humanit. 2015 30 2 262-279
[21]
van Hulst, J.M., Hasibi, F., Dercksen, K., Balog, K., de Vries, A.P.: REL: an entity linker standing on the shoulders of giants. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR 2020. ACM (2020)
[22]
Kaplan, F., di Lenardo, I.: Big data of the past. Front. Digit. Humanit. 4 (2017).
[23]
Klie, J.C., Bugert, M., Boullosa, B., de Castilho, R.E., Gurevych, I.: The inception platform: machine-assisted and knowledge-oriented interactive annotation. In: Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pp. 5–9 (2018)
[24]
Kolitsas, N., Ganea, O.E., Hofmann, T.: End-to-end neural entity linking. In: Proceedings of the 22nd Conference on Computational Natural Language Learning, pp. 519–529. Association for Computational Linguistics, Brussels, Belgium, October 2018.
[25]
Krippendorff K Content Analysis: An Introduction to its Methodology 1980 Thousand Oaks Sage Publications
[26]
Labusch, K., Neudecker, C., Zellhöfer, D.: BERT for named entity recognition in contemporary and historic german. In: Preliminary proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019): Long Papers, pp. 1–9. German Society for Computational Linguistics & Language Technology, Erlangen, Germany (2019)
[27]
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition, March 2016. arXiv:1603.01360. http://arxiv.org/abs/1603.01360
[28]
Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 504–513. Association for Computational Linguistics (2010)
[29]
Linhares Pontes E, Hamdi A, Sidere N, and Doucet A Jatowt A, Maeda A, and Syn SY Impact of OCR quality on named entity linking Digital Libraries at the Crossroads of Digital Information for the Future 2019 Cham Springer 102-115
[30]
Makhoul, J., Kubala, F., Schwartz, R., Weischedel, R.: Performance measures for information extraction. In: Proceedings of DARPA Broadcast News Workshop, pp. 249–252 (1999)
[31]
Martin, L., et al.: Camembert: a tasty french language model (2019)
[33]
Nadeau D and Sekine S A survey of named entity recognition and classification Lingvisticae Investigationes 2007 30 1 3-26
[34]
Neudecker, C., Antonacopoulos, A.: Making Europe’s historical newspapers searchable. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pp. 405–410. IEEE, Santorini, Greece, April 2016.
[35]
Nguyen, D.B., Hoffart, J., Theobald, M., Weikum, G.: Aida-light: high-throughput named-entity disambiguation. In: LDOW (2014)
[36]
Nouvel D, Antoine J-Y, and Friburger N Vetulani Z and Mariani J Pattern mining for named entity recognition Human Language Technology Challenges for Computer Science and Linguistics 2014 Cham Springer 226-237
[37]
Okazaki, N.: CRFsuite: a fast implementation of Conditional Random Fields (CRFs) (2007). http://www.chokkan.org/software/crfsuite/
[38]
Ortiz Suárez, P.J., Dupont, Y., Muller, B., Romary, L., Sagot, B.: Establishing a new state-of-the-art for French named entity recognition. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 4631–4638. European Language Resources Association, Marseille, France, May 2020. https://www.aclweb.org/anthology/2020.lrec-1.569
[39]
Pennington J, Socher R, and Manning CD Glove: global vectors for word representation EMNLP 2014 14 1532-43
[40]
Peters, M., et al.: Deep Contextualized Word Representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). pp. 2227–2237. Association for Computational Linguistics, New Orleans, Louisiana (2018).
[41]
Piotrowski M Natural language processing for historical texts Synth. Lect. Hum. Lang. Technol. 2012 5 2 1-157
[42]
Plank, B.: What to do about non-standard (or non-canonical) language in NLP. In: Proceedings of the 13th Conference on Natural Language Processing KONVENS 2016. Bochumer Linguistische Arbeitsberichte (2016)
[43]
Rao D, McNamee P, and Dredze M Poibeau T, Saggion H, Piskorski J, and Yangarber R Entity linking: finding extracted entities in a knowledge base Multi-source, Multilingual Information Extraction and Summarization 2013 Heidelberg Springer 93-115
[44]
Rosset, S., Grouin, C., Fort, K., Galibert, O., Kahn, J., Zweigenbaum, P.: Structured named entities in two distinct press corpora: contemporary broadcast news and old newspapers. In: Proceedings of the 6th Linguistic Annotation Workshop, pp. 40–48. Association for Computational Linguistics (2012)
[45]
Rosset, S., Grouin, C., Zweigenbaum, P.: Entités nommées structurées : guide d’annotation Quaero. NOTES et DOCUMENTS 2011–04, LIMSI-CNRS (2011)
[46]
Smith, D.A., Cordell, R.: A research agenda for historical and multilingual optical character recognition. Technical report (2018). http://hdl.handle.net/2047/D20297452
[47]
Sporleder C Natural language processing for cultural heritage domains Lang. Linguist. Compass 2010 4 9 750-768
[48]
van Strien, D., Beelen, K., Ardanuy, M.C., Hosseini, K., McGillivray, B., Colavizza, G.: Assessing the impact of OCR quality on downstream NLP tasks. In: ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, January 2020.
[49]
van Strien, D., Beelen, K., Ardanuy, M., Hosseini, K., McGillivray, B., Colavizza, G.: Assessing the impact of OCR quality on downstream NLP tasks. In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence, pp. 484–496. SCITEPRESS - Science and Technology Publications, Valletta, Malta (2020).
[50]
Terras, M.: The rise of digitization. In: Rikowski, R. (ed.) Digitisation Perspectives, pp. 3–20. Sense Publishers, Rotterdam (2011).
[51]
Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://arxiv.org/abs/1706.03762
[52]
Vilain, M., Su, J., Lubar, S.: Entity extraction is a boring solved problem: or is it? In: Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers, NAACL-Short 2007, Rochester, New York, pp. 181–184. Association for Computational Linguistics (2007). http://dl.acm.org/citation.cfm?id=1614108.1614154

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Experimental IR Meets Multilinguality, Multimodality, and Interaction: 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki, Greece, September 22–25, 2020, Proceedings
Sep 2020
408 pages
ISBN:978-3-030-58218-0
DOI:10.1007/978-3-030-58219-7
  • Editors:
  • Avi Arampatzis,
  • Evangelos Kanoulas,
  • Theodora Tsikrika,
  • Stefanos Vrochidis,
  • Hideo Joho,
  • Christina Lioma,
  • Carsten Eickhoff,
  • Aurélie Névéol,
  • Linda Cappellato,
  • Nicola Ferro

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 September 2020

Author Tags

  1. Named entity recognition and classification
  2. Entity linking
  3. Historical texts
  4. Information extraction
  5. Digitized newspapers
  6. Digital humanities

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media