skip to main content
10.1007/11581062_37guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Space-Limited ranked query evaluation using adaptive pruning

Published: 20 November 2005 Publication History

Abstract

Evaluation of ranked queries on large text collections can be costly in terms of processing time and memory space. Dynamic pruning techniques allow both costs to be reduced, at the potential risk of decreased retrieval effectiveness. In this paper we describe an improved query pruning mechanism that offers a more resilient tradeoff between query evaluation costs and retrieval effectiveness than do previous pruning approaches.

References

[1]
V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early termination. InW. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors, Proc. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 35-42, New Orleans, LA, Sept. 2001. ACM Press, New York.
[2]
L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google cluster architecture. IEEE Micro, 23(2):22-28, Mar. 2003.
[3]
C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In Proc. 8th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 97-110, Montreal, Canada, June 1985. ACM Press, New York.
[4]
C. Buckley and E. M. Voorhees. Evaluating evaluation measure stability. In N. J. Belkin, P. Ingwersen, and M.-K. Leong, editors, Proc. 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 33-40, Athens, Greece, Sept. 2000. ACM Press, New York.
[5]
D. K. Harman and G. Candela. Retrieving records from a gigabyte of text on a minicomputer using statistical ranking. Journal of the American Society for Information Science, 41(8): 581-589, Aug. 1990.
[6]
A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Transactions on Information Systems, 14(4):349-379, Oct. 1996.
[7]
M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with frequency-sorted indexes. Journal of the American Society for Information Science, 47(10):749-764, Oct. 1996.
[8]
A. Smeaton and C. J. van Rijsbergen. The nearest neighbour problem in information retrieval. In C. J. Crouch, editor, Proc. 4th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 83-87, Oakland, California, May 1981. ACM Press, New York.
[9]
I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann, San Francisco, second edition, 1999.
[10]
W. Y. P. Wong and D. K. Lee. Implementations of partial document ranking using inverted files. Information Processing & Management, 29(5):647-669, Sept. 1993.
[11]
C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information retrieval. ACM Transactions on Information Systems, 22(2):179-214, Apr. 2004.

Cited By

View all
  1. Space-Limited ranked query evaluation using adaptive pruning

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    WISE'05: Proceedings of the 6th international conference on Web Information Systems Engineering
    November 2005
    767 pages
    ISBN:3540300171
    • Editors:
    • Anne H. Ngu,
    • Masaru Kitsuregawa,
    • Erich J. Neuhold,
    • Jen-Yao Chung,
    • Quan Z. Sheng

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 20 November 2005

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 04 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media