skip to main content
research-article

The Extremal Function for Complete Minors

Published: 01 March 2001 Publication History

Abstract

Let c(t) be the minimum number c such that every graph G with e(G) c|G| contracts to a complete graph Kt. We show thatc(t)=( +o(1))tlogtwhere =0.319... is an explicit constant. Random graphs are extremal graphs.

References

[1]
N. Alon, J. Spencer, Wiley, New York, 1992.
[2]
B. Bollobás, Academic Press, London, 1978.
[3]
B. Bollobás, Academic Press, London/New York, 1985.
[4]
B. Bollobás, P. Catlin, P. Erdo¿s, Hadwiger's conjecture is true for almost every graph, Europ. J. Combin. Theory, 1 (1980) 195-199.
[5]
B. Bollobás, B. Reed, A. Thomason, An extremal function for the achromatic number, Contemp. Math., 147 (1993) 161-165.
[6]
H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist., 23 (1952) 493-509.
[7]
F.R.K. Chung, R.L. Graham, R.M. Wilson, Quasi-random graphs, Combinatorica, 9 (1989) 345-362.
[8]
W. Fernandez de la Vega, On the maximum density of graphs which have no subcontraction to Ks, Discrete Math., 46 (1983) 109-110.
[9]
G.A. Dirac, Homomorphism theorems for graphs, Math. Ann., 153 (1964) 69-80.
[10]
P. Duchet, V. Kaneti, Sur la contractabilité d'un graphe orienté en K*4, Discrete Math., 130 (1994) 57-68.
[11]
Z. Füredi, unpublished.
[12]
H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschr. Naturforsch. Ges. Zürich, 88 (1943) 133-142.
[13]
H. Jacob, H. Meyniel, Extensions of Turán's and Brooks's theorems and new motions of stability and colouring in digraphs, Ann. Discrete Math., 17 (1983) 365-370.
[14]
C. Jagger, An extremal function for digraph subcontraction, J. Graph Theory, 21 (1996) 343-350.
[15]
C. Jagger, Tournaments as strong subcontractions, Discrete Math., 176 (1997) 177-184.
[16]
L. Jørgensen, Contractions to K8, J. Graph Theory, 18 (1994) 431-448.
[17]
A. Karabeg, D. Karabeg, Graph compaction, in: Graph Theory Notes of New York, New York Academy of Sciences, New York, 1991, pp. 44-51.
[18]
A.V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz., 38 (1982) 37-58.
[19]
A.V. Kostochka, A lower bound for the Hadwiger number of graphs by their average degree, Combinatorica, 4 (1984) 307-316.
[20]
W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann., 174 (1967) 265-268.
[21]
W. Mader, Homomorphiesätze für Graphen, Math. Ann., 178 (1968) 154-168.
[22]
W. Mader, personal communication.
[23]
A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc., 95 (1984) 261-265.
[24]
A. Thomason, Pseudo-random graphs, in: Annals of Discrete Math., 33, 1987, pp. 307-331.
[25]
A. Thomason, Complete minors in pseudo-random graphs, Random Structures and Algorithms, 17 (2000) 26-28.
[26]
K. Wagner, Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann., 153 (1964) 139-141.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Combinatorial Theory Series B
Journal of Combinatorial Theory Series B  Volume 81, Issue 2
March 2001
176 pages
ISSN:0095-8956
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 March 2001

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media