skip to main content
article

Piecewise regular meshes: construction and compression

Published: 01 May 2002 Publication History

Abstract

We present an algorithm which splits a 3D surface into reliefs, relatively fiat regions that have smooth boundaries. The surface is then resampled in a regular manner within each of the reliefs. As a result, we obtain a piecewise regular mesh (PRM) having a regular structure on large regions. Experimental results show that we are able to approximate the input surface with the mean square error of about 0.01- 0.02% of the diameter of the bounding box without increasing the number of vertices. We introduce a compression scheme tailored to work with our remeshed models and show that it is able to compress them losslessly (after quantizing the vertex locations) without significantly increasing the approximation error using about 4 bits per vertex of the resampled model.

References

[1]
1. P. Alliez and M. Desburn, Valence-driven connectivity encoding for 3D meshes, Comput. Graphics Forum20, 2001, 480-489.
[2]
2. P. Alliez and M. Desburn, Progressive compression for lossless transmission of triangle meshes, in Computer Graphics (Proc. SIGGRAPH 2001), pp. 195-202.
[3]
3. M. de Berg, M. van Kreveld, M. Overamrs, and O. Schwartzkopf, Computational Geometry, Algorithms and Applications, Springer-Verlag, Berlin/Heidelberg, 1997.
[4]
4. B. Chazelle, D. P. Dobkin, N. Shouraboura, and A. Tal, Strategies for polyhedral surface decomposition: An experimental study, in Symposium on Computational Geometry 1995, pp. 297-305.
[5]
5. P. Cignoni, C. Rocchini, and R. Scopigno, Metro: Measuring error on simplified surfaces, Comput. Graphics Forum17, 1998, 167-174.
[6]
6. M. Deering, Geometry compression, in Computer Graphics, Proc. SIGGRAPH 1995, pp. 13-20.
[7]
7. M. Garland and P. Heckbert, Surface simplification using quadratic error metric, in Computer Graphics (Proc. SIGGRAPH 1997), pp. 209-216, August 1997.
[8]
8. M. Garland, A. Willmott, and P. S. Heckbert, Hierarchical face clustering on polygonal surfaces, in 2001 ACM Symposium on Interactive 3D Graphics, 2001, pp. 49-58.
[9]
9. S. Gumhold and W. Strasser. Real time compression of triangle mesh connectivity, in Computer Graphics (Proc. SIGGRAPH), July 1998, pp. 133-140.
[10]
10. I. Guskov, K. Vidimce, W. Sweldens, and P. Schroder, Normal meshes, in Proc SIGGRAPH 2000, pp. 95-102.
[11]
11. M. Hilaga, Y. Schinagawa, T. Kohmura, and T. L.Kuni, Topology matching for fully automatic similarity estimation of 3D shapes, in Computer Graphics (Proc. SIGGRAPH 2001), pp. 203-212.
[12]
12. M. Isenburg and J. Snoeyink, Spirale Reversi: Reverse Decoding of Edgebreaker Encoding, Technical Report TR-99-08, Department of Computer Science, University of British Columbia, September 1999.
[13]
13. Z. Karni and C. Gotsman, Spectral Compression of Mesh Geometry, in Computer Graphics (Proc. SIGGRAPH 2000), 2000, pp. 279-286.
[14]
14. A. Khodakovsky and P. Guskov, Normal mesh compression, available from www.multires.caltech.edu/ pubs/pubs.htm.
[15]
15. A Khodakovsky, P. Schroder, and W. Sweldens, Progressive geometry compression, in Proc. SIGGRAPH 2000, 2000, pp. 271-278.
[16]
16. F. Lazarus and A. Verroust, Level set diagrams for polyhedral objects, in Proc. Fifth ACM Symposium on Solid Modeling and Applications, June 9-11, 1999, pp. 130-140.
[17]
17. A. Lee, W. Sweldens, P. Schrder, L. Cowsar, and D. Dobkin, MAPS: Multiresolution adaptive parameterization of surfaces, in Proceedings of SIGGRAPH 98, pp. 95-104.
[18]
18. M. Levoy, K. Pulli. B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, The Digital Michelangelo Project: 3D scanning of large statues, in Computer Graphics (SIGGRAPH 2000 Proceedings).
[19]
19. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem. SIAM J. Comput. 16, 1987, 647-668.
[20]
20. R. Pajarola and J. Rossignac, Compressed progressive meshes, IEEE Trans. Visual. Comput. Graphics6, 2000, 79-93.
[21]
21. R. Pajarola and J. Rossignac, Squeeze: Fast and progressive decompression of triangle meshes, in Computer Graphics International Conference, Switzerland, June 2000, pp. 173-182.
[22]
22. M. Pauly and M. Gross, Spectral processing of point-sampled geometry, in Computer Graphics (proc. SIGGRAPH 2001), pp. 379-386.
[23]
23. J. Popovic and H. Hoppe, Progressive simplicial complexes, in Proceedings of SIGGRAPH 97, 1997,pp. 217-224.
[24]
24. J. Rossignac, Edgebreaker: Compressing the Connectivity of Triangle Meshes, GVU Technical Report GITGVU-98-17, Georgia Institute of Technology, IEEE Transactions on Visualization and Computer Graphics Vol. 5(1), 1999.
[25]
25. J. Rossignac and A. Szymczak, Edgebreaker compression and Wrap & Zip decoding of the connectivity of triangle meshes. Comput. Geom. Theory Appl. 14, 1999, 119-135.
[26]
26. A. Said and W. A. Pearlman, A new, fast and efficient image codec based on set partitioning in hierarhical trees, IEEE Trans.Circuits Syst.Video Technol. 6, 1996, 243-250.
[27]
27. D. Salomon, Data Compression: The Complete Reference, Springer-Verlag, Berlin/Heidelberg, 2000.
[28]
28. M. Schindler, A fast renormalization for arithmetic coding, in Proc. IEEE Data Compression Conference, Snowbird UT, 1998, p. 572. www. compressionconsult.com/rangecoder.
[29]
29. J. Shapiro, Embedded image coding using zero-trees of wavelet coefficients, IEEE Trans. Signal Process, 41 1993, 3445-3462.
[30]
30. A. Szymczak, D. King, and J. Rossignac, An Edgebreaker-based efficient compression scheme for regular meshes, Computational Geometry20, 2001, 53-58.
[31]
31. G. Taubin and J. Rossignac, Geometric compression through topological surgery, ACM Trans. Graphics17, 1998, 84-115.
[32]
32. C. Touma and C. Gotsman, Triangle mesh compression, in Proceedings Graphics Interface 1998, pp. 26-34.
[33]
33. G. Turk, Re-tiling polygonal surfaces, Comput. Graphics26, 1992 (SIGGRAPH 92 Conference Proceedings), 55-64.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Graphical Models
Graphical Models  Volume 64, Issue 3-4
Special issue: Processing on large polygonal meshes
May/July 2002
113 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 01 May 2002

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media