skip to main content
research-article

Deep reinforcement learning for building honeypots against runtime DoS attack

Published: 26 May 2022 Publication History

Abstract

Honeypot is a network environment utilized to protect proper network sources from attacks. Honeypot makes an environment that attracts the attacker to pay their operations to steal sources. Denial of Service (DoS) attacks are efficiently noticed using the proposed honeypot method. The issues of the previous technique are that the DoS attack is a malicious act with the goal of interrupting the access to a computer network. The result of the DoS attack can cause the computers on the network to squander their resources to serve illegitimate requests that result in a disruption of the network's services to legitimate users. To overcome these challenges this method is proposed. In this manuscript, the Deep Adaptive Reinforcement Learning for Honeypots (DARLH) is proposed. Here, honeypot environment, the proposed DARLHs system implements Deep Adaptive Reinforcement Learning (DARL) with Intrusion Detection System (IDS) agents and Deep Recurrent Neural Network (DRNN) with IDS agent for observing multiruntime DoS attack. In the next level, the system creates DRNN and DARL IDS agent integration modules for effective runtime attack detections. The Knowledge Data Discovery data set pattern, UNSW‐NB20, and Bot‐IoT data sets are used to the scenario of DoS attack. The method is executed in Python 3.7. The experimental outcomes are likened through different existing methods, such as Game and Naïve‐Bayes Honeypot, Block Chain Honeypot, and Recurrent Neural Network‐based Signature Generation and Detection. The proposed method is compared with External DoS Attack, Internal DoS attack, Brute‐force attack, DoS attack, Web attack, and Botnet attacks with the existing methods. From the comparison, the proposed method offers 5%–10% better outcomes than another existing method. Lastly, the test results determine that the proposed method performance is most efficient with another existing system.

References

[1]
Ghourab E, Azab M. Benign false‐data injection as a moving‐target defense to secure mobile wireless communications. Ad Hoc Netw. 2020;102:102064. doi:10.1016/j.adhoc.2019.102064
[2]
Kumar G, Saha R, Singh M, Rai M. Optimized packet filtering honeypot with snooping agents in intrusion detection system for WLAN. Int J Inf Secur Privacy. 2018;12(1):53‐62. doi:10.4018/ijisp.2018010105
[3]
Veena K, Meena K. Implementing file and real time based intrusion detections in secure direct method using advanced honeypot. Cluster Comput. 2018;22(S6):13361‐13368. doi:10.1007/s10586-018-1912-x
[4]
Mythili S, Thiyagarajah K, Rajesh P, Shajin FH. Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm. HKIE Trans. 2020;27(1):25‐37.
[5]
Chu G, Apthorpe N, Feamster N. Security and privacy analyses of internet of things children's toys. IEEE Internet Things J. 2019;6(1):978‐985. doi:10.1109/jiot.2018.2866423
[6]
Al‐Nafjan K, Al‐Hussein M, Alghamdi A, Haque M, Ahmad I. Intrusion detection using PCA based modular neural network. Int J Mach Learn Comput. 2012;2(5):583‐587. doi:10.7763/ijmlc.2012.v2.194
[7]
Rajesh P, Shajin F. A multi‐objective hybrid algorithm for planning electrical distribution system. Eur J Electr Eng. 2020;22(4‐5):377‐387. doi:10.18280/ejee.224-509
[8]
Chetna S, Swades De, eds. Resource Allocation in Next‐generation Broadband Wireless Access Networks. IGI Global; 2017.
[9]
Shajin FH, Rajesh P. Trusted secure geographic routing protocol: outsider attack detection in mobile ad hoc networks by adopting trusted secure geographic routing protocol. Int J Pervasive Comput Commun. 2020;ahead‐of‐print.
[10]
Shrivastava RK, Ramakrishna S, Hota C. Game theory based modified Naïve‐Bayes algorithm to detect DoS attacks using honeypot. In: 2019 IEEE 16th India Council International Conference (INDICON). IEEE; 2019:1‐4.
[11]
Thota MK, Shajin FH, Rajesh P. Survey on software defect prediction techniques. Int J Appl Sci Eng. 2020;17(4):331‐344.
[12]
Shi L, Li Y, Liu T, Liu J, Shan B, Chen H. Dynamic distributed honeypot based on blockchain. IEEE Access. 2019;7:72234‐72246.
[13]
Zhou W, Shi D, Zhu W. Exponential input‐to‐state stability of impulsive stochastic fuzzy Cohen–Grossberg neural networks with distributed infinite transmission delays. In: 2019 Chinese Control Conference (CCC). IEEE; 2019:5715‐5720.
[14]
Safarpour M, Ebrahimi F, Habibi M, Safarpour H. On the nonlinear dynamics of a multi‐scale hybrid nanocomposite disk. Eng Comput. 2021;37(3):2369‐2388.
[15]
Xiong L, Xu Z, Shi YQ. An integer wavelet transform based scheme for reversible data hiding in encrypted images. Multidimens Syst Signal Process. 2018;29(3):1191‐1202.
[16]
Cheng P, Chen M, Stojanovic V, He S. Asynchronous fault detection filtering for piecewise homogeneous Markov jump linear systems via a dual hidden Markov model. Mech Syst Signal Process. 2021;151:107353.
[17]
Yao D, Li H, Lu R, Shi Y. Distributed sliding‐mode tracking control of second‐order nonlinear multiagent systems: an event‐triggered approach. IEEE Trans Cybern. 2020;50(9):3892‐3902.
[18]
Zhang S, Fang M, Liu H, Luan F, X, Ding Z. Reinforcement learning and adaptive optimization of a class of Markov jump systems with completely unknown dynamic information. Neural Comput Appl. 2020;32(18):14311‐14320.
[19]
Zhai J, Karimi HR. Global output feedback control for a class of nonlinear systems with unknown homogeneous growth condition. Int J Robust Nonlinear Control. 2019;29(7):2082‐2095.
[20]
Thu AA. Integrated intrusion detection and prevention system with honeypot on cloud computing environment. Int J Comput Appl. 2013;67(4):9‐13. doi:10.5120/11382-6660
[21]
Banday M, Sheikh S. Design of secure multilingual CAPTCHA challenge. Int J Web Portals. 2015;7(1):1‐27. doi:10.4018/ijwp.2015010101
[22]
Singh A, Ormazábal G, Schulzrinne H. Heterogeneous networking. Datenschutz und Datensicherheit—DuD. 2014;38(1):25‐30. doi:10.1007/s11623-014-0007-y
[23]
Tsiropoulou EE, Baras JS, Papavassiliou S, Qu G. On the mitigation of interference imposed by intruders in passive RFID networks. In: International Conference on Decision and Game Theory for Security. Springer; 2016:62‐80. doi:10.1007/978-3-319-47413-7_4
[24]
Vamvakas P, Tsiropoulou EE, Papavassiliou S. Exploiting prospect theory and risk‐awareness to protect UAV‐assisted network operation. EURASIP J Wireless Commun Networking. 2019;2019(1):286. doi:10.1186/s13638-019-1616-9
[25]
Shrivastava R, Hota C. Profile‐guided code identification and hardening using return oriented programming. J Inf Security Appl. 2019;48:102364. doi:10.1016/j.jisa.2019.102364
[26]
Shi L, Li Y, Liu T, Liu J, Shan B, Chen H. Dynamic distributed honeypot based on blockchain. IEEE Access. 2019;7:72234‐72246. doi:10.1109/access.2019.2920239
[27]
Kaur S, Singh M. Hybrid intrusion detection and signature generation using deep recurrent neural networks. Neural Comput Appl. 2019;32(12):7859‐7877. doi:10.1007/s00521-019-04187-9
[28]
Khan R, Zhang X, Kumar R, Sharif A, Golilarz N, Alazab M. An adaptive multi‐layer botnet detection technique using machine learning classifiers. Appl Sci. 2019;9(11):2375. doi:10.3390/app9112375
[29]
Srihari Rao N, Chandra Sekharaiah K, Ananda Rao A. Jananee janmabhoomischa: ICT solutions for pronational digital society. Int J Eng Technol. 2018;7(3.29):225. doi:10.14419/ijet.v7i3.29.18800
[30]
Sharma S, Kaul A. A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud. Veh Commun. 2018;12:138‐164. doi:10.1016/j.vehcom.2018.04.005
[31]
Huang X, Huang Y. Mean–variance optimality for semi‐Markov decision processes under first passage criteria. Kybernetika. 2017;53(1):59‐81. doi:10.14736/kyb-2017-1-0059
[32]
Kotey S, Tchao E, Gadze J. On distributed denial of service current defense schemes. Technologies (Basel). 2019;7(1):19. doi:10.3390/technologies7010019
[33]
Su L, Ye D. A cooperative detection and compensation mechanism against denial‐of‐service attack for cyber–physical systems. InfSci (NY). 2018;444:122‐134. doi:10.1016/j.ins.2018.02.066
[34]
Myers J. The United States patent and trademark office internet home pages. World Patent Inf. 1997;19:77‐78. doi:10.1016/s0172-2190(97)82780-9
[35]
Gandhi U, Kumar P, Varatharajan R, Manogaran G, Sundarasekar R, Kadu S. HIoTPOT: surveillance on IoT devices against recent threats. Wirel Pers Commun. 2018;103(2):1179‐1194. doi:10.1007/s11277-018-5307-3
[37]
Moustafa N, Slay J. The evaluation of network anomaly detection systems: statistical analysis of the UNSW‐NB15 data set and the comparison with the KDD99 data set. Inf Secur J: Global Perspect. 2020;25:18‐31.
[38]
Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot‐IoT dataset. Future Gener Comput Syst. 2019;100:779‐796.
[39]
Sklavounos D. Utilization of statistical control charts for DoS network intrusion detection. Int J Cyber‐Secur Digital Forensics. 2018;7(2):166‐174. doi:10.17781/p002391
[40]
Silaban A, Mandala S, Jadied E. Increasing feature selection accuracy through recursive method in intrusion detection system. Int J Inf Commun Technol (IJoICT). 2019;4(2):43. doi:10.21108/ijoict.2018.42.216

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Intelligent Systems
International Journal of Intelligent Systems  Volume 37, Issue 7
July 2022
585 pages
ISSN:0884-8173
DOI:10.1002/int.v37.7
Issue’s Table of Contents

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 26 May 2022

Author Tags

  1. deep learning techniques
  2. denial of service
  3. event tracking
  4. honeypot
  5. intrusion detection system agents

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media