• Narula R and Chaudhary P. (2025). A comprehensive review on detection of hate speech for multi-lingual data. Social Network Analysis and Mining. 10.1007/s13278-024-01401-y. 14:1.

    https://link.springer.com/10.1007/s13278-024-01401-y

  • Yuan L and Rizoiu M. (2025). Generalizing Hate Speech Detection Using Multi-Task Learning. Computer Speech and Language. 89:C. Online publication date: 1-Jan-2025.

    https://doi.org/10.1016/j.csl.2024.101690

  • Ying H, Ou Q, Fan C, Mei L, Zhang S and Xu X. (2025). Domain Adaptation for Chinese Offensive Language Detection. Natural Language Processing and Chinese Computing. 10.1007/978-981-97-9440-9_12. (146-158).

    https://link.springer.com/10.1007/978-981-97-9440-9_12

  • Castellanos-Nieves D and García-Forte L. (2024). Human-Centered AI for Migrant Integration Through LLM and RAG Optimization. Applied Sciences. 10.3390/app15010325. 15:1. (325).

    https://www.mdpi.com/2076-3417/15/1/325

  • Badri N, Kboubi F and Habacha Chaibi A. (2024). Abusive and Hate speech Classification in Arabic Text Using Pre-trained Language Models and Data Augmentation. ACM Transactions on Asian and Low-Resource Language Information Processing. 23:11. (1-28). Online publication date: 30-Nov-2024.

    https://doi.org/10.1145/3679049

  • Bisoi R, Sahoo S, Priyanka P and Barik J. (2024). Exploring Textual Hate Speech Detection Methods and Datasets: A Comprehensive Literature Review 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC). 10.1109/ICEC59683.2024.10837448. 979-8-3315-0843-2. (1-6).

    https://ieeexplore.ieee.org/document/10837448/

  • Sennary H, Abozaid G, Hemeida A and Mikhaylov A. (2024). RETRACTED ARTICLE: Detection of hate: speech tweets based convolutional neural network and machine learning algorithms. Scientific Reports. 10.1038/s41598-024-76632-2. 14:1.

    https://www.nature.com/articles/s41598-024-76632-2

  • De Oliveira Í and Goulart R. (2024). Detecção de discurso de ódio para o apoio à saúde mentalHate speech detection for mental health supportDetección de discurso de odio para apoyo a la salud mental. Journal of Health Informatics. 10.59681/2175-4411.v16.iEspecial.2024.1255. 16:Especial.

    https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1255

  • Vijayaraj A, R S, K P, V S, N S and Abenas T T. (2024). A Comparative Analysis on AI-Driven Speech Protection Approaches 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI). 10.1109/ICDICI62993.2024.10810982. 979-8-3503-8960-9. (1036-1041).

    https://ieeexplore.ieee.org/document/10810982/

  • Khan S, Abbasi R, Sindhu M, Arafat S, Khattak A, Daud A and Mushtaq M. (2024). Predicting the Victims of Hate Speech on Microblogging Platforms. Heliyon. 10.1016/j.heliyon.2024.e40611. (e40611). Online publication date: 1-Nov-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S240584402416642X

  • Malik J, Qiao H, Pang G and van den Hengel A. (2024). Deep learning for hate speech detection: a comparative study. International Journal of Data Science and Analytics. 10.1007/s41060-024-00650-6.

    https://link.springer.com/10.1007/s41060-024-00650-6

  • Truică C, Constantinescu A and Apostol E. (2024). STopHC: A Harmful Content Detection and Mitigation Architecture for Social Media Platforms 2024 IEEE 20th International Conference on Intelligent Computer Communication and Processing (ICCP). 10.1109/ICCP63557.2024.10793051. 979-8-3315-3997-9. (01-05).

    https://ieeexplore.ieee.org/document/10793051/

  • Madhukar A, Madhukar A, Anubhav , Ishan and Nagpal S. (2024). An Ensemble Based Approach to Detect Hate Speech 2024 IEEE Region 10 Symposium (TENSYMP). 10.1109/TENSYMP61132.2024.10752152. 979-8-3503-6486-6. (1-6).

    https://ieeexplore.ieee.org/document/10752152/

  • Shilpashree S and Ashoka D. (2024). F-DenseCNN: feature-based dense convolutional neural networks and swift text word embeddings for enhanced hate speech prediction. Social Network Analysis and Mining. 10.1007/s13278-024-01345-3. 14:1.

    https://link.springer.com/10.1007/s13278-024-01345-3

  • Garg P, Sharma M and Kumar P. (2024). Improving Hate Speech Classification Through Ensemble Learning and Explainable AI Techniques. Arabian Journal for Science and Engineering. 10.1007/s13369-024-09540-2.

    https://link.springer.com/10.1007/s13369-024-09540-2

  • Mazari A, Benterkia A and Takdenti Z. (2024). Advancing offensive language detection in Arabic social media: a BERT-based ensemble learning approach. Social Network Analysis and Mining. 10.1007/s13278-024-01347-1. 14:1.

    https://link.springer.com/10.1007/s13278-024-01347-1

  • Moreno-Sandoval L, Pomares-Quimbaya A, Barbosa-Sierra S and Pantoja-Rojas L. (2024). Detection of Hate Speech, Racism and Misogyny in Digital Social Networks: Colombian Case Study. Big Data and Cognitive Computing. 10.3390/bdcc8090113. 8:9. (113).

    https://www.mdpi.com/2504-2289/8/9/113

  • Etta G, Cinelli M, Marco N, Avalle M, Panconesi A and Quattrociocchi W. A Topology-Based Approach for Predicting Toxic Outcomes on Twitter and YouTube. IEEE Transactions on Network Science and Engineering. 10.1109/TNSE.2024.3398219. 11:5. (4875-4885).

    https://ieeexplore.ieee.org/document/10522904/

  • Imbwaga J, Chittaragi N and Koolagudi S. (2024). Explainable hate speech detection using LIME. International Journal of Speech Technology. 10.1007/s10772-024-10135-3. 27:3. (793-815). Online publication date: 1-Sep-2024.

    https://link.springer.com/10.1007/s10772-024-10135-3

  • Puvanendran R, Wijikumar P, Rathnayaka T, Thilakarathna K, Jayasiri P, Roopasinghe H, Kavishan M, Jeyamohan M and Thurshikan K. (2024). Comparative Analysis of Resampling Techniques on Class Imbalance in Body Shaming Phrase Detection 2024 Moratuwa Engineering Research Conference (MERCon). 10.1109/MERCon63886.2024.10688774. 979-8-3315-2904-8. (49-54).

    https://ieeexplore.ieee.org/document/10688774/

  • Suryono M and Djunaidy A. (2024). Enhancing Hate Speech Detection on Social Media through Sentiment Analysis and Transformer-Based Deep Learning Techniques 2024 4th International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). 10.1109/ICE3IS62977.2024.10775785. 979-8-3503-7836-8. (420-425).

    https://ieeexplore.ieee.org/document/10775785/

  • Ahmed U and Lin J. Deep Explainable Hate Speech Active Learning on Social-Media Data. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2022.3165136. 11:4. (4625-4635).

    https://ieeexplore.ieee.org/document/9760468/

  • Chao A, Wang C, Li B and Chen H. (2024). From hate to harmony: Leveraging large language models for safer speech in times of COVID-19 crisis. Heliyon. 10.1016/j.heliyon.2024.e35468. 10:16. (e35468). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S2405844024114995

  • Browne T, Abedin M and Chowdhury M. (2024). A systematic review on research utilising artificial intelligence for open source intelligence (OSINT) applications. International Journal of Information Security. 23:4. (2911-2938). Online publication date: 1-Aug-2024.

    https://doi.org/10.1007/s10207-024-00868-2

  • Monnar A, Perez Rojas J, Labra B and Ekbal A. (2024). Cross-lingual hate speech detection using domain-specific word embeddings. PLOS ONE. 10.1371/journal.pone.0306521. 19:7. (e0306521).

    https://dx.plos.org/10.1371/journal.pone.0306521

  • Albtosh L. (2024). Investigating the Limitations of Adversarial Training for Language Models in Realistic Spam Filter Deployment Scenarios. Redefining Security With Cyber AI. 10.4018/979-8-3693-6517-5.ch008. (133-160).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-6517-5.ch008

  • Alhazmi A, Mahmud R, Idris N, Mohamed Abo M, Eke C and Kaddoura S. (2024). Code-mixing unveiled: Enhancing the hate speech detection in Arabic dialect tweets using machine learning models. PLOS ONE. 10.1371/journal.pone.0305657. 19:7. (e0305657).

    https://dx.plos.org/10.1371/journal.pone.0305657

  • Rafi Yanaputeranto M and Budi Setiawan E. (2024). Detection and Classification of Hate Speech on Twitter Using Convolutional Neural Network (CNN) 2024 International Conference on Data Science and Its Applications (ICoDSA). 10.1109/ICoDSA62899.2024.10652001. 979-8-3503-6535-1. (334-339).

    https://ieeexplore.ieee.org/document/10652001/

  • Yanaputeranto M and Setiawan E. (2024). Detection and Classification of Hate Speech on Twitter Using Convolutional Neural Network (CNN) 2024 International Conference on Data Science and Its Applications (ICoDSA). 10.1109/ICoDSA62899.2024.10651919. 979-8-3503-6535-1. (340-345).

    https://ieeexplore.ieee.org/document/10651919/

  • Guo X, Adnan H and Abidin M. (2024). Detecting Offensive Language on Malay Social Media: A Zero-Shot, Cross-Language Transfer Approach Using Dual-Branch mBERT. Applied Sciences. 10.3390/app14135777. 14:13. (5777).

    https://www.mdpi.com/2076-3417/14/13/5777

  • Huang E, Sarma A, Hwang S, Chandrasekharan E and Chancellor S. Opportunities, tensions, and challenges in computational approaches to addressing online harassment. Proceedings of the 2024 ACM Designing Interactive Systems Conference. (1483-1498).

    https://doi.org/10.1145/3643834.3661623

  • Kebriaei E, Homayouni A, Faraji R, Razavi A, Shakery A, Faili H and Yaghoobzadeh Y. (2023). Persian offensive language detection. Machine Learning. 10.1007/s10994-023-06370-5. 113:7. (4359-4379). Online publication date: 1-Jul-2024.

    https://link.springer.com/10.1007/s10994-023-06370-5

  • Alhayan F, Almobarak M, Shalabi H, Alshubaili L, Albatati R, Alqahtani W and Alhaidari N. (2024). Detection of cyberhate speech towards female sport in the Arabic Xsphere. PeerJ Computer Science. 10.7717/peerj-cs.2138. 10. (e2138).

    https://peerj.com/articles/cs-2138

  • Pen H, Teo N and Wang Z. (2024). Comparative Analysis of Hate Speech Detection: Traditional vs. Deep Learning Approaches 2024 IEEE Conference on Artificial Intelligence (CAI). 10.1109/CAI59869.2024.00070. 979-8-3503-5409-6. (332-337).

    https://ieeexplore.ieee.org/document/10605280/

  • Rayani R, Tekula S, Vattigunta S, Kovi N and Namitha K. (2024). Leveraging Deep Learning for Detecting Toxicity in Online Comments 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). 10.1109/ICCCNT61001.2024.10726256. 979-8-3503-7024-9. (1-6).

    https://ieeexplore.ieee.org/document/10726256/

  • Rawat A, Kumar S and Samant S. (2024). Attention-based Hybrid Deep Learning Model for Detecting Hateful Tweets 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). 10.1109/ICCCNT61001.2024.10725312. 979-8-3503-7024-9. (1-6).

    https://ieeexplore.ieee.org/document/10725312/

  • Mozafari M, Mnassri K, Farahbakhsh R, Crespi N and Rana T. (2024). Offensive language detection in low resource languages: A use case of Persian language. PLOS ONE. 10.1371/journal.pone.0304166. 19:6. (e0304166).

    https://dx.plos.org/10.1371/journal.pone.0304166

  • Kyaw N, Thu Y, Oo T, Chanlekha H, Okumura M and Supnithi T. (2024). Enhancing Hate Speech Classification in Myanmar Language through Lexicon-Based Filtering 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE). 10.1109/JCSSE61278.2024.10613636. 979-8-3503-8176-4. (316-323).

    https://ieeexplore.ieee.org/document/10613636/

  • Adegoke F, Tenuche B and Agozie E. (2024). Development of Pidgin English Hate Speech Classification System for Social Media. American Journal of Information Science and Technology. 10.11648/j.ajist.20240802.12. 8:2. (34-44).

    https://www.sciencepublishinggroup.com/article/10.11648/j.ajist.20240802.12

  • Jain T, Gopalani D and Meena Y. (2024). Image Tweet Classification for Crisis Informative Task 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S). 10.1109/ICIC3S61846.2024.10603388. 979-8-3503-6408-8. (1-6).

    https://ieeexplore.ieee.org/document/10603388/

  • Kaundal V and Chauhan N. (2024). High-Performance Hate Speech Detection with Hybrid Attention 2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S). 10.1109/ICIC3S61846.2024.10603323. 979-8-3503-6408-8. (1-6).

    https://ieeexplore.ieee.org/document/10603323/

  • Nourollahi S, Baradaran R and Amirkhani H. (2024). Domain adaptation-based method for improving generalization of hate speech detection models. Signal and Data Processing. 10.61186/jsdp.21.1.125. 21:1. (125-142).

    https://jsdp.rcisp.ac.ir/article-1-1341-en.html

  • Maity K, Jain R, Jha P and Saha S. Explainable Cyberbullying Detection in Hinglish: A Generative Approach. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2023.3333675. 11:3. (3338-3347).

    https://ieeexplore.ieee.org/document/10366287/

  • Imbwaga J, Chittaragi N and Koolagudi S. (2024). Automatic hate speech detection in audio using machine learning algorithms. International Journal of Speech Technology. 10.1007/s10772-024-10116-6. 27:2. (447-469). Online publication date: 1-Jun-2024.

    https://link.springer.com/10.1007/s10772-024-10116-6

  • Li L, Fan L, Atreja S and Hemphill L. (2024). “HOT” ChatGPT: The Promise of ChatGPT in Detecting and Discriminating Hateful, Offensive, and Toxic Comments on Social Media. ACM Transactions on the Web. 18:2. (1-36). Online publication date: 31-May-2024.

    https://doi.org/10.1145/3643829

  • Kakati P and Dandotiya D. (2024). Automatic detection of hate speech in code-mixed Indian languages in twitter social media interaction using DConvBLSTM-MuRIL ensemble method. Social Network Analysis and Mining. 10.1007/s13278-024-01264-3. 14:1.

    https://link.springer.com/10.1007/s13278-024-01264-3

  • Maity K, Ghosh N, Jain R, Saha S and Bhattacharyya P. (2024). StereoHate: Toward identifying stereotypical bias and target group in hate speech detection. Natural Language Processing. 10.1017/nlp.2024.29. (1-20).

    https://www.cambridge.org/core/product/identifier/S2977042424000293/type/journal_article

  • Bhattacharya A, Chakrabarti T, Basu S, Knott A, Pedreschi D, Chatila R, Leavy S, Eyers D, Teal P and Biecek P. Towards a crowdsourced framework for online hate speech moderation - a case study in the Indian political scenario. Companion Publication of the 16th ACM Web Science Conference. (75-84).

    https://doi.org/10.1145/3630744.3663607

  • SUNAYAMA W, ITO M and HATTORI S. (2024). Verification of Effective Assistive Messages for Suppressing the Transmission of Offensive Comments Using Estimated Mental Damage Values of the Recipients受け手の精神負荷の推定値を用いた悪口投稿の発信抑制に効果的なアシスタントメッセージの検証. Journal of Japan Society for Fuzzy Theory and Intelligent Informatics. 10.3156/jsoft.36.2_631. 36:2. (631-639). Online publication date: 15-May-2024.

    https://www.jstage.jst.go.jp/article/jsoft/36/2/36_631/_article/-char/ja/

  • Baruah A, Wahlang L, Jyrwa F, Shadap F, Barbhuiya F and Dey K. (2024). Abusive Language Detection in Khasi Social Media Comments. ACM Transactions on Asian and Low-Resource Language Information Processing. 0:0.

    https://doi.org/10.1145/3664285

  • Lee K and Ram S. Deep Learning for Hate Speech Detection: A Personality-based Approach. Companion Proceedings of the ACM Web Conference 2024. (1667-1671).

    https://doi.org/10.1145/3589335.3652502

  • Basharat M and Omar M. (2024). Adapting to Change. Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology. 10.4018/979-8-3693-1906-2.ch009. (157-173).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-1906-2.ch009

  • Baranwal A, Gohil V, Dahat H and Salunke A. (2024). Hate Speech and NSFW Image Classification using BERT and ResNet-34 model 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST). 10.1109/ICRTCST61793.2024.10578379. 979-8-3503-5137-8. (388-394).

    https://ieeexplore.ieee.org/document/10578379/

  • Agarwal M, Sahu P, Singh N, Jasleen , Sinha P and Singh R. (2024). Truculent Post Analysis for Hindi Text. ICST Transactions on Scalable Information Systems. 10.4108/eetsis.5641.

    https://publications.eai.eu/index.php/sis/article/view/5641

  • Alhazmi A, Mahmud R, Idris N, Mohamed Abo M and Eke C. (2024). A systematic literature review of hate speech identification on Arabic Twitter data: research challenges and future directions. PeerJ Computer Science. 10.7717/peerj-cs.1966. 10. (e1966).

    https://peerj.com/articles/cs-1966

  • Bhardwaj M, Sundriyal M, Bedi M, Akhtar M and Chakraborty T. HostileNet: Multilabel Hostile Post Detection in Hindi. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2023.3244014. 11:2. (1842-1852).

    https://ieeexplore.ieee.org/document/10076421/

  • Kamal A, Anwar T, Sejwal V and Fazil M. BiCapsHate: Attention to the Linguistic Context of Hate via Bidirectional Capsules and Hatebase. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2023.3236527. 11:2. (1781-1792).

    https://ieeexplore.ieee.org/document/10022007/

  • Yigezu M, Kolesnikova O, Gelbukh A and Sidorov G. Odio-BERT: Evaluating domain task impact in hate speech detection. Journal of Intelligent & Fuzzy Systems. 10.3233/JIFS-219349. (1-12).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-219349

  • Zotkina A and Martyshkin A. (2024). Detection of Cyberbullying in Texts Posted by Users of Social Networks Using Machine Learning 2024 International Russian Smart Industry Conference (SmartIndustryCon). 10.1109/SmartIndustryCon61328.2024.10515536. 979-8-3503-9504-4. (639-643).

    https://ieeexplore.ieee.org/document/10515536/

  • Tomasev N, Maynard J and Gabriel I. (2024). Manifestations of xenophobia in AI systems. AI & SOCIETY. 10.1007/s00146-024-01893-4.

    https://link.springer.com/10.1007/s00146-024-01893-4

  • Rawat A, Kumar S and Samant S. (2024). Hate speech detection in social media: Techniques, recent trends, and future challenges. WIREs Computational Statistics. 10.1002/wics.1648. 16:2. Online publication date: 1-Mar-2024.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/wics.1648

  • Duong P, Nguyen T and Nguyen H. Fusion Network for Multimodal Hate Speech Detection. Proceedings of the 2024 9th International Conference on Intelligent Information Technology. (1-1).

    https://doi.org/10.1145/3654522.3654562

  • Paul J, Das Chatterjee A, Misra D, Majumder S, Rana S, Gain M, De A, Mallick S and Sil J. (2024). A survey and comparative study on negative sentiment analysis in social media data. Multimedia Tools and Applications. 10.1007/s11042-024-18452-0. 83:30. (75243-75292).

    https://link.springer.com/10.1007/s11042-024-18452-0

  • Miao Z, Chen X, Wang H, Tang R, Yang Z, Huang T and Tang W. Detecting Offensive Language Based on Graph Attention Networks and Fusion Features. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2023.3250502. 11:1. (1493-1505).

    https://ieeexplore.ieee.org/document/10061466/

  • Mahajan E, Mahajan H and Kumar S. (2024). EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media. Expert Systems with Applications. 10.1016/j.eswa.2023.121228. 236. (121228). Online publication date: 1-Feb-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S095741742301730X

  • Mazari A, Boudoukhani N and Djeffal A. (2024). BERT-based ensemble learning for multi-aspect hate speech detection. Cluster Computing. 27:1. (325-339). Online publication date: 1-Feb-2024.

    https://doi.org/10.1007/s10586-022-03956-x

  • Anjum and Katarya R. (2023). Hate speech, toxicity detection in online social media: a recent survey of state of the art and opportunities. International Journal of Information Security. 10.1007/s10207-023-00755-2. 23:1. (577-608). Online publication date: 1-Feb-2024.

    https://link.springer.com/10.1007/s10207-023-00755-2

  • Mehmood F, Ghafoor H, Asim M, Ghani M, Mahmood W and Dengel A. (2023). Passion-Net: a robust precise and explainable predictor for hate speech detection in Roman Urdu text. Neural Computing and Applications. 10.1007/s00521-023-09169-6. 36:6. (3077-3100). Online publication date: 1-Feb-2024.

    https://link.springer.com/10.1007/s00521-023-09169-6

  • Chakraborty A, Joardar S and Sekh A. (2024). Ensemble Classifier for Hindi Hostile Content Detection. ACM Transactions on Asian and Low-Resource Language Information Processing. 23:1. (1-17). Online publication date: 31-Jan-2024.

    https://doi.org/10.1145/3591353

  • Bonechi S. (2024). Development of an Automated Moderator for Deliberative Events. Electronics. 10.3390/electronics13030544. 13:3. (544).

    https://www.mdpi.com/2079-9292/13/3/544

  • Sen M, Masih J and Rajasekaran R. (2024). From Tweets to Insights: BERT-Enhanced Models for Cyberbullying Detection 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS). 10.1109/ICETSIS61505.2024.10459672. 979-8-3503-7222-9. (1289-1293).

    https://ieeexplore.ieee.org/document/10459672/

  • Vyawahare H, Khandelwal S and Rathod S. (2024). Artificial Intelligence in Detecting and Preventing Online Harassment. AI Tools and Applications for Women’s Safety. 10.4018/979-8-3693-1435-7.ch002. (14-35).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-1435-7.ch002

  • Nelatoori K and Kommanti H. (2024). Toxic comment classification and rationale extraction in code-mixed text leveraging co-attentive multi-task learning. Language Resources and Evaluation. 10.1007/s10579-023-09708-6.

    https://link.springer.com/10.1007/s10579-023-09708-6

  • Mukherjee A. (2024). Safeguarding Marketing Research: The Generation, Identification, and Mitigation of AI-Fabricated Disinformation. SSRN Electronic Journal. 10.2139/ssrn.4739488.

    https://www.ssrn.com/abstract=4739488

  • Eddebo J, Hietanen M and Johansson M. (2024). Automatic Identification of Hate Speech – A Case-Study of alt-Right YouTube Videos. F1000Research. 10.12688/f1000research.147107.1. 13. (328).

    https://f1000research.com/articles/13-328/v1

  • Sreelakshmi K, Premjith B, Chakravarthi B and Soman K. Detection of Hate Speech and Offensive Language CodeMix Text in Dravidian Languages Using Cost-Sensitive Learning Approach. IEEE Access. 10.1109/ACCESS.2024.3358811. 12. (20064-20090).

    https://ieeexplore.ieee.org/document/10419328/

  • Zhang Y, Zhong T, Yi T and Li H. Domain-Enhanced Prompt Learning for Chinese Implicit Hate Speech Detection. IEEE Access. 10.1109/ACCESS.2024.3351804. 12. (13773-13782).

    https://ieeexplore.ieee.org/document/10385216/

  • Fan X, Liu J, Liu J, Tuerxun P, Deng W and Li W. Identifying Hate Speech Through Syntax Dependency Graph Convolution and Sentiment Knowledge Transfer. IEEE Access. 10.1109/ACCESS.2023.3347591. 12. (2730-2741).

    https://ieeexplore.ieee.org/document/10374337/

  • Alkhatib M, Faisal A, Alfalasi F, Shaalan K and Mohmed A. (2025). Deep Learning Approaches for Detecting Arabic Cyberbullying Social Media. Procedia Computer Science. 244:C. (278-286). Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.procs.2024.10.201

  • Kia M and Samiee D. (2024). From Monolingual to Multilingual: Enhancing Hate Speech Detection with Multi-channel Language Models. Procedia Computer Science. 10.1016/j.procs.2024.09.401. 246. (2704-2713).

    https://linkinghub.elsevier.com/retrieve/pii/S1877050924024402

  • Putra C and Wang H. (2024). Advanced BERT-CNN for Hate Speech Detection. Procedia Computer Science. 234:C. (239-246). Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.procs.2024.02.170

  • Firmino A, de Souza Baptista C and de Paiva A. (2024). Improving hate speech detection using Cross-Lingual Learning. Expert Systems with Applications: An International Journal. 235:C. Online publication date: 1-Jan-2024.

    https://doi.org/10.1016/j.eswa.2023.121115

  • Tiwari R. (2024). Hate speech detection using LSTM and explanation by LIME (local interpretable model-agnostic explanations). Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications. 10.1016/B978-0-443-22009-8.00005-7. (93-110).

    https://linkinghub.elsevier.com/retrieve/pii/B9780443220098000057

  • Ayenew A and Chauhan U. (2024). Amharic Language Hate Speech Detection Using Machine Learning. Cyber Security and Digital Forensics. 10.1007/978-981-99-9811-1_12. (149-163).

    https://link.springer.com/10.1007/978-981-99-9811-1_12

  • Farjana M, Chowdhury B, Rahman F, Makin Z, Rahman S and Srizon A. (2024). Gender-Abusive Language Detection in Bengali Using Machine Learning Algorithms. Proceedings of the 2nd International Conference on Big Data, IoT and Machine Learning. 10.1007/978-981-99-8937-9_57. (861-875).

    https://link.springer.com/10.1007/978-981-99-8937-9_57

  • Maity K, Balaji G and Saha S. (2024). Towards Analyzing the Efficacy of Multi-task Learning in Hate Speech Detection. Neural Information Processing. 10.1007/978-981-99-8076-5_23. (317-328).

    https://link.springer.com/10.1007/978-981-99-8076-5_23

  • VenkatReddy K, Vaishnavi R and Maharshi C. (2024). Hate Text Finder Using Logistic Regression. Computational Intelligence in Machine Learning. 10.1007/978-981-99-7954-7_5. (43-49).

    https://link.springer.com/10.1007/978-981-99-7954-7_5

  • Boucherit O and Abainia K. (2024). Offensive Language Detection in Under-Resourced Algerian Dialectal Arabic Language. Big Data, Machine Learning, and Applications. 10.1007/978-981-99-3481-2_49. (639-647).

    https://link.springer.com/10.1007/978-981-99-3481-2_49

  • Rdara R, Swapna N and Dara U. (2024). A New Document Representation Technique for Hate Speech Detection Using a New Term Weight Measure and Word Embedding Techniques. High Performance Computing, Smart Devices and Networks. 10.1007/978-981-97-7794-5_24. (303-314).

    https://link.springer.com/10.1007/978-981-97-7794-5_24

  • Reddy A, Gupta M, Priya S, Reddy H and Dholvan M. (2024). Detection of Abusive Content Using Machine Learning and Deep Learning Methods. Advances in Data and Information Sciences. 10.1007/978-981-97-7360-2_20. (227-240).

    https://link.springer.com/10.1007/978-981-97-7360-2_20

  • Hosanna M and Suguna S. (2024). Anti-Cyberbullying System Using AI in Social Media. ICT for Intelligent Systems. 10.1007/978-981-97-6681-9_1. (1-8).

    https://link.springer.com/10.1007/978-981-97-6681-9_1

  • Verma U and Singh P. (2024). A Review on Sentiment Analysis and Opinion Mining. ICT for Intelligent Systems. 10.1007/978-981-97-6675-8_48. (577-588).

    https://link.springer.com/10.1007/978-981-97-6675-8_48

  • Chaturvedi S, Lakshmi D and Vishnuvarthanan G. (2024). Twitter Profile Analyzer: A Tool for Combating Hate Speech and Promoting Positive Online Communication. International Conference on Signal, Machines, Automation, and Algorithm. 10.1007/978-981-97-6352-8_22. (319-332).

    https://link.springer.com/10.1007/978-981-97-6352-8_22

  • Abulohoom A and Elnagar A. (2024). Toxicity Detection and Classification in Arabic Text. Proceedings of Fifth Doctoral Symposium on Computational Intelligence. 10.1007/978-981-97-6036-7_4. (41-52).

    https://link.springer.com/10.1007/978-981-97-6036-7_4

  • Ahuja G, Vij S and Virmani D. (2024). Advancements in Hate Speech Detection: A Comprehensive Analysis of NLP Models and Techniques. Innovative Computing and Communications. 10.1007/978-981-97-3588-4_24. (285-293).

    https://link.springer.com/10.1007/978-981-97-3588-4_24

  • Rastogi A, Kumar A, Dwivedi D, Singh A, Saberwal S and Alam M. (2024). Hate Speech Detection on Twitter: A Comparative Evaluation of Different Machine Learning Techniques. Advances in Artificial-Business Analytics and Quantum Machine Learning. 10.1007/978-981-97-2508-3_11. (147-159).

    https://link.springer.com/10.1007/978-981-97-2508-3_11

  • Shi X, Liu J and Song Y. (2024). BERT and LLM-Based Multivariate Hate Speech Detection on Twitter: Comparative Analysis and Superior Performance. Artificial Intelligence and Machine Learning. 10.1007/978-981-97-1277-9_7. (85-97).

    https://link.springer.com/10.1007/978-981-97-1277-9_7

  • Sathishkumar R, Govindarajan M and Deepankumar R. (2024). Hate Speech Detection in Social Media Using Ensemble Method in Classifiers. Mobile Radio Communications and 5G Networks. 10.1007/978-981-97-0700-3_16. (209-222).

    https://link.springer.com/10.1007/978-981-97-0700-3_16

  • Abazari Kia M, Samiee D and Pournajar N. (2024). A Generalizable Context-Aware Deep Learning Model for Abusive Language Detection. Artificial Neural Networks and Machine Learning – ICANN 2024. 10.1007/978-3-031-72350-6_4. (49-63).

    https://link.springer.com/10.1007/978-3-031-72350-6_4

  • Agrawal T, Sankhwar S, Chaudhary T and Saraswat A. (2024). Social Media Toxic-Text Analysis Using Deep Learning Techniques. Pervasive Knowledge and Collective Intelligence on Web and Social Media. 10.1007/978-3-031-66044-3_21. (293-303).

    https://link.springer.com/10.1007/978-3-031-66044-3_21

  • L. Imbwaga J, B. Chittaragi N and G. Koolagudi S. (2024). Hate Speech Detection in Audio Using SHAP - An Explainable AI. Advanced Network Technologies and Intelligent Computing. 10.1007/978-3-031-64064-3_21. (289-304).

    https://link.springer.com/10.1007/978-3-031-64064-3_21

  • Qureshi M, Younus A and Caton S. (2024). Inclusive Counterfactual Generation: Leveraging LLMs in Identifying Online Hate. Web Engineering. 10.1007/978-3-031-62362-2_3. (34-48).

    https://link.springer.com/10.1007/978-3-031-62362-2_3

  • Mut Altın L and Saggion H. (2024). Review of Offensive Language Detection on Social Media: Current Trends and Opportunities. Emerging Trends and Applications in Artificial Intelligence. 10.1007/978-3-031-56728-5_6. (62-76).

    https://link.springer.com/10.1007/978-3-031-56728-5_6

  • Al-Daoud E, Samara G, Sara M, Taqatqa S and Kanan M. (2024). Exploring the Effectiveness of Different Embedding Methods for Toxicity Classification. Artificial Intelligence and Economic Sustainability in the Era of Industrial Revolution 5.0. 10.1007/978-3-031-56586-1_18. (233-241).

    https://link.springer.com/10.1007/978-3-031-56586-1_18

  • Govers J, Feldman P, Dant A and Patros P. (2023). Down the Rabbit Hole: Detecting Online Extremism, Radicalisation, and Politicised Hate Speech. ACM Computing Surveys. 55:14s. (1-35). Online publication date: 31-Dec-2024.

    https://doi.org/10.1145/3583067

  • Saleh H, Alhothali A and Moria K. (2023). Detection of Hate Speech using BERT and Hate Speech Word Embedding with Deep Model. Applied Artificial Intelligence. 10.1080/08839514.2023.2166719. 37:1. Online publication date: 31-Dec-2024.

    https://www.tandfonline.com/doi/full/10.1080/08839514.2023.2166719

  • Bolatbek M and Mussiraliyeva S. (2023). Detection of extremist messages in web resources in the Kazakh language. Lodz Papers in Pragmatics. 10.1515/lpp-2023-0020. 19:2. (415-425). Online publication date: 15-Dec-2023.. Online publication date: 1-Dec-2023.

    https://www.degruyter.com/document/doi/10.1515/lpp-2023-0020/html

  • Luu S, Van Nguyen K and Nguyen N. (2023). An approach of data augmentation to improve the performance of BERTology models for Vietnamese hate speech detection. Multimedia Tools and Applications. 10.1007/s11042-023-16968-5. 83:19. (56763-56783).

    https://link.springer.com/10.1007/s11042-023-16968-5

  • Pal A and Rai S. (2023). Toxicity Tweet Detection and Classification Using NLP Driven Techniques 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG). 10.1109/ICTBIG59752.2023.10456026. 979-8-3503-4327-4. (1-4).

    https://ieeexplore.ieee.org/document/10456026/

  • Dalavi S, Nivelkar T, Patil S, Sawant A and Vanwari P. (2023). Enhancing Hate Speech Detection through Emoji-based Classification using Bi-LSTM and GloVe Embeddings 2023 6th International Conference on Advances in Science and Technology (ICAST). 10.1109/ICAST59062.2023.10455077. 979-8-3503-5981-7. (506-511).

    https://ieeexplore.ieee.org/document/10455077/

  • Bashar M, Nayak R, Knapman G, Turnbull P and Fforde C. (2023). An Informed Neural Network for Discovering Historical Documentation Assisting the Repatriation of Indigenous Ancestral Human Remains. Social Science Computer Review. 10.1177/08944393231158788. 41:6. (2293-2317). Online publication date: 1-Dec-2023.

    http://journals.sagepub.com/doi/10.1177/08944393231158788

  • Liu L, Xu D, Zhao P, Zeng D, Hu P, Zhang Q, Luo Y and Cao Z. (2023). A cross-lingual transfer learning method for online COVID-19-related hate speech detection. Expert Systems with Applications. 10.1016/j.eswa.2023.121031. 234. (121031). Online publication date: 1-Dec-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417423015336

  • Glazkova A. (2023). A comparison of text preprocessing techniques for hate and offensive speech detection in Twitter. Social Network Analysis and Mining. 10.1007/s13278-023-01156-y. 13:1.

    https://link.springer.com/10.1007/s13278-023-01156-y

  • Zhang M, Sun J, Wang J and Sun B. (2023). TestSGD: Interpretable Testing of Neural Networks against Subtle Group Discrimination. ACM Transactions on Software Engineering and Methodology. 32:6. (1-24). Online publication date: 30-Nov-2023.

    https://doi.org/10.1145/3591869

  • Dai W, Tao J, Yan X, Feng Z and Chen J. (2023). Addressing Unintended Bias in Toxicity Detection: An LSTM and Attention-Based Approach 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA). 10.1109/ICAICA58456.2023.10405429. 979-8-3503-2331-3. (375-379).

    https://ieeexplore.ieee.org/document/10405429/

  • Marshan A, Nizar F, Ioannou A and Spanaki K. (2023). Comparing Machine Learning and Deep Learning Techniques for Text Analytics: Detecting the Severity of Hate Comments Online. Information Systems Frontiers. 10.1007/s10796-023-10446-x.

    https://link.springer.com/10.1007/s10796-023-10446-x

  • Martinez E, Cuadrado J, Martinez-Santos J and Puertas E. (2023). Detection of Online Sexism Using Lexical Features and Transformer 2023 IEEE Colombian Caribbean Conference (C3). 10.1109/C358072.2023.10436298. 979-8-3503-4179-9. (1-5).

    https://ieeexplore.ieee.org/document/10436298/

  • R S, T K, P P and M S. (2023). Ensemble Text Classification with TF-IDF Vectorization for Hate Speech Detection in Social Media 2023 International Conference on System, Computation, Automation and Networking (ICSCAN). 10.1109/ICSCAN58655.2023.10395354. 979-8-3503-1512-7. (1-7).

    https://ieeexplore.ieee.org/document/10395354/

  • Agarwal S, Sonawane A and Chowdary C. (2023). Accelerating automatic hate speech detection using parallelized ensemble learning models. Expert Systems with Applications: An International Journal. 230:C. Online publication date: 15-Nov-2023.

    https://doi.org/10.1016/j.eswa.2023.120564

  • Leo C, Santoso B and Pratomo B. (2023). Enhancing Hate Speech Detection for Social Media Moderation: A Comparative Analysis of Machine Learning Algorithms 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA). 10.1109/ICAMIMIA60881.2023.10427779. 979-8-3503-0922-5. (960-964).

    https://ieeexplore.ieee.org/document/10427779/

  • Cormode G, Karnin Z, Liberty E, Thaler J and Veselý P. (2023). Relative Error Streaming Quantiles. Journal of the ACM. 70:5. (1-48). Online publication date: 31-Oct-2023.

    https://doi.org/10.1145/3617891

  • Prasad D, Kadambari K, Mukati R and Singariya S. (2023). Real-Time Multi-Lingual Hate and Offensive Speech Detection in Social Networks Using Meta-Learning TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON). 10.1109/TENCON58879.2023.10322364. 979-8-3503-0219-6. (31-35).

    https://ieeexplore.ieee.org/document/10322364/

  • Tobar-Arancibia A, Moreno S and Lopatin J. (2023). Hate Speech Recognition in Chilean Tweets 2023 42nd IEEE International Conference of the Chilean Computer Science Society (SCCC). 10.1109/SCCC59417.2023.10315748. 979-8-3503-1389-5. (1-8).

    https://ieeexplore.ieee.org/document/10315748/

  • Gupta S, Priyadarshi P and Gupta M. Hateful Comment Detection and Hate Target Type Prediction for Video Comments. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (3923-3927).

    https://doi.org/10.1145/3583780.3615260

  • Sumukh V, Jack Y, Grace S, Raghav A, Weiguo F, Chengyue H and Ling T. (2023). SMPNet: An Algorithmic Framework for Loneliness Detection and Mitigation in Social Media 2023 IEEE MIT Undergraduate Research Technology Conference (URTC). 10.1109/URTC60662.2023.10534959. 979-8-3503-0965-2. (1-5).

    https://ieeexplore.ieee.org/document/10534959/

  • Sharma S and Kumar S. (2023). Hate Speech Detection Using Transformers 2023 International Conference on Advanced Computing Technologies and Applications (ICACTA). 10.1109/ICACTA58201.2023.10391865. 979-8-3503-4834-7. (1-4).

    https://ieeexplore.ieee.org/document/10391865/

  • Tainturier B, de Dampierre C and Cardon D. (2023). Mesurer l’empreinte antisémite sur YouTube. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique. 10.1177/07591063231196163. 160:1. (71-98). Online publication date: 1-Oct-2023.

    https://journals.sagepub.com/doi/10.1177/07591063231196163

  • Tan F, Hu C, Hu Y, Yen K, Wei Z, Pappu A, Park S and Li K. MGEL: Multigrained Representation Analysis and Ensemble Learning for Text Moderation. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2021.3137045. 34:10. (7014-7023).

    https://ieeexplore.ieee.org/document/9703107/

  • Yuan L, Wang T, Ferraro G, Suominen H and Rizoiu M. (2023). Transfer learning for hate speech detection in social media. Journal of Computational Social Science. 10.1007/s42001-023-00224-9. 6:2. (1081-1101). Online publication date: 1-Oct-2023.

    https://link.springer.com/10.1007/s42001-023-00224-9

  • Shrestha A, Sharma T, Saha P, Ahmed S and Al-Ameen M. (2023). A First Look into Software Security Practices in Bangladesh. ACM Journal on Computing and Sustainable Societies. 1:1. (1-24). Online publication date: 30-Sep-2023.

    https://doi.org/10.1145/3616383

  • Al-Ibrahim R, Ali M and Najadat H. (2023). Detection of Hateful Social Media Content for Arabic Language. ACM Transactions on Asian and Low-Resource Language Information Processing. 22:9. (1-26). Online publication date: 30-Sep-2023.

    https://doi.org/10.1145/3592792

  • Wei H, Su X, Gao C, Zheng W and Tao W. (2023). A Hypothesis Testing-based Framework for Software Cross-modal Retrieval in Heterogeneous Semantic Spaces. ACM Transactions on Software Engineering and Methodology. 32:5. (1-28). Online publication date: 30-Sep-2023.

    https://doi.org/10.1145/3591868

  • Gashroo O and Mehrotra M. (2023). HiTACoD: Hierarchical Framework for Textual Abusive Content Detection. SN Computer Science. 10.1007/s42979-023-02213-1. 4:6.

    https://link.springer.com/10.1007/s42979-023-02213-1

  • Das A, Rahgouy M, Zhang Z, Bhattacharya T, Dozier G and Seals C. (2023). Online Sexism Detection and Classification by Injecting User Gender Information 2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings). 10.1109/AIBThings58340.2023.10292474. 979-8-3503-2234-7. (1-5).

    https://ieeexplore.ieee.org/document/10292474/

  • Çam N and Özgür A. (2023). Evaluation of ChatGPT and BERT-based Models for Turkish Hate Speech Detection 2023 8th International Conference on Computer Science and Engineering (UBMK). 10.1109/UBMK59864.2023.10286663. 979-8-3503-4081-5. (229-233).

    https://ieeexplore.ieee.org/document/10286663/

  • Wang W, Huang J, Huang J, Chen C, Gu J, He P and Lyu M. (2023). An Image is Worth a Thousand Toxic Words: A Metamorphic Testing Framework for Content Moderation Software 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). 10.1109/ASE56229.2023.00189. 979-8-3503-2996-4. (1339-1351).

    https://ieeexplore.ieee.org/document/10298324/

  • Krisdianto R, Apriani I, Halim P, Anggreainy M and Kurniawan A. (2023). An Analysis of Hate Speech Detection Techniques 2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS). 10.1109/AiDAS60501.2023.10284673. 979-8-3503-1843-2. (91-96).

    https://ieeexplore.ieee.org/document/10284673/

  • Hamzah S, Mohd M and Zakaria L. (2023). Detection of Online Hate Comments Based on Feature Embedding and Deep Learning 2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS). 10.1109/AiDAS60501.2023.10284606. 979-8-3503-1843-2. (239-244).

    https://ieeexplore.ieee.org/document/10284606/

  • Meng Q, Suresh T, Lee R and Chakraborty T. (2023). Predicting hate intensity of twitter conversation threads. Knowledge-Based Systems. 275:C. Online publication date: 5-Sep-2023.

    https://doi.org/10.1016/j.knosys.2023.110644

  • Guimarães S, Kakizaki G, Melo P, Silva M, Murai F, Reis J and Benevenuto F. Anatomy of Hate Speech Datasets. Proceedings of the 34th ACM Conference on Hypertext and Social Media. (1-11).

    https://doi.org/10.1145/3603163.3609158

  • Rizzi G, Gasparini F, Saibene A, Rosso P and Fersini E. (2023). Recognizing misogynous memes: Biased models and tricky archetypes. Information Processing & Management. 10.1016/j.ipm.2023.103474. 60:5. (103474). Online publication date: 1-Sep-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S030645732300211X

  • Mahmud T, Ptaszynski M, Eronen J and Masui F. (2023). Cyberbullying detection for low-resource languages and dialects: Review of the state of the art. Information Processing & Management. 10.1016/j.ipm.2023.103454. 60:5. (103454). Online publication date: 1-Sep-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0306457323001917

  • Zhang Z, Kong D, Da Z, Wang R, Wang S, Geng Y and He Z. (2023). Compact lensless convolution processor for an optoelectronic convolutional neural network. Journal of Physics D: Applied Physics. 10.1088/1361-6463/acd06d. 56:35. (355103). Online publication date: 31-Aug-2023.

    https://iopscience.iop.org/article/10.1088/1361-6463/acd06d

  • Wang H, Hee M, Awal M, Choo K and Lee R. Evaluating GPT-3 generated explanations for hateful content moderation. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence. (6255-6263).

    https://doi.org/10.24963/ijcai.2023/694

  • Kulkarni A, Masud S, Goyal V and Chakraborty T. Revisiting Hate Speech Benchmarks: From Data Curation to System Deployment. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (4333-4345).

    https://doi.org/10.1145/3580305.3599896

  • Joshi M, Nishi , Rani R, Bisla N, Sharma A and Dev A. (2023). Twitter and the Ukraine-Russia War: An Examination 2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON). 10.1109/INDISCON58499.2023.10270120. 979-8-3503-3355-8. (1-5).

    https://ieeexplore.ieee.org/document/10270120/

  • Jahan M and Oussalah M. (2023). A systematic review of hate speech automatic detection using natural language processing. Neurocomputing. 10.1016/j.neucom.2023.126232. 546. (126232). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231223003557

  • Min C, Lin H, Li X, Zhao H, Lu J, Yang L and Xu B. (2023). Finding hate speech with auxiliary emotion detection from self-training multi-label learning perspective. Information Fusion. 10.1016/j.inffus.2023.03.015. 96. (214-223). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S1566253523001045

  • Ibrohim M and Budi I. (2023). Hate speech and abusive language detection in Indonesian social media: Progress and challenges. Heliyon. 10.1016/j.heliyon.2023.e18647. 9:8. (e18647). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S2405844023058553

  • Wang W, Huang J, Chen C, Gu J, Zhang J, Wu W, He P and Lyu M. Validating Multimedia Content Moderation Software via Semantic Fusion. Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. (576-588).

    https://doi.org/10.1145/3597926.3598079

  • Li Z and Shimada K. (2023). Combination and Knowledge Extension of Pre-trained Language Model for Offensive Language Detection 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). 10.1109/IIAI-AAI59060.2023.00026. 979-8-3503-2422-8. (82-87).

    https://ieeexplore.ieee.org/document/10371472/

  • Singhal M, Ling C, Paudel P, Thota P, Kumarswamy N, Stringhini G and Nilizadeh S. (2023). SoK: Content Moderation in Social Media, from Guidelines to Enforcement, and Research to Practice 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P). 10.1109/EuroSP57164.2023.00056. 978-1-6654-6512-0. (868-895).

    https://ieeexplore.ieee.org/document/10190527/

  • Adu-Darko A and Kumah P. (2023). Identifying Common Barriers to Formal Disclosure of Sexual Violence. Handbook of Research on Exploring Gender Equity, Diversity, and Inclusion Through an Intersectional Lens. 10.4018/978-1-6684-8412-8.ch019. (397-422).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-8412-8.ch019

  • Yip E, Girault A, Roop P and Biglari-Abhari M. (2023). Synchronous Deterministic Parallel Programming for Multi-Cores with ForeC. ACM Transactions on Programming Languages and Systems. 45:2. (1-74). Online publication date: 30-Jun-2023.

    https://doi.org/10.1145/3591594

  • Basso M, Prokopec A, Rosà A and Binder W. (2023). Optimization-Aware Compiler-Level Event Profiling. ACM Transactions on Programming Languages and Systems. 45:2. (1-50). Online publication date: 30-Jun-2023.

    https://doi.org/10.1145/3591473

  • Shamas M, El Hajj W, Hajj H and Shaban K. (2023). Metadial: A Meta-learning Approach for Arabic Dialogue Generation. ACM Transactions on Asian and Low-Resource Language Information Processing. 22:6. (1-21). Online publication date: 30-Jun-2023.

    https://doi.org/10.1145/3590960

  • Saeed R, Afzal H, Rauf S and Iltaf N. (2023). Detection of Offensive Language and ITS Severity for Low Resource Language. ACM Transactions on Asian and Low-Resource Language Information Processing. 22:6. (1-27). Online publication date: 30-Jun-2023.

    https://doi.org/10.1145/3580476

  • Gupta S and Bansal M. A Neural Bag-of-Words Point Process Model for User Return Time Prediction in E-commerce. Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization. (177-181).

    https://doi.org/10.1145/3563359.3596981

  • Chen J, Ma K, Ji K and Chen Z. (2021). TM‐HOL: Topic memory model for detection of hate speech and offensive language. Concurrency and Computation: Practice and Experience. 10.1002/cpe.6754. 35:14. Online publication date: 25-Jun-2023.

    https://onlinelibrary.wiley.com/doi/10.1002/cpe.6754

  • Rathod R, Barve Y, Saini J and Rathod S. (2023). From Data Pre-processing to Hate Speech Detection: An Interdisciplinary Study on Women-targeted Online Abuse 2023 3rd International Conference on Intelligent Technologies (CONIT). 10.1109/CONIT59222.2023.10205571. 979-8-3503-3860-7. (1-8).

    https://ieeexplore.ieee.org/document/10205571/

  • Vujičić Stanković S and Mladenović M. (2023). An approach to automatic classification of hate speech in sports domain on social media. Journal of Big Data. 10.1186/s40537-023-00766-9. 10:1.

    https://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00766-9

  • Leung R. (2023). Using AI–ML to Augment the Capabilities of Social Media for Telehealth and Remote Patient Monitoring. Healthcare. 10.3390/healthcare11121704. 11:12. (1704).

    https://www.mdpi.com/2227-9032/11/12/1704

  • Bhandari A, Shah S, Thapa S, Naseem U and Nasim M. (2023). CrisisHateMM: Multimodal Analysis of Directed and Undirected Hate Speech in Text-Embedded Images from Russia-Ukraine Conflict 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 10.1109/CVPRW59228.2023.00193. 979-8-3503-0249-3. (1994-2003).

    https://ieeexplore.ieee.org/document/10208843/

  • Chhabra A and Vishwakarma D. (2023). A literature survey on multimodal and multilingual automatic hate speech identification. Multimedia Systems. 29:3. (1203-1230). Online publication date: 1-Jun-2023.

    https://doi.org/10.1007/s00530-023-01051-8

  • Chopra A, Sharma D, Jha A and Ghosh U. (2022). A Framework for Online Hate Speech Detection on Code-mixed Hindi-English Text and Hindi Text in Devanagari. ACM Transactions on Asian and Low-Resource Language Information Processing. 22:5. (1-21). Online publication date: 31-May-2023.

    https://doi.org/10.1145/3568673

  • Zhang J, Li L and Nakajima S. (2022). Constructing Japanese Bullying Expression Dictionary for Automated Cyberbullying Detection on Twitter. Vietnam Journal of Computer Science. 10.1142/S2196888822500373. 10:02. (135-158). Online publication date: 1-May-2023.

    https://www.worldscientific.com/doi/10.1142/S2196888822500373

  • Wang W, Huang J, Wu W, Zhang J, Huang Y, Li S, He P and Lyu M. (2023). MTTM: Metamorphic Testing for Textual Content Moderation Software 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). 10.1109/ICSE48619.2023.00200. 978-1-6654-5701-9. (2387-2399).

    https://ieeexplore.ieee.org/document/10172598/

  • Ghosh S, Ekbal A, Bhattacharyya P, Saha T, Kumar A and Srivastava S. SEHC : A Benchmark Setup to Identify Online Hate Speech in English . IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2022.3157474. 10:2. (760-770).

    https://ieeexplore.ieee.org/document/9738838/

  • Valle-Cano G, Quijano-Sánchez L, Liberatore F and Gómez J. (2023). SocialHaterBERT: A dichotomous approach for automatically detecting hate speech on Twitter through textual analysis and user profiles. Expert Systems with Applications. 10.1016/j.eswa.2022.119446. 216. (119446). Online publication date: 1-Apr-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417422024654

  • Ghosh A, Dhara B, Pero C and Umer S. (2023). A multimodal sentiment analysis system for recognizing person aggressiveness in pain based on textual and visual information. Journal of Ambient Intelligence and Humanized Computing. 10.1007/s12652-023-04567-z. 14:4. (4489-4501). Online publication date: 1-Apr-2023.

    https://link.springer.com/10.1007/s12652-023-04567-z

  • Nelatoori K and Kommanti H. (2022). Multi-task learning for toxic comment classification and rationale extraction. Journal of Intelligent Information Systems. 10.1007/s10844-022-00726-4. 60:2. (495-519). Online publication date: 1-Apr-2023.

    https://link.springer.com/10.1007/s10844-022-00726-4

  • Seemann N, Lee Y, Höllig J and Geierhos M. (2023). The problem of varying annotations to identify abusive language in social media content. Natural Language Engineering. 10.1017/S1351324923000098. (1-25).

    https://www.cambridge.org/core/product/identifier/S1351324923000098/type/journal_article

  • Gamal D, Alfonse M, Jiménez-Zafra S and Aref M. (2023). Intelligent Multi-Lingual Cyber-Hate Detection in Online Social Networks: Taxonomy, Approaches, Datasets, and Open Challenges. Big Data and Cognitive Computing. 10.3390/bdcc7020058. 7:2. (58).

    https://www.mdpi.com/2504-2289/7/2/58

  • Nagar S, Barbhuiya F and Dey K. (2023). Towards more robust hate speech detection: using social context and user data. Social Network Analysis and Mining. 10.1007/s13278-023-01051-6. 13:1.

    https://link.springer.com/10.1007/s13278-023-01051-6

  • Reddy B, Chandra G, Sisodia D and Anuragi A. (2023). Balancing Techniques for Improving Automated Detection of Hate Speech and Offensive Language on Social Media 2023 2nd International Conference for Innovation in Technology (INOCON). 10.1109/INOCON57975.2023.10101157. 979-8-3503-2092-3. (1-8).

    https://ieeexplore.ieee.org/document/10101157/

  • Ali M, Hassan M, Kifayat K, Kim J, Hakak S and Khan M. (2023). Social media content classification and community detection using deep learning and graph analytics. Technological Forecasting and Social Change. 10.1016/j.techfore.2022.122252. 188. (122252). Online publication date: 1-Mar-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0040162522007739

  • Utku A, Can U and Aslan S. (2023). Detection of hateful twitter users with graph convolutional network model. Earth Science Informatics. 10.1007/s12145-023-00940-w. 16:1. (329-343). Online publication date: 1-Mar-2023.

    https://link.springer.com/10.1007/s12145-023-00940-w

  • Mundra S and Mittal N. (2022). CMHE-AN: Code mixed hybrid embedding based attention network for aggression identification in hindi english code-mixed text. Multimedia Tools and Applications. 10.1007/s11042-022-13668-4. 82:8. (11337-11364). Online publication date: 1-Mar-2023.

    https://link.springer.com/10.1007/s11042-022-13668-4

  • FHA S, Sharma U and Naleer H. (2023). Development of an Efficient Method to Detect Mixed Social Media Data with Tamil-English Code Using Machine Learning Techniques. ACM Transactions on Asian and Low-Resource Language Information Processing. 22:2. (1-19). Online publication date: 28-Feb-2023.

    https://doi.org/10.1145/3563775

  • Son D, Lew B, Choi K, Baek Y, Choi S, Shin B, Ha S and Chang B. Reliable Decision from Multiple Subtasks through Threshold Optimization: Content Moderation in the Wild. Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. (285-293).

    https://doi.org/10.1145/3539597.3570439

  • Rajapaksha N, Ahangama S and Adikari S. (2023). Fine-tuning XLM-R for the Detection of Sinhala Hate Speech Content on Twitter and Youtube 2023 3rd International Conference on Advanced Research in Computing (ICARC). 10.1109/ICARC57651.2023.10145745. 979-8-3503-4737-1. (19-23).

    https://ieeexplore.ieee.org/document/10145745/

  • Almaliki M, Almars A, Gad I and Atlam E. (2023). ABMM: Arabic BERT-Mini Model for Hate-Speech Detection on Social Media. Electronics. 10.3390/electronics12041048. 12:4. (1048).

    https://www.mdpi.com/2079-9292/12/4/1048

  • Aziz S, Sarfraz M, Usman M, Aftab M and Rauf H. (2023). Geo-Spatial Mapping of Hate Speech Prediction in Roman Urdu. Mathematics. 10.3390/math11040969. 11:4. (969).

    https://www.mdpi.com/2227-7390/11/4/969

  • Pamungkas E, Basile V and Patti V. (2021). Towards multidomain and multilingual abusive language detection: a survey. Personal and Ubiquitous Computing. 10.1007/s00779-021-01609-1. 27:1. (17-43). Online publication date: 1-Feb-2023.

    https://link.springer.com/10.1007/s00779-021-01609-1

  • Lala C and Dwivedi P. (2023). Hate Speech Detection Network Using LSTM 2023 International Conference for Advancement in Technology (ICONAT). 10.1109/ICONAT57137.2023.10080786. 978-1-6654-7517-4. (1-6).

    https://ieeexplore.ieee.org/document/10080786/

  • Alagu P and Nirmal G. (2023). BiDETECT: BiLSTM with BERT for hate speech detection in tweets. i-manager's Journal on Computer Science. 10.26634/jcom.10.4.19334. 10:4. (23).

    https://imanagerpublications.com/article/19334

  • Real P and Araque O. Contextualization of a Radical Language Detection System Through Moral Values and Emotions. IEEE Access. 10.1109/ACCESS.2023.3326429. 11. (119634-119646).

    https://ieeexplore.ieee.org/document/10288433/

  • Wojtczak D, Peersman C, Zuccolo L and McConville R. Characterizing Discourse and Engagement Across Topics of Misinformation on Twitter. IEEE Access. 10.1109/ACCESS.2023.3324555. 11. (115002-115010).

    https://ieeexplore.ieee.org/document/10285098/

  • Jafari A, Li G, Rajapaksha P, Farahbakhsh R and Crespi N. Fine-Grained Emotions Influence on Implicit Hate Speech Detection. IEEE Access. 10.1109/ACCESS.2023.3318863. 11. (105330-105343).

    https://ieeexplore.ieee.org/document/10261981/

  • Maity K, Bhattacharya S, Saha S and Seera M. A Deep Learning Framework for the Detection of Malay Hate Speech. IEEE Access. 10.1109/ACCESS.2023.3298808. 11. (79542-79552).

    https://ieeexplore.ieee.org/document/10192900/

  • Ketsbaia L, Issac B, Chen X and Jacob S. A Multi-Stage Machine Learning and Fuzzy Approach to Cyber-Hate Detection. IEEE Access. 10.1109/ACCESS.2023.3282834. 11. (56046-56065).

    https://ieeexplore.ieee.org/document/10143650/

  • Pérez J, Luque F, Zayat D, Kondratzky M, Moro A, Serrati P, Zajac J, Miguel P, Debandi N, Gravano A and Cotik V. Assessing the Impact of Contextual Information in Hate Speech Detection. IEEE Access. 10.1109/ACCESS.2023.3258973. 11. (30575-30590).

    https://ieeexplore.ieee.org/document/10076443/

  • Fazil M, Khan S, Albahlal B, Alotaibi R, Siddiqui T and Shah M. Attentional Multi-Channel Convolution With Bidirectional LSTM Cell Toward Hate Speech Prediction. IEEE Access. 10.1109/ACCESS.2023.3246388. 11. (16801-16811).

    https://ieeexplore.ieee.org/document/10047893/

  • Mansur Z, Omar N and Tiun S. Twitter Hate Speech Detection: A Systematic Review of Methods, Taxonomy Analysis, Challenges, and Opportunities. IEEE Access. 10.1109/ACCESS.2023.3239375. 11. (16226-16249).

    https://ieeexplore.ieee.org/document/10025718/

  • Oliveira F, Bittencourt L, Kamienski C and Borin E. PANCODE: Multilevel Partitioning of Neural Networks for Constrained Internet-of-Things Devices. IEEE Access. 10.1109/ACCESS.2023.3234245. 11. (2058-2077).

    https://ieeexplore.ieee.org/document/10005306/

  • Ava L, Karim A, Hassan M, Faisal F, Azam S, Haque A and Zaman S. (2023). Intelligent Identification of Hate Speeches to address the increased rate of Individual Mental Degeneration. Procedia Computer Science. 219:C. (1527-1537). Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.procs.2023.01.444

  • Quoc Tran K, Trong Nguyen A, Hoang P, Luu C, Do T and Van Nguyen K. (2022). Vietnamese hate and offensive detection using PhoBERT-CNN and social media streaming data. Neural Computing and Applications. 10.1007/s00521-022-07745-w. 35:1. (573-594). Online publication date: 1-Jan-2023.

    https://link.springer.com/10.1007/s00521-022-07745-w

  • Chakraborty A, Joardar S and Ahmed Sekh A. (2023). BSVM: A BERT-Based Support Vector Machine for Hindi Hostile Content Detection. Proceedings of the 4th International Conference on Communication, Devices and Computing. 10.1007/978-981-99-2710-4_6. (57-68).

    https://link.springer.com/10.1007/978-981-99-2710-4_6

  • Srivastava T, Arora D and Sharma P. (2023). Sentiment Analysis of COVID-19 Tweets Using BiLSTM and CNN-BiLSTM. Proceedings of International Conference on Recent Trends in Computing. 10.1007/978-981-19-8825-7_45. (523-535).

    https://link.springer.com/10.1007/978-981-19-8825-7_45

  • Shah S and Singh S. (2023). Hate Speech and Offensive Language Detection in Twitter Data Using Machine Learning Classifiers. Innovations in Computer Science and Engineering. 10.1007/978-981-19-7455-7_17. (221-237).

    https://link.springer.com/10.1007/978-981-19-7455-7_17

  • Prabhasa T, Maganti S, Sriram G, Reddy K and Nair J. (2023). Chrome Extension for Text Sentiment Analysis. Sentiment Analysis and Deep Learning. 10.1007/978-981-19-5443-6_6. (69-82).

    https://link.springer.com/10.1007/978-981-19-5443-6_6

  • Karthika I, Boomika G, Nisha R, Shalini M and Srivarshini S. (2023). A Survey on Detecting and Preventing Hateful Comments on Social Media Using Deep Learning. IOT with Smart Systems. 10.1007/978-981-19-3575-6_30. (285-298).

    https://link.springer.com/10.1007/978-981-19-3575-6_30

  • Pervez N, Agarwal A and Sankaranarayanan S. (2023). Application of Deep Learning for COVID Twitter Sentimental Analysis Towards Mental Depression. IOT with Smart Systems. 10.1007/978-981-19-3575-6_14. (111-119).

    https://link.springer.com/10.1007/978-981-19-3575-6_14

  • Shibly F, Sharma U and Naleer H. (2023). Performance Comparison of Machine Learning and Deep Learning Algorithms in Detecting Online Hate Speech. International Conference on Innovative Computing and Communications. 10.1007/978-981-19-2821-5_59. (695-706).

    https://link.springer.com/10.1007/978-981-19-2821-5_59

  • Demus C, Labudde D, Pitz J, Probol N, Schütz M and Siegel M. (2023). Automatische Klassifikation offensiver deutscher Sprache in sozialen Netzwerken. Digitale Hate Speech. 10.1007/978-3-662-65964-9_4. (65-88).

    https://link.springer.com/10.1007/978-3-662-65964-9_4

  • Maity K, Bhattacharya S, Phosit S, Kongsamlit S, Saha S and Pasupa K. (2023). Ex-ThaiHate: A Generative Multi-task Framework for Sentiment and Emotion Aware Hate Speech Detection with Explanation in Thai. Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. 10.1007/978-3-031-43427-3_9. (139-156).

    https://link.springer.com/10.1007/978-3-031-43427-3_9

  • Maity K, Jha P, Jain R, Saha S and Bhattacharyya P. (2023). “Explain Thyself Bully”: Sentiment Aided Cyberbullying Detection with Explanation. Document Analysis and Recognition - ICDAR 2023. 10.1007/978-3-031-41682-8_9. (132-148).

    https://link.springer.com/10.1007/978-3-031-41682-8_9

  • Akkol E and Dogan O. (2023). Analyzing and Responding to Google Maps Reviews with a Chatbot in Healthcare. Intelligent and Fuzzy Systems. 10.1007/978-3-031-39777-6_14. (116-123).

    https://link.springer.com/10.1007/978-3-031-39777-6_14

  • Al-Dala’in T and Zhao J. (2023). Overview of the Benefits Deep Learning Can Provide Against Fake News, Cyberbullying and Hate Speech. Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23). 10.1007/978-3-031-35308-6_2. (13-27).

    https://link.springer.com/10.1007/978-3-031-35308-6_2

  • Themeli C, Giannakopoulos G and Pittaras N. (2023). A Study of Text Representations for Hate Speech Detection. Computational Linguistics and Intelligent Text Processing. 10.1007/978-3-031-24340-0_32. (424-437).

    https://link.springer.com/10.1007/978-3-031-24340-0_32

  • Kommu A, Patel S, Derosa S, Wang J and Varde A. (2023). HiSAT: Hierarchical Framework for Sentiment Analysis on Twitter Data. Intelligent Systems and Applications. 10.1007/978-3-031-16072-1_28. (376-392).

    https://link.springer.com/10.1007/978-3-031-16072-1_28

  • Gudumotu C, Nukala S, Reddy K, Konduri A and Gireesh C. (2023). A Survey on Deep Learning Models to Detect Hate Speech and Bullying in Social Media. Artificial Intelligence for Societal Issues. 10.1007/978-3-031-12419-8_2. (27-44).

    https://link.springer.com/10.1007/978-3-031-12419-8_2

  • Iqbal W, Arshad M, Tyson G and Castro I. Exploring Crowdsourced Content Moderation Through Lens of Reddit during COVID-19. Proceedings of the 17th Asian Internet Engineering Conference. (26-35).

    https://doi.org/10.1145/3570748.3570753

  • Zhang C, Zhang X, Wang Q, Liang J, Zhang G, Guo S, Zang W and Zhang Y. (2022). Abusive Language Detection with Graph based Multi-task Learning 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10020761. 978-1-6654-8045-1. (675-684).

    https://ieeexplore.ieee.org/document/10020761/

  • Chhabra A and Vishwakarma D. (2022). Fuzzy and Machine learning Classifiers for Hate Content Detection: A Comparative Analysis 2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST). 10.1109/AIST55798.2022.10064822. 978-1-6654-9902-6. (1-4).

    https://ieeexplore.ieee.org/document/10064822/

  • Ghosal S, Jain A and Tayal D. (2022). An approach to detect abusive content incorporating Word2Vec and Multilayer Perceptron 2022 IEEE Bombay Section Signature Conference (IBSSC). 10.1109/IBSSC56953.2022.10037274. 978-1-6654-9291-1. (1-5).

    https://ieeexplore.ieee.org/document/10037274/

  • Biradar S, Saumya S, Kumar A and Singh A. (2022). Pradvis vac: A socio-demographic dataset for determining the level of hatred severity in a low-resource Hinglish language. ACM Transactions on Asian and Low-Resource Language Information Processing. 0:0.

    https://doi.org/10.1145/3573199

  • Mnassri K, Rajapaksha P, Farahbakhsh R and Crespi N. (2022). BERT-based Ensemble Approaches for Hate Speech Detection GLOBECOM 2022 - 2022 IEEE Global Communications Conference. 10.1109/GLOBECOM48099.2022.10001325. 978-1-6654-3540-6. (4649-4654).

    https://ieeexplore.ieee.org/document/10001325/

  • Ashok K, Ashok K and Naseem S. (2022). A Neuro-NLP Induced Deep Learning Model Developed Towards Comment Based Toxicity Prediction 2022 5th International Conference on Advances in Science and Technology (ICAST). 10.1109/ICAST55766.2022.10039597. 978-1-6654-9263-8. (94-99).

    https://ieeexplore.ieee.org/document/10039597/

  • Ganfure G. (2022). Comparative analysis of deep learning based Afaan Oromo hate speech detection. Journal of Big Data. 10.1186/s40537-022-00628-w. 9:1. Online publication date: 1-Dec-2022.

    https://journalofbigdata.springeropen.com/articles/10.1186/s40537-022-00628-w

  • Okpala E, Cheng L, Mbwambo N and Luo F. (2022). AAEBERT: Debiasing BERT-based Hate Speech Detection Models via Adversarial Learning 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA55696.2022.00053. 978-1-6654-6283-9. (1606-1612).

    https://ieeexplore.ieee.org/document/10069432/

  • Lee C. (2022). COVID-19 conspiracy theories as affective discourse. Conspiracy theory discourses. 10.1075/dapsac.98.10lee. (215-238). Online publication date: 1-Dec-2022.

    https://benjamins.com/catalog/dapsac.98.10lee

  • Gongane V, Munot M and Anuse A. (2022). Detection and moderation of detrimental content on social media platforms: current status and future directions. Social Network Analysis and Mining. 10.1007/s13278-022-00951-3. 12:1. Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s13278-022-00951-3

  • Ahmed T, Ivan S, Kabir M, Mahmud H and Hasan K. (2022). Performance analysis of transformer-based architectures and their ensembles to detect trait-based cyberbullying. Social Network Analysis and Mining. 10.1007/s13278-022-00934-4. 12:1. Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s13278-022-00934-4

  • Mundra S and Mittal N. (2022). FA-Net: fused attention-based network for Hindi English code-mixed offensive text classification. Social Network Analysis and Mining. 10.1007/s13278-022-00929-1. 12:1. Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s13278-022-00929-1

  • Sivakumar S and Rajalakshmi R. (2022). Context-aware sentiment analysis with attention-enhanced features from bidirectional transformers. Social Network Analysis and Mining. 10.1007/s13278-022-00910-y. 12:1. Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s13278-022-00910-y

  • Akhter M, Jiangbin Z, Naqvi I, AbdelMajeed M and Zia T. (2021). Abusive language detection from social media comments using conventional machine learning and deep learning approaches. Multimedia Systems. 10.1007/s00530-021-00784-8. 28:6. (1925-1940). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s00530-021-00784-8

  • Al-Hassan A and Al-Dossari H. (2021). Detection of hate speech in Arabic tweets using deep learning. Multimedia Systems. 10.1007/s00530-020-00742-w. 28:6. (1963-1974). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s00530-020-00742-w

  • Paul S and Saha S. (2020). CyberBERT: BERT for cyberbullying identification. Multimedia Systems. 10.1007/s00530-020-00710-4. 28:6. (1897-1904). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s00530-020-00710-4

  • Bansal A and Kumar N. (2021). Aspect-Based Sentiment Analysis Using Attribute Extraction of Hospital Reviews. New Generation Computing. 10.1007/s00354-021-00141-3. 40:4. (941-960). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s00354-021-00141-3

  • Upadhyaya A and Chandra J. (2022). Spotting Flares: The Vital Signs of the Viral Spread of Tweets Made During Communal Incidents. ACM Transactions on the Web. 16:4. (1-28). Online publication date: 30-Nov-2022.

    https://doi.org/10.1145/3550357

  • Gamage K, Welgama V and Weerasinghe R. (2022). Improving Sinhala Hate Speech Detection Using Deep Learning 2022 22nd International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTer58063.2022.10024103. 979-8-3503-4613-8. (045-050).

    https://ieeexplore.ieee.org/document/10024103/

  • Alrashidi B, Jamal A, Khan I and Alkhathlan A. (2022). A review on abusive content automatic detection: approaches, challenges and opportunities. PeerJ Computer Science. 10.7717/peerj-cs.1142. 8. (e1142).

    https://peerj.com/articles/cs-1142

  • Albadi N, Kurdi M and Mishra S. (2022). Deradicalizing YouTube: Characterization, Detection, and Personalization of Religiously Intolerant Arabic Videos. Proceedings of the ACM on Human-Computer Interaction. 6:CSCW2. (1-25). Online publication date: 7-Nov-2022.

    https://doi.org/10.1145/3555618

  • Karimi Y, Squicciarini A and Wilson S. (2022). Automated Detection of Doxing on Twitter. Proceedings of the ACM on Human-Computer Interaction. 6:CSCW2. (1-24). Online publication date: 7-Nov-2022.

    https://doi.org/10.1145/3555167

  • Almuayqil S, Humayun M, Jhanjhi N, Almufareh M and Khan N. (2022). Enhancing Sentiment Analysis via Random Majority Under-Sampling with Reduced Time Complexity for Classifying Tweet Reviews. Electronics. 10.3390/electronics11213624. 11:21. (3624).

    https://www.mdpi.com/2079-9292/11/21/3624

  • Wullach T, Adler A and Minkov E. (2022). Character-level HyperNetworks for Hate Speech Detection. Expert Systems with Applications: An International Journal. 205:C. Online publication date: 1-Nov-2022.

    https://doi.org/10.1016/j.eswa.2022.117571

  • Wang J. (2022). Deep Neural Networks for Detecting Hate Speech 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). 10.1109/ICDSCA56264.2022.9988324. 978-1-6654-7200-5. (768-772).

    https://ieeexplore.ieee.org/document/9988324/

  • Mate N, Akre D, Patil G, Sakarkar G and Basuki T. (2022). Emotion Classification of Songs Using Deep Learning 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST). 10.1109/GECOST55694.2022.10010485. 978-1-6654-8663-7. (303-308).

    https://ieeexplore.ieee.org/document/10010485/

  • Arcila-Calderón C, Amores J, Sánchez-Holgado P, Vrysis L, Vryzas N and Oller Alonso M. (2022). How to Detect Online Hate towards Migrants and Refugees? Developing and Evaluating a Classifier of Racist and Xenophobic Hate Speech Using Shallow and Deep Learning. Sustainability. 10.3390/su142013094. 14:20. (13094).

    https://www.mdpi.com/2071-1050/14/20/13094

  • Assem S and Alansary S. (2022). Sentiment Analysis From Subjectivity to (Im)Politeness Detection: Hate Speech From a Socio-Pragmatic Perspective 2022 20th International Conference on Language Engineering (ESOLEC). 10.1109/ESOLEC54569.2022.10009298. 978-1-6654-5322-6. (19-23).

    https://ieeexplore.ieee.org/document/10009298/

  • Mohite S, Attar V and Kalamkar S. (2022). Shaming tweets detection on Twitter using Machine learning Algorithms 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). 10.1109/GCAT55367.2022.9972100. 978-1-6654-6853-4. (1-6).

    https://ieeexplore.ieee.org/document/9972100/

  • Gandhi B, Kumar S, Victor A and Selvanambi R. (2022). Transfer Learning using BERT & Comparative Analysis of ML Algorithms for Opinion Mining 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). 10.1109/GCAT55367.2022.9971839. 978-1-6654-6853-4. (1-12).

    https://ieeexplore.ieee.org/document/9971839/

  • Chen Y, Pan F and Wang L. (2022). Multimodal detection of hateful memes by applying a vision-language pre-training model. PLOS ONE. 10.1371/journal.pone.0274300. 17:9. (e0274300).

    https://dx.plos.org/10.1371/journal.pone.0274300

  • Wang Z, Yan W, Li Z, Huang M, Fan Q and Wang X. (2022). Domestic Violence Crisis Recognition Method based on Bi-LSTM+Attention 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). 10.1109/ICNISC57059.2022.00118. 978-1-6654-5351-6. (569-575).

    https://ieeexplore.ieee.org/document/10045367/

  • Roy P, Bhawal S and Subalalitha C. (2022). Hate speech and offensive language detection in Dravidian languages using deep ensemble framework. Computer Speech and Language. 75:C. Online publication date: 1-Sep-2022.

    https://doi.org/10.1016/j.csl.2022.101386

  • Adak S, Chakraborty S, Das P, Das M, Dash A, Hazra R, Mathew B, Saha P, Sarkar S and Mukherjee A. (2022). Mining the online infosphere: A survey. WIREs Data Mining and Knowledge Discovery. 10.1002/widm.1453. 12:5. Online publication date: 1-Sep-2022.

    https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1453

  • M A A and Daniel D. (2022). Cyberbullying Detection on Social Networks using LSTM Model 2022 International Conference on Innovations in Science and Technology for Sustainable Development (ICISTSD). 10.1109/ICISTSD55159.2022.10010559. 978-1-6654-9936-1. (293-296).

    https://ieeexplore.ieee.org/document/10010559/

  • Naim J, Hossain T, Tasneem F, Chy A and Aono M. (2022). Leveraging fusion of sequence tagging models for toxic spans detection. Neurocomputing. 500:C. (688-702). Online publication date: 21-Aug-2022.

    https://doi.org/10.1016/j.neucom.2022.05.049

  • Apostolopoulos G, Liakos P and Delis A. A Social-Aware Deep Learning Approach for Hate-Speech Detection. Web and Big Data. (536-544).

    https://doi.org/10.1007/978-3-031-25158-0_43

  • Hsu J and Tsai R. (2022). Increased Online Aggression During COVID-19 Lockdowns: Two-Stage Study of Deep Text Mining and Difference-in-Differences Analysis. Journal of Medical Internet Research. 10.2196/38776. 24:8. (e38776).

    https://www.jmir.org/2022/8/e38776

  • Dash S and Kar N. (2022). Challenges and Approaches of Code-mixed Hate Speech Detection 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS). 10.1109/MLCSS57186.2022.00060. 978-1-6654-5493-3. (290-295).

    https://ieeexplore.ieee.org/document/10076747/

  • Kaur M, Das D and Mishra S. (2022). Survey and Evaluation of Extreme Learning Machine on TF- IDF Feature for Sentiment Analysis 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS). 10.1109/MLCSS57186.2022.00053. 978-1-6654-5493-3. (247-252).

    https://ieeexplore.ieee.org/document/10076703/

  • Paul S, Saha S and Hasanuzzaman M. (2020). Identification of cyberbullying: A deep learning based multimodal approach. Multimedia Tools and Applications. 10.1007/s11042-020-09631-w. 81:19. (26989-27008). Online publication date: 1-Aug-2022.

    https://link.springer.com/10.1007/s11042-020-09631-w

  • Munasinghe S and Thayasivam U. (2022). A Deep Learning Ensemble Hate Speech Detection Approach for Sinhala Tweets 2022 Moratuwa Engineering Research Conference (MERCon). 10.1109/MERCon55799.2022.9906232. 978-1-6654-8786-3. (1-6).

    https://ieeexplore.ieee.org/document/9906232/

  • Youn J and Bowen A. PEARC ’22: Practice and Experience in Advanced Research Computing Proceedings. Practice and Experience in Advanced Research Computing 2022: Revolutionary: Computing, Connections, You. (1-3).

    https://doi.org/10.1145/3491418.3535185

  • Polignano M, Colavito G, Musto C, de Gemmis M and Semeraro G. Lexicon Enriched Hybrid Hate Speech Detection with Human-Centered Explanations. Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization. (184-191).

    https://doi.org/10.1145/3511047.3537688

  • Wu X, Zhao T, Lu L and Chen W. (2022). Predicting the Hate. Information Processing and Management: an International Journal. 59:4. Online publication date: 1-Jul-2022.

    https://doi.org/10.1016/j.ipm.2022.102998

  • Ali R, Farooq U, Arshad U, Shahzad W and Beg M. (2022). Hate speech detection on Twitter using transfer learning. Computer Speech and Language. 74:C. Online publication date: 1-Jul-2022.

    https://doi.org/10.1016/j.csl.2022.101365

  • Vanetik N and Mimoun E. (2022). Detection of Racist Language in French Tweets. Information. 10.3390/info13070318. 13:7. (318).

    https://www.mdpi.com/2078-2489/13/7/318

  • Das M, Banerjee S and Mukherjee A. Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages. Proceedings of the 33rd ACM Conference on Hypertext and Social Media. (32-42).

    https://doi.org/10.1145/3511095.3531277

  • Zhu J, Lee R and Chong W. Multimodal Zero-Shot Hateful Meme Detection. Proceedings of the 14th ACM Web Science Conference 2022. (382-389).

    https://doi.org/10.1145/3501247.3531557

  • Harris C, Halevy M, Howard A, Bruckman A and Yang D. Exploring the Role of Grammar and Word Choice in Bias Toward African American English (AAE) in Hate Speech Classification. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. (789-798).

    https://doi.org/10.1145/3531146.3533144

  • Radman A, Atros M and Duwairi R. (2022). Spans Detection of Toxic Phrases in Arabic Tweets 2022 13th International Conference on Information and Communication Systems (ICICS). 10.1109/ICICS55353.2022.9811228. 978-1-6654-8097-0. (315-320).

    https://ieeexplore.ieee.org/document/9811228/

  • Zhou L, Caines A, Pete I and Hutchings A. (2022). Automated hate speech detection and span extraction in underground hacking and extremist forums. Natural Language Engineering. 10.1017/S1351324922000262. (1-28).

    https://www.cambridge.org/core/product/identifier/S1351324922000262/type/journal_article

  • Sharif O and Hoque M. (2022). Tackling cyber-aggression. Neurocomputing. 490:C. (462-481). Online publication date: 14-Jun-2022.

    https://doi.org/10.1016/j.neucom.2021.12.022

  • Sharma T, Bajaj A and Sangwan O. (2022). Deep Learning Approaches for Textual Sentiment Analysis. Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines. 10.4018/978-1-6684-6303-1.ch014. (256-267).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-6303-1.ch014

  • Sengupta A, Bhattacharjee S, Akhtar M and Chakraborty T. (2022). Does aggression lead to hate? Detecting and reasoning offensive traits in hinglish code-mixed texts. Neurocomputing. 488:C. (598-617). Online publication date: 1-Jun-2022.

    https://doi.org/10.1016/j.neucom.2021.11.053

  • Alkomah F and Ma X. (2022). A Literature Review of Textual Hate Speech Detection Methods and Datasets. Information. 10.3390/info13060273. 13:6. (273).

    https://www.mdpi.com/2078-2489/13/6/273

  • Bin Zia H, Raman A, Castro I, Hassan Anaobi I, De Cristofaro E, Sastry N and Tyson G. (2022). Toxicity in the Decentralized Web and the Potential for Model Sharing. Proceedings of the ACM on Measurement and Analysis of Computing Systems. 6:2. (1-25). Online publication date: 26-May-2022.

    https://doi.org/10.1145/3530901

  • Kumar A. (2022). A Study: Hate Speech and Offensive Language Detection in Textual Data by Using RNN, CNN, LSTM and BERT Model 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). 10.1109/ICICCS53718.2022.9788347. 978-1-6654-1035-9. (1-6).

    https://ieeexplore.ieee.org/document/9788347/

  • Shah S, Yuan X and Tyler Z. (2022). An Analysis of COVID-19 related Twitter Data for Asian Hate Speech Using Machine Learning Algorithms 2022 1st International Conference on AI in Cybersecurity (ICAIC). 10.1109/ICAIC53980.2022.9896967. 978-1-6654-0043-5. (1-6).

    https://ieeexplore.ieee.org/document/9896967/

  • Hassan S, Ahmad K, Hicks S, Halvorsen P, Al-Fuqaha A, Conci N and Riegler M. (2022). Visual Sentiment Analysis from Disaster Images in Social Media. Sensors. 10.3390/s22103628. 22:10. (3628).

    https://www.mdpi.com/1424-8220/22/10/3628

  • Modha S, Majumder P and Mandl T. (2021). An empirical evaluation of text representation schemes to filter the social media stream. Journal of Experimental & Theoretical Artificial Intelligence. 10.1080/0952813X.2021.1907792. 34:3. (499-525). Online publication date: 4-May-2022.

    https://www.tandfonline.com/doi/full/10.1080/0952813X.2021.1907792

  • Chuttur M and Nazurally A. (2022). A multi-modal approach to detect inappropriate cartoon video contents using deep learning networks. Multimedia Tools and Applications. 10.1007/s11042-022-12709-2. 81:12. (16881-16900). Online publication date: 1-May-2022.

    https://link.springer.com/10.1007/s11042-022-12709-2

  • Cambo S and Gergle D. Model Positionality and Computational Reflexivity: Promoting Reflexivity in Data Science. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. (1-19).

    https://doi.org/10.1145/3491102.3501998

  • Bhat A, Adhikari S, Jha K and Sadat H. (2022). Deep Learning Based Hybrid Word Representation for Detection of Hate Speech 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). 10.1109/ICACITE53722.2022.9823830. 978-1-6654-3789-9. (2128-2133).

    https://ieeexplore.ieee.org/document/9823830/

  • Khandelwal S and Aruna M. (2022). Comparative analysis of the performance of Machine Learning and Transfer Learning models in detecting hate on Twitter 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). 10.1109/ICACITE53722.2022.9823680. 978-1-6654-3789-9. (1097-1100).

    https://ieeexplore.ieee.org/document/9823680/

  • Omar M and Mohaisen D. Making Adversarially-Trained Language Models Forget with Model Retraining: A Case Study on Hate Speech Detection. Companion Proceedings of the Web Conference 2022. (887-893).

    https://doi.org/10.1145/3487553.3524667

  • Chandrasekaran D and Mago V. (2021). Evolution of Semantic Similarity—A Survey. ACM Computing Surveys. 54:2. (1-37). Online publication date: 31-Mar-2022.

    https://doi.org/10.1145/3440755

  • Meurisch C and Mühlhäuser M. (2021). Data Protection in AI Services. ACM Computing Surveys. 54:2. (1-38). Online publication date: 31-Mar-2022.

    https://doi.org/10.1145/3440754

  • Huang Y, Song R, Giunchiglia F and Xu H. (2022). A Multitask Learning Framework for Abuse Detection and Emotion Classification. Algorithms. 10.3390/a15040116. 15:4. (116).

    https://www.mdpi.com/1999-4893/15/4/116

  • Baek H, Jang M and Kim S. (2022). Who Leaves Malicious Comments on Online News? An Empirical Study in Korea. Journalism Studies. 10.1080/1461670X.2022.2031258. 23:4. (432-447). Online publication date: 12-Mar-2022.

    https://www.tandfonline.com/doi/full/10.1080/1461670X.2022.2031258

  • Ghosal S and Jain A. (2022). Research Journey of Hate Content Detection From Cyberspace. Research Anthology on Combating Cyber-Aggression and Online Negativity. 10.4018/978-1-6684-5594-4.ch031. (542-567).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-5594-4.ch031

  • Sai S, Srivastava N and Sharma Y. (2022). Explorative Application of Fusion Techniques for Multimodal Hate Speech Detection. SN Computer Science. 10.1007/s42979-021-01007-7. 3:2. Online publication date: 1-Mar-2022.

    https://link.springer.com/10.1007/s42979-021-01007-7

  • Nelatoori K and Kommanti H. (2022). Attention-Based Bi-LSTM Network for Abusive Language Detection. IETE Journal of Research. 10.1080/03772063.2022.2034534. (1-9).

    https://www.tandfonline.com/doi/full/10.1080/03772063.2022.2034534

  • Lal U and Kamath P. (2022). Effective Negation Handling Approach for Sentiment Classification using synsets in the WordNet lexical database 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). 10.1109/ICEEICT53079.2022.9768641. 978-1-6654-3647-2. (01-07).

    https://ieeexplore.ieee.org/document/9768641/

  • Masud S, Pinkesh P, Das A, Gupta M, Nakov P and Chakraborty T. Half-Day Tutorial on Combating Online Hate Speech: The Role of Content, Networks, Psychology, User Behavior, etc.. Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. (1629-1631).

    https://doi.org/10.1145/3488560.3501392

  • Munn L. (2022). Sustainable Hate: How Gab Built a Durable “Platform for the People”. Canadian Journal of Communication. 10.22230/cjc.2022v47n1a4037. 47:1. (219-240). Online publication date: 1-Feb-2022.

    https://cjc.utpjournals.press/doi/10.22230/cjc.2022v47n1a4037

  • Chikhi R, Holub J and Medvedev P. (2021). Data Structures to Represent a Set of k-long DNA Sequences. ACM Computing Surveys. 54:1. (1-22). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3445967

  • Zhang-Kennedy L and Chiasson S. (2021). A Systematic Review of Multimedia Tools for Cybersecurity Awareness and Education. ACM Computing Surveys. 54:1. (1-39). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3427920

  • Mladenović M, Ošmjanski V and Stanković S. (2021). Cyber-aggression, Cyberbullying, and Cyber-grooming. ACM Computing Surveys. 54:1. (1-42). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3424246

  • Wright C, Moeglein W, Bagchi S, Kulkarni M and Clements A. (2021). Challenges in Firmware Re-Hosting, Emulation, and Analysis. ACM Computing Surveys. 54:1. (1-36). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3423167

  • Varela-Vaca Á and Quintero A. (2021). Smart Contract Languages. ACM Computing Surveys. 54:1. (1-38). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3423166

  • Adoum Sanoussi M, Xiaohua C, Agordzo G, Guindo M, Al Omari A and Issa B. (2022). Detection of Hate Speech Texts Using Machine Learning Algorithm 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). 10.1109/CCWC54503.2022.9720792. 978-1-6654-8303-2. (0266-0273).

    https://ieeexplore.ieee.org/document/9720792/

  • Liu J, Yang Y, Fan X, Ren G, Yang L and Ning Q. (2022). Offensive-Language Detection on Multi-Semantic Fusion Based on Data Augmentation. Applied System Innovation. 10.3390/asi5010009. 5:1. (9).

    https://www.mdpi.com/2571-5577/5/1/9

  • Celli F, Lai M, Duzha A, Bosco C and Patti V. (2022). Policycorpus XL: An Italian Corpus for the detection of Hate Speech Against Politics. Proceedings of the Eighth Italian Conference on Computational Linguistics CliC-it 2021. 10.4000/books.aaccademia.10505. (56-62).

    http://books.openedition.org/aaccademia/10505

  • Kovács G, Alonso P, Saini R and Liwicki M. (2022). Leveraging external resources for offensive content detection in social media. AI Communications. 35:2. (87-109). Online publication date: 1-Jan-2022.

    https://doi.org/10.3233/AIC-210138

  • Bilal M, Khan A, Jan S and Musa S. Context-Aware Deep Learning Model for Detection of Roman Urdu Hate Speech on Social Media Platform. IEEE Access. 10.1109/ACCESS.2022.3216375. 10. (121133-121151).

    https://ieeexplore.ieee.org/document/9926094/

  • Rodriguez A, Chen Y and Argueta C. FADOHS: Framework for Detection and Integration of Unstructured Data of Hate Speech on Facebook Using Sentiment and Emotion Analysis. IEEE Access. 10.1109/ACCESS.2022.3151098. 10. (22400-22419).

    https://ieeexplore.ieee.org/document/9712263/

  • Mozafari M, Farahbakhsh R and Crespi N. Cross-Lingual Few-Shot Hate Speech and Offensive Language Detection Using Meta Learning. IEEE Access. 10.1109/ACCESS.2022.3147588. 10. (14880-14896).

    https://ieeexplore.ieee.org/document/9696324/

  • Khan S, Kamal A, Fazil M, Alshara M, Sejwal V, Alotaibi R, Baig A and Alqahtani S. HCovBi-Caps: Hate Speech Detection Using Convolutional and Bi-Directional Gated Recurrent Unit With Capsule Network. IEEE Access. 10.1109/ACCESS.2022.3143799. 10. (7881-7894).

    https://ieeexplore.ieee.org/document/9682725/

  • Sharma A, Kabra A and Jain M. (2022). Ceasing hate with MoH. Information Processing and Management: an International Journal. 59:1. Online publication date: 1-Jan-2022.

    https://doi.org/10.1016/j.ipm.2021.102760

  • Ankita , Rani S, Bashir A, Alhudhaif A, Koundal D and Selda Gündüz RN E. (2022). An efficient CNN-LSTM model for sentiment detection in #BlackLivesMatter. Expert Systems with Applications. 10.1016/j.eswa.2021.116256. (116256). Online publication date: 1-Jan-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417421015657

  • Chiril P, Pamungkas E, Benamara F, Moriceau V and Patti V. (2021). Emotionally Informed Hate Speech Detection: A Multi-target Perspective. Cognitive Computation. 10.1007/s12559-021-09862-5. 14:1. (322-352). Online publication date: 1-Jan-2022.

    https://link.springer.com/10.1007/s12559-021-09862-5

  • Araque O and Iglesias C. (2021). An Ensemble Method for Radicalization and Hate Speech Detection Online Empowered by Sentic Computing. Cognitive Computation. 10.1007/s12559-021-09845-6. 14:1. (48-61). Online publication date: 1-Jan-2022.

    https://link.springer.com/10.1007/s12559-021-09845-6

  • Singh M, Madhulika and Bansal S. (2022). A Proposed Federated Learning Model for Vaccination Tweets. Computational Intelligence in Pattern Recognition. 10.1007/978-981-19-3089-8_37. (383-392).

    https://link.springer.com/10.1007/978-981-19-3089-8_37

  • Kanakaraddi S, Chikaraddi A, Aivalli N, Maniyar J and Singh N. (2022). Sentiment Analysis of Covid-19 Tweets Using Machine Learning and Natural Language Processing. Proceedings of Third International Conference on Intelligent Computing, Information and Control Systems. 10.1007/978-981-16-7330-6_28. (367-379).

    https://link.springer.com/10.1007/978-981-16-7330-6_28

  • Javed N and Muralidhara B. (2022). Emotions During Covid-19: LSTM Models for Emotion Detection in Tweets. Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications. 10.1007/978-981-16-6407-6_13. (133-148).

    https://link.springer.com/10.1007/978-981-16-6407-6_13

  • Kurni M, Mrunalini M and Saritha K. (2022). Deep Learning Techniques for Social Media Analytics. Principles of Social Networking. 10.1007/978-981-16-3398-0_18. (413-442).

    https://link.springer.com/10.1007/978-981-16-3398-0_18

  • Kumaria A, Kulkarni N and Jagtap A. (2022). Product-Based Market Analysis Using Deep Learning. Applied Information Processing Systems. 10.1007/978-981-16-2008-9_6. (63-71).

    https://link.springer.com/10.1007/978-981-16-2008-9_6

  • Niemann M, Assenmacher D, Brunk J, Riehle D, Trautmann H and Becker J. (2022). (Semi-)Automatische Kommentarmoderation zur Erhaltung Konstruktiver Diskurse. Hate Speech. 10.1007/978-3-658-35658-3_13. (249-274).

    https://link.springer.com/10.1007/978-3-658-35658-3_13

  • Quattrociocchi A, Etta G, Avalle M, Cinelli M and Quattrociocchi W. (2022). Reliability of News and Toxicity in Twitter Conversations. Social Informatics. 10.1007/978-3-031-19097-1_15. (245-256).

    https://link.springer.com/10.1007/978-3-031-19097-1_15

  • Sjöholm M. (2022). Challenges in International Human Rights Law. International Human Rights Law and Protection Against Gender-Based Harm on the Internet. 10.1007/978-3-031-15866-7_3. (75-202).

    https://link.springer.com/10.1007/978-3-031-15866-7_3

  • Panchendrarajan R and Saxena A. (2022). Deep Learning for Code-Mixed Text Mining in Social Media: A Brief Review. Deep Learning for Social Media Data Analytics. 10.1007/978-3-031-10869-3_3. (45-63).

    https://link.springer.com/10.1007/978-3-031-10869-3_3

  • Biondi G, Franzoni V, Mancinelli A, Milani A and Niyogi R. (2022). Hate Speech and Stereotypes with Artificial Neural Networks. Computational Science and Its Applications – ICCSA 2022 Workshops. 10.1007/978-3-031-10545-6_2. (15-32).

    https://link.springer.com/10.1007/978-3-031-10545-6_2

  • Oriola O and Kotzé E. (2022). Exploring Neural Embeddings and Transformers for Isolation of Offensive and Hate Speech in South African Social Media Space. Computational Science and Its Applications – ICCSA 2022. 10.1007/978-3-031-10522-7_44. (649-661).

    https://link.springer.com/10.1007/978-3-031-10522-7_44

  • Shaikh S, Yayilgan S, Zoto E and Abomhara M. (2022). A Survey of Artificial Intelligence Techniques for User Perceptions’ Extraction from Social Media Data. Intelligent Computing. 10.1007/978-3-031-10464-0_43. (627-655).

    https://link.springer.com/10.1007/978-3-031-10464-0_43

  • Müller K. (2022). Elicitation of Requirements for a NLP-Model Store for Abusive Language Detection. HCI International 2022 Posters. 10.1007/978-3-031-06391-6_72. (581-588).

    https://link.springer.com/10.1007/978-3-031-06391-6_72

  • Zarnoufi R and Abik M. (2022). Classical Machine Learning vs Deep Learning for Detecting Cyber-Violence in Social Media. Information Management and Big Data. 10.1007/978-3-031-04447-2_15. (223-235).

    https://link.springer.com/10.1007/978-3-031-04447-2_15

  • Wahba Y, Madhavji N and Steinbacher J. (2022). Reducing Misclassification Due to Overlapping Classes in Text Classification via Stacking Classifiers on Different Feature Subsets. Advances in Information and Communication. 10.1007/978-3-030-98015-3_28. (406-419).

    https://link.springer.com/10.1007/978-3-030-98015-3_28

  • Chaudhry P and Lease M. (2022). You Are What You Tweet: Profiling Users by Past Tweets to Improve Hate Speech Detection. Information for a Better World: Shaping the Global Future. 10.1007/978-3-030-96960-8_13. (195-203).

    https://link.springer.com/10.1007/978-3-030-96960-8_13

  • Abebaw Z, Rauber A and Atnafu S. (2022). Multi-channel Convolutional Neural Network for Hate Speech Detection in Social Media. Advances of Science and Technology. 10.1007/978-3-030-93709-6_41. (603-618).

    https://link.springer.com/10.1007/978-3-030-93709-6_41

  • Nagar S, Gupta S, Bahushruth C, Barbhuiya F and Dey K. (2022). Hate Speech Detection on Social Media Using Graph Convolutional Networks. Complex Networks & Their Applications X. 10.1007/978-3-030-93413-2_1. (3-14).

    https://link.springer.com/10.1007/978-3-030-93413-2_1

  • Gilbert J, Niu J, de Montigny S, Ng V and Rees E. (2022). Machine Learning Identification of Self-reported COVID-19 Symptoms from Tweets in Canada. AI for Disease Surveillance and Pandemic Intelligence. 10.1007/978-3-030-93080-6_9. (101-111).

    https://link.springer.com/10.1007/978-3-030-93080-6_9

  • Nayak R and Baek H. (2022). Machine Learning for Identifying Abusive Content in Text Data. Advances in Selected Artificial Intelligence Areas. 10.1007/978-3-030-93052-3_9. (209-229).

    https://link.springer.com/10.1007/978-3-030-93052-3_9

  • Yadav Y, Bajaj P, Gupta R and Sinha R. (2021). A Comparative Study of Deep Learning Methods for Hate Speech and Offensive Language Detection in Textual Data 2021 IEEE 18th India Council International Conference (INDICON). 10.1109/INDICON52576.2021.9691704. 978-1-6654-4175-9. (1-6).

    https://ieeexplore.ieee.org/document/9691704/

  • Mou G and Lee K. (2021). An Effective, Robust and Fairness-aware Hate Speech Detection Framework 2021 IEEE International Conference on Big Data (Big Data). 10.1109/BigData52589.2021.9672022. 978-1-6654-3902-2. (687-697).

    https://ieeexplore.ieee.org/document/9672022/

  • Boishakhi F, Shill P and Alam M. (2021). Multi-modal Hate Speech Detection using Machine Learning 2021 IEEE International Conference on Big Data (Big Data). 10.1109/BigData52589.2021.9671955. 978-1-6654-3902-2. (4496-4499).

    https://ieeexplore.ieee.org/document/9671955/

  • Ahmed T, Kabir M, Ivan S, Mahmud H and Hasan K. (2021). Am I Being Bullied on Social Media? An Ensemble Approach to Categorize Cyberbullying 2021 IEEE International Conference on Big Data (Big Data). 10.1109/BigData52589.2021.9671594. 978-1-6654-3902-2. (2442-2453).

    https://ieeexplore.ieee.org/document/9671594/

  • Agarwal S and Chowdary C. (2021). Combating hate speech using an adaptive ensemble learning model with a case study on COVID-19. Expert Systems with Applications: An International Journal. 185:C. Online publication date: 15-Dec-2021.

    https://doi.org/10.1016/j.eswa.2021.115632

  • Sharma M, Kandasamy I and Kandasamy V. (2021). Deep Learning for predicting neutralities in Offensive Language Identification Dataset▪. Expert Systems with Applications: An International Journal. 185:C. Online publication date: 15-Dec-2021.

    https://doi.org/10.1016/j.eswa.2021.115458

  • Ibanez M, Sapinit R, Reyes L, Hussien M, Imperial J and Rodriguez R. (2021). Audio-Based Hate Speech Classification from Online Short-Form Videos 2021 International Conference on Asian Language Processing (IALP). 10.1109/IALP54817.2021.9675250. 978-1-6654-8311-7. (72-77).

    https://ieeexplore.ieee.org/document/9675250/

  • Aljero M and Dimililer N. (2021). A Novel Stacked Ensemble for Hate Speech Recognition. Applied Sciences. 10.3390/app112411684. 11:24. (11684).

    https://www.mdpi.com/2076-3417/11/24/11684

  • Lindenmayr M, Kusen E and Strembeck M. (2021). “Stronger than Hate”: On the Dissemination of Hate Speech during the 2020 Vienna Terrorist Attack 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). 10.1109/SNAMS53716.2021.9732081. 978-1-6654-9495-3. (01-08).

    https://ieeexplore.ieee.org/document/9732081/

  • Li M, Liao S, Okpala E, Tong M, Costello M, Cheng L, Hu H and Luo F. (2021). COVID-HateBERT: a Pre-trained Language Model for COVID-19 related Hate Speech Detection 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA52953.2021.00043. 978-1-6654-4337-1. (233-238).

    https://ieeexplore.ieee.org/document/9680128/

  • Lin K, Lee R, Gao W and Peng W. (2021). Early Prediction of Hate Speech Propagation 2021 International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW53433.2021.00126. 978-1-6654-2427-1. (967-974).

    https://ieeexplore.ieee.org/document/9679846/

  • Bashar M, Nayak R, Luong K and Balasubramaniam T. (2021). Progressive domain adaptation for detecting hate speech on social media with small training set and its application to COVID-19 concerned posts. Social Network Analysis and Mining. 10.1007/s13278-021-00780-w. 11:1. Online publication date: 1-Dec-2021.

    https://link.springer.com/10.1007/s13278-021-00780-w

  • Zhang P, Liu B, Ding X, Lu T, Gu H and Gu N. (2021). Studying and Understanding Characteristics of Post-Syncing Practice and Goal in Social Network Sites. ACM Transactions on the Web. 15:4. (1-26). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3457986

  • Wang H, Qiao C, Guo X, Fang L, Sha Y and Gong Z. (2021). Identifying and Evaluating Anomalous Structural Change-based Nodes in Generalized Dynamic Social Networks. ACM Transactions on the Web. 15:4. (1-22). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3457906

  • Parikh P, Abburi H, Chhaya N, Gupta M and Varma V. (2021). Categorizing Sexism and Misogyny through Neural Approaches. ACM Transactions on the Web. 15:4. (1-31). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3457189

  • Jiao S, Xue Z, Chen X and Xu Y. (2021). Sampling Graphlets of Multiplex Networks: A Restricted Random Walk Approach. ACM Transactions on the Web. 15:4. (1-31). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3456291

  • Kumar P and Varalakshmi K. (2021). Hate Speech Detection using Text and Image Tweets Based On Bi-directional Long Short-Term Memory 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON). 10.1109/CENTCON52345.2021.9688115. 978-1-6654-0017-6. (158-162).

    https://ieeexplore.ieee.org/document/9688115/

  • Raj C, Agarwal A, Bharathy G, Narayan B and Prasad M. (2021). Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques. Electronics. 10.3390/electronics10222810. 10:22. (2810).

    https://www.mdpi.com/2079-9292/10/22/2810

  • Rivaldo R, Amalia A and Gunawan D. (2021). Multilabeling Indonesian Toxic Comments Classification Using The Bidirectional Encoder Representations of Transformers Model 2021 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA). 10.1109/DATABIA53375.2021.9650126. 978-1-6654-2680-0. (22-26).

    https://ieeexplore.ieee.org/document/9650126/

  • Cinelli M, Pelicon A, Mozetič I, Quattrociocchi W, Novak P and Zollo F. (2021). Dynamics of online hate and misinformation. Scientific Reports. 10.1038/s41598-021-01487-w. 11:1.

    https://www.nature.com/articles/s41598-021-01487-w

  • Pronoza E, Panicheva P, Koltsova O and Rosso P. (2021). Detecting ethnicity-targeted hate speech in Russian social media texts. Information Processing and Management: an International Journal. 58:6. Online publication date: 1-Nov-2021.

    https://doi.org/10.1016/j.ipm.2021.102674

  • Budiarto A and Pardamean B. (2021). Explainable Supervised Method for Genetics Ancestry Estimation 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI). 10.1109/ICCSAI53272.2021.9609748. 978-1-6654-4002-8. (422-426).

    https://ieeexplore.ieee.org/document/9609748/

  • Petrescu A, Truică C, Apostol E and Karras P. Sparse Shield. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. (1426-1436).

    https://doi.org/10.1145/3459637.3482481

  • Lee R, Cao R, Fan Z, Jiang J and Chong W. Disentangling Hate in Online Memes. Proceedings of the 29th ACM International Conference on Multimedia. (5138-5147).

    https://doi.org/10.1145/3474085.3475625

  • Gudmundsson J, Horton M, Pfeifer J and Seybold M. (2021). A Practical Index Structure Supporting Fréchet Proximity Queries among Trajectories. ACM Transactions on Spatial Algorithms and Systems. 7:3. (1-33). Online publication date: 30-Sep-2021.

    https://doi.org/10.1145/3460121

  • Mohapatra S, Prasad S, Bebarta D, Das T, Srinivasan K and Hu Y. (2021). Automatic Hate Speech Detection in English-Odia Code Mixed Social Media Data Using Machine Learning Techniques. Applied Sciences. 10.3390/app11188575. 11:18. (8575).

    https://www.mdpi.com/2076-3417/11/18/8575

  • Vichare M, Thorat S, Uberoi C, Khedekar S and Jaikar S. (2021). Toxic Comment Analysis for Online Learning 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). 10.1109/ACCESS51619.2021.9563344. 978-1-7281-7136-4. (130-135).

    https://ieeexplore.ieee.org/document/9563344/

  • Kocoń J, Figas A, Gruza M, Puchalska D, Kajdanowicz T and Kazienko P. (2021). Offensive, aggressive, and hate speech analysis. Information Processing and Management: an International Journal. 58:5. Online publication date: 1-Sep-2021.

    https://doi.org/10.1016/j.ipm.2021.102643

  • Lu G, Mu Y, Gu J, Kouassi F, Lu C, Wang R and Chen A. (2021). A hashtag-based sub-event detection framework for social media. Computers and Electrical Engineering. 94:C. Online publication date: 1-Sep-2021.

    https://doi.org/10.1016/j.compeleceng.2021.107317

  • Duzha A, Casadei C, Tosi M and Celli F. (2021). Hate versus politics: detection of hate against policy makers in Italian tweets. SN Social Sciences. 10.1007/s43545-021-00234-2. 1:9. Online publication date: 1-Sep-2021.

    https://link.springer.com/10.1007/s43545-021-00234-2

  • Chandra M, Reddy M, Sehgal S, Gupta S, Buduru A and Kumaraguru P. "A Virus Has No Religion": Analyzing Islamophobia on Twitter During the COVID-19 Outbreak. Proceedings of the 32nd ACM Conference on Hypertext and Social Media. (67-77).

    https://doi.org/10.1145/3465336.3475111

  • Kim B, Cooks E and Kim S. (2021). Exploring incivility and moral foundations toward Asians in English-speaking tweets in hate crime-reporting cities during the COVID-19 pandemic. Internet Research. 10.1108/INTR-11-2020-0678. ahead-of-print:ahead-of-print.

    https://www.emerald.com/insight/content/doi/10.1108/INTR-11-2020-0678/full/html

  • Montefalcon M, Padilla J, Paulino J, Go J, Llabanes Rodriguez R and Imperial J. Understanding Facial Expression Expressing Hate from Online Short-form Videos. 2021 5th International Conference on E-Society, E-Education and E-Technology. (201-207).

    https://doi.org/10.1145/3485768.3485785

  • Hofer N, Schöttle P, Rietzler A and Stabinger S. Adversarial Examples Against a BERT ABSA Model – Fooling Bert With L33T, Misspellign, and Punctuation,. Proceedings of the 16th International Conference on Availability, Reliability and Security. (1-6).

    https://doi.org/10.1145/3465481.3465770

  • Abburi H, Parikh P, Chhaya N and Varma V. (2021). Fine-Grained Multi-label Sexism Classification Using a Semi-Supervised Multi-level Neural Approach. Data Science and Engineering. 10.1007/s41019-021-00168-y.

    https://link.springer.com/10.1007/s41019-021-00168-y

  • Chung I and Lin C. TOCAB: A Dataset for Chinese Abusive Language Processing. 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI). (445-452).

    https://doi.org/10.1109/IRI51335.2021.00069

  • Mundra S and Mittal N. Evaluation of Text Representation Method to Detect Cyber Aggression in Hindi English Code Mixed Social Media Text. Proceedings of the 2021 Thirteenth International Conference on Contemporary Computing. (402-409).

    https://doi.org/10.1145/3474124.3474185

  • Tolba M, Ouadfel S and Meshoul S. (2021). Hybrid ensemble approaches to online harassment detection in highly imbalanced data. Expert Systems with Applications: An International Journal. 175:C. Online publication date: 1-Aug-2021.

    https://doi.org/10.1016/j.eswa.2021.114751

  • Ghanem N and Habeeb H. (2021). Classifying Suspicious Content on Social Media Networks 2021 International Conference on Advanced Computer Applications (ACA). 10.1109/ACA52198.2021.9626788. 978-1-6654-3503-1. (171-175).

    https://ieeexplore.ieee.org/document/9626788/

  • Priyadarshana Y, Ranathunga L, Amalraj C and Perera I. (2021). HelaNER: A Novel Approach for Nested Named Entity Boundary Detection IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. 10.1109/EUROCON52738.2021.9535565. 978-1-6654-3299-3. (119-124).

    https://ieeexplore.ieee.org/document/9535565/

  • Theodosiadou O, Pantelidou K, Bastas N, Chatzakou D, Tsikrika T, Vrochidis S and Kompatsiaris I. (2021). Change Point Detection in Terrorism-Related Online Content Using Deep Learning Derived Indicators. Information. 10.3390/info12070274. 12:7. (274).

    https://www.mdpi.com/2078-2489/12/7/274

  • Pamungkas E, Basile V and Patti V. (2021). A joint learning approach with knowledge injection for zero-shot cross-lingual hate speech detection. Information Processing and Management: an International Journal. 58:4. Online publication date: 1-Jul-2021.

    https://doi.org/10.1016/j.ipm.2021.102544

  • Vitiugin F, Senarath Y and Purohit H. Efficient Detection of Multilingual Hate Speech by Using Interactive Attention Network with Minimal Human Feedback. Proceedings of the 13th ACM Web Science Conference 2021. (130-138).

    https://doi.org/10.1145/3447535.3462495

  • Gaikwad S, Borate T, Ashtekar N and Lade U. (2021). Identification of Online Public Shaming Using Machine Learning Framework. International Journal of Advanced Research in Science, Communication and Technology. 10.48175/IJARSCT-1433. (539-543).

    http://ijarsct.co.in/junei1.html

  • Parihar A, Thapa S and Mishra S. (2021). Hate Speech Detection Using Natural Language Processing: Applications and Challenges 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). 10.1109/ICOEI51242.2021.9452882. 978-1-6654-1571-2. (1302-1308).

    https://ieeexplore.ieee.org/document/9452882/

  • Chen H, Yang C, Zhang X, Liu Z, Sun M and Jin J. From Symbols to Embeddings: A Tale of Two Representations in Computational Social Science. Journal of Social Computing. 10.23919/JSC.2021.0011. 2:2. (103-156).

    https://ieeexplore.ieee.org/document/9520816/

  • Chen L, Lan C, Xu B and Bi K. (2021). Progress on material characterization methods under big data environment. Advanced Composites and Hybrid Materials. 10.1007/s42114-021-00229-w. 4:2. (235-247). Online publication date: 1-Jun-2021.

    https://link.springer.com/10.1007/s42114-021-00229-w

  • Jamal N, Xianqiao C, Al-Turjman F and Ullah F. (2021). A Deep Learning–based Approach for Emotions Classification in Big Corpus of Imbalanced Tweets. ACM Transactions on Asian and Low-Resource Language Information Processing. 20:3. (1-16). Online publication date: 31-May-2021.

    https://doi.org/10.1145/3410570

  • Bogoradnikova D, Makhnytkina O, Matveev A, Zakharova A and Akulov A. (2021). Multilingual Sentiment Analysis and Toxicity Detection for Text Messages in Russian 2021 29th Conference of Open Innovations Association (FRUCT). 10.23919/FRUCT52173.2021.9435584. 978-952-69244-5-8. (55-64).

    https://ieeexplore.ieee.org/document/9435584/

  • Jorvekar P, Gaikwad S, Ashtekar N, Borate T and Lade U. (2021). A Survey on Identification of Online Public Shaming Using Machine Learning Framework. International Journal of Advanced Research in Science, Communication and Technology. 10.48175/IJARSCT-1042. (430-433).

    http://ijarsct.co.in/april2.html

  • Kumari K, Singh J, Dwivedi Y and Rana N. (2021). Bilingual Cyber-aggression detection on social media using LSTM autoencoder. Soft Computing. 10.1007/s00500-021-05817-y.

    https://link.springer.com/10.1007/s00500-021-05817-y

  • Zhao Z, Zhang Z and Hopfgartner F. A Comparative Study of Using Pre-trained Language Models for Toxic Comment Classification. Companion Proceedings of the Web Conference 2021. (500-507).

    https://doi.org/10.1145/3442442.3452313

  • Fang Y, Yang S, Zhao B and Huang C. (2021). Cyberbullying Detection in Social Networks Using Bi-GRU with Self-Attention Mechanism. Information. 10.3390/info12040171. 12:4. (171).

    https://www.mdpi.com/2078-2489/12/4/171

  • Park H and Kim H. (2021). Verbal Abuse Classification Using Multiple Deep Neural Networks 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). 10.1109/ICAIIC51459.2021.9415218. 978-1-7281-7638-3. (316-319).

    https://ieeexplore.ieee.org/document/9415218/

  • Joshi R, Karnavat R, Jirapure K and Joshi R. (2021). Evaluation of Deep Learning Models for Hostility Detection in Hindi Text 2021 6th International Conference for Convergence in Technology (I2CT). 10.1109/I2CT51068.2021.9418073. 978-1-7281-8876-8. (1-5).

    https://ieeexplore.ieee.org/document/9418073/

  • Khan M, Shahzad K and Malik M. (2021). Hate Speech Detection in Roman Urdu. ACM Transactions on Asian and Low-Resource Language Information Processing. 20:1. (1-19). Online publication date: 1-Apr-2021.

    https://doi.org/10.1145/3414524

  • Kovács G, Alonso P and Saini R. (2021). Challenges of Hate Speech Detection in Social Media. SN Computer Science. 10.1007/s42979-021-00457-3. 2:2. Online publication date: 1-Apr-2021.

    http://link.springer.com/10.1007/s42979-021-00457-3

  • Mishra S, Prasad S and Mishra S. (2021). Exploring Multi-Task Multi-Lingual Learning of Transformer Models for Hate Speech and Offensive Speech Identification in Social Media. SN Computer Science. 10.1007/s42979-021-00455-5. 2:2. Online publication date: 1-Apr-2021.

    http://link.springer.com/10.1007/s42979-021-00455-5

  • Sachdeva J, Chaudhary K, Madaan H and Meel P. (2021). Text Based Hate-Speech Analysis 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). 10.1109/ICAIS50930.2021.9396013. 978-1-7281-9537-7. (661-668).

    https://ieeexplore.ieee.org/document/9396013/

  • Vrysis L, Vryzas N, Kotsakis R, Saridou T, Matsiola M, Veglis A, Arcila-Calderón C and Dimoulas C. (2021). A Web Interface for Analyzing Hate Speech. Future Internet. 10.3390/fi13030080. 13:3. (80).

    https://www.mdpi.com/1999-5903/13/3/80

  • Uyheng J and Carley K. (2021). Characterizing network dynamics of online hate communities around the COVID-19 pandemic. Applied Network Science. 10.1007/s41109-021-00362-x. 6:1.

    https://appliednetsci.springeropen.com/articles/10.1007/s41109-021-00362-x

  • Ball-Burack A, Lee M, Cobbe J and Singh J. Differential Tweetment. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. (116-128).

    https://doi.org/10.1145/3442188.3445875

  • Bashar M and Nayak R. (2021). Active Learning for Effectively Fine-Tuning Transfer Learning to Downstream Task. ACM Transactions on Intelligent Systems and Technology. 12:2. (1-24). Online publication date: 1-Mar-2021.

    https://doi.org/10.1145/3446343

  • Wullach T, Adler A and Minkov E. Towards Hate Speech Detection at Large via Deep Generative Modeling. IEEE Internet Computing. 10.1109/MIC.2020.3033161. 25:2. (48-57).

    https://ieeexplore.ieee.org/document/9238420/

  • Plaza-del-Arco F, Molina-González M, Ureña-López L and Martín-Valdivia M. (2021). Comparing pre-trained language models for Spanish hate speech detection. Expert Systems with Applications. 10.1016/j.eswa.2020.114120. 166. (114120). Online publication date: 1-Mar-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S095741742030868X

  • Qiu X, Zou Q and Richard Shi C. Single-Pass On-Line Event Detection in Twitter Streams. Proceedings of the 2021 13th International Conference on Machine Learning and Computing. (522-529).

    https://doi.org/10.1145/3457682.3457762

  • Wadhwani A, Jain P and Sahu S. (2021). Injurious Comment Detection and Removal utilizing Neural Network 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM). 10.1109/ICIPTM52218.2021.9388331. 978-1-6654-2530-8. (165-168).

    https://ieeexplore.ieee.org/document/9388331/

  • Duwairi R, Hayajneh A and Quwaider M. (2021). A Deep Learning Framework for Automatic Detection of Hate Speech Embedded in Arabic Tweets. Arabian Journal for Science and Engineering. 10.1007/s13369-021-05383-3.

    http://link.springer.com/10.1007/s13369-021-05383-3

  • Pariyani B, Shah K, Shah M, Vyas T and Degadwala S. (2021). Hate Speech Detection in Twitter using Natural Language Processing 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). 10.1109/ICICV50876.2021.9388496. 978-1-6654-1960-4. (1146-1152).

    https://ieeexplore.ieee.org/document/9388496/

  • Kumar R, Lahiri B and Ojha A. (2021). Aggressive and Offensive Language Identification in Hindi, Bangla, and English: A Comparative Study. SN Computer Science. 10.1007/s42979-020-00414-6. 2:1. Online publication date: 1-Feb-2021.

    http://link.springer.com/10.1007/s42979-020-00414-6

  • Cécillon N, Labatut V, Dufour R and Linarès G. (2021). Graph Embeddings for Abusive Language Detection. SN Computer Science. 2:1. Online publication date: 1-Feb-2021.

    https://doi.org/10.1007/s42979-020-00413-7

  • Kumar S, Subhakar M and Veeresh K. (2021). Students Query Classification System. International Journal of Recent Technology and Engineering. 10.35940/ijrte.E5247.019521. 9:5. (191-194).

    https://www.ijrte.org/wp-content/uploads/papers/v9i5/E5247019521.pdf

  • Abdul Aziz N, Aizaini Maarof M and Zainal A. (2021). Hate Speech and Offensive Language Detection: A New Feature Set with Filter-Embedded Combining Feature Selection 2021 3rd International Cyber Resilience Conference (CRC). 10.1109/CRC50527.2021.9392486. 978-1-6654-1844-7. (1-6).

    https://ieeexplore.ieee.org/document/9392486/

  • Saeed H, Ashraf M, Kamiran F, Karim A and Calders T. (2021). Roman Urdu toxic comment classification. Language Resources and Evaluation. 10.1007/s10579-021-09530-y.

    http://link.springer.com/10.1007/s10579-021-09530-y

  • Ghosal S and Jain A. (2021). Research Journey of Hate Content Detection From Cyberspace. Natural Language Processing for Global and Local Business. 10.4018/978-1-7998-4240-8.ch009. (200-225).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-4240-8.ch009

  • Amjad M, Ashraf N, Zhila A, Sidorov G, Zubiaga A and Gelbukh A. Threatening Language Detection and Target Identification in Urdu Tweets. IEEE Access. 10.1109/ACCESS.2021.3112500. 9. (128302-128313).

    https://ieeexplore.ieee.org/document/9536729/

  • Shaikh S, Daudpotta S and Imran A. Bloom’s Learning Outcomes’ Automatic Classification Using LSTM and Pretrained Word Embeddings. IEEE Access. 10.1109/ACCESS.2021.3106443. 9. (117887-117909).

    https://ieeexplore.ieee.org/document/9519690/

  • Aljero M and Dimililer N. Genetic Programming Approach to Detect Hate Speech in Social Media. IEEE Access. 10.1109/ACCESS.2021.3104535. 9. (115115-115125).

    https://ieeexplore.ieee.org/document/9513275/

  • Plaza-Del-Arco F, Molina-Gonzalez M, Urena-Lopez L and Martin-Valdivia M. A Multi-Task Learning Approach to Hate Speech Detection Leveraging Sentiment Analysis. IEEE Access. 10.1109/ACCESS.2021.3103697. 9. (112478-112489).

    https://ieeexplore.ieee.org/document/9509436/

  • Baydogan C and Alatas B. Metaheuristic Ant Lion and Moth Flame Optimization-Based Novel Approach for Automatic Detection of Hate Speech in Online Social Networks. IEEE Access. 10.1109/ACCESS.2021.3102277. 9. (110047-110062).

    https://ieeexplore.ieee.org/document/9505636/

  • Alatawi H, Alhothali A and Moria K. Detecting White Supremacist Hate Speech Using Domain Specific Word Embedding With Deep Learning and BERT. IEEE Access. 10.1109/ACCESS.2021.3100435. 9. (106363-106374).

    https://ieeexplore.ieee.org/document/9497095/

  • Elsafoury F, Katsigiannis S, Pervez Z and Ramzan N. When the Timeline Meets the Pipeline: A Survey on Automated Cyberbullying Detection. IEEE Access. 10.1109/ACCESS.2021.3098979. 9. (103541-103563).

    https://ieeexplore.ieee.org/document/9492047/

  • Mullah N and Zainon W. Advances in Machine Learning Algorithms for Hate Speech Detection in Social Media: A Review. IEEE Access. 10.1109/ACCESS.2021.3089515. 9. (88364-88376).

    https://ieeexplore.ieee.org/document/9455353/

  • Ahmed S, Zor C, Awais M, Yanikoglu B and Kittler J. Deep Convolutional Neural Network Ensembles Using ECOC. IEEE Access. 10.1109/ACCESS.2021.3088717. 9. (86083-86095).

    https://ieeexplore.ieee.org/document/9452167/

  • Rupapara V, Rustam F, Shahzad H, Mehmood A, Ashraf I and Choi G. Impact of SMOTE on Imbalanced Text Features for Toxic Comments Classification Using RVVC Model. IEEE Access. 10.1109/ACCESS.2021.3083638. 9. (78621-78634).

    https://ieeexplore.ieee.org/document/9440474/

  • Aldera S, Emam A, Al-Qurishi M, Alrubaian M and Alothaim A. Online Extremism Detection in Textual Content: A Systematic Literature Review. IEEE Access. 10.1109/ACCESS.2021.3064178. 9. (42384-42396).

    https://ieeexplore.ieee.org/document/9371676/

  • Kaur S, Singh S and Kaushal S. (2021). Abusive Content Detection in Online User-Generated Data: A survey. Procedia Computer Science. 10.1016/j.procs.2021.05.098. 189. (274-281).

    https://linkinghub.elsevier.com/retrieve/pii/S1877050921012229

  • Das D, Mondal S and Ray A. (2021). Classifying Hate Speeches Shared in Twitter. Advances in Speech and Music Technology. 10.1007/978-981-33-6881-1_31. (381-393).

    https://link.springer.com/10.1007/978-981-33-6881-1_31

  • Devi M and Saharia N. (2021). Misogynous Text Classification Using SVM and LSTM. Advanced Computing. 10.1007/978-981-16-0401-0_26. (336-348).

    http://link.springer.com/10.1007/978-981-16-0401-0_26

  • Bhoi A and Chandra Balabantaray R. (2021). Hate Tweet Extraction from Social Media Text Using Autoencoder Wrapped Multinomial Naive Bayes Classifier. Data Engineering and Intelligent Computing. 10.1007/978-981-16-0171-2_59. (619-628).

    https://link.springer.com/10.1007/978-981-16-0171-2_59

  • Ghosh S, Kumar S, Lepcha S and Jain S. (2021). Toxic Text Classification. Data Science and Security. 10.1007/978-981-15-5309-7_27. (251-260).

    http://link.springer.com/10.1007/978-981-15-5309-7_27

  • Bansal N, Sharma A and Singh R. (2021). Content Classification Using Active Learning Approach. International Conference on Innovative Computing and Communications. 10.1007/978-981-15-5148-2_31. (345-352).

    https://link.springer.com/10.1007/978-981-15-5148-2_31

  • Vadesara A, Tanna P and Joshi H. (2021). Hate Speech Detection: A Bird’s-Eye View. Data Science and Intelligent Applications. 10.1007/978-981-15-4474-3_26. (225-231).

    http://link.springer.com/10.1007/978-981-15-4474-3_26

  • Rajput G, Punn N, Sonbhadra S and Agarwal S. (2021). Hate Speech Detection Using Static BERT Embeddings. Big Data Analytics. 10.1007/978-3-030-93620-4_6. (67-77).

    https://link.springer.com/10.1007/978-3-030-93620-4_6

  • Maity K and Saha S. (2021). A Multi-task Model for Sentiment Aided Cyberbullying Detection in Code-Mixed Indian Languages. Neural Information Processing. 10.1007/978-3-030-92273-3_36. (440-451).

    https://link.springer.com/10.1007/978-3-030-92273-3_36

  • Mamani-Condori E and Ochoa-Luna J. (2021). Aggressive Language Detection Using VGCN-BERT for Spanish Texts. Intelligent Systems. 10.1007/978-3-030-91699-2_25. (359-373).

    https://link.springer.com/10.1007/978-3-030-91699-2_25

  • Venturott L and Ciarelli P. (2021). Application of Data Augmentation Techniques for Hate Speech Detection with Deep Learning. Progress in Artificial Intelligence. 10.1007/978-3-030-86230-5_61. (778-787).

    https://link.springer.com/10.1007/978-3-030-86230-5_61

  • D’Sa A, Illina I, Fohr D, Klakow D and Ruiter D. (2021). Exploring Conditional Language Model Based Data Augmentation Approaches for Hate Speech Classification. Text, Speech, and Dialogue. 10.1007/978-3-030-83527-9_12. (135-146).

    https://link.springer.com/10.1007/978-3-030-83527-9_12

  • Maity K and Saha S. (2021). BERT-Capsule Model for Cyberbullying Detection in Code-Mixed Indian Languages. Natural Language Processing and Information Systems. 10.1007/978-3-030-80599-9_13. (147-155).

    https://link.springer.com/10.1007/978-3-030-80599-9_13

  • Luu S, Nguyen K and Nguyen N. (2021). A Large-Scale Dataset for Hate Speech Detection on Vietnamese Social Media Texts. Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices. 10.1007/978-3-030-79457-6_35. (415-426).

    https://link.springer.com/10.1007/978-3-030-79457-6_35

  • Awal M, Cao R, Lee R and Mitrović S. (2021). AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection. Advances in Knowledge Discovery and Data Mining. 10.1007/978-3-030-75762-5_55. (701-713).

    https://link.springer.com/10.1007/978-3-030-75762-5_55

  • Raha T, Ghosh Roy S, Narayan U, Abid Z and Varma V. (2021). Task Adaptive Pretraining of Transformers for Hostility Detection. Combating Online Hostile Posts in Regional Languages during Emergency Situation. 10.1007/978-3-030-73696-5_22. (236-243).

    http://link.springer.com/10.1007/978-3-030-73696-5_22

  • De A, Elangovan V, Maurya K and Desarkar M. (2021). Coarse and Fine-Grained Hostility Detection in Hindi Posts Using Fine Tuned Multilingual Embeddings. Combating Online Hostile Posts in Regional Languages during Emergency Situation. 10.1007/978-3-030-73696-5_19. (201-212).

    http://link.springer.com/10.1007/978-3-030-73696-5_19

  • Zamzami N and Bouguila N. (2020). Probabilistic Modeling for Frequency Vectors Using a Flexible Shifted-Scaled Dirichlet Distribution Prior. ACM Transactions on Knowledge Discovery from Data. 14:6. (1-35). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3406242

  • Aljero M and Dimililer N. (2020). Hate Speech Detection Using Genetic Programming 2020 International Conference on Advanced Science and Engineering (ICOASE). 10.1109/ICOASE51841.2020.9436621. 978-1-6654-1579-8. (1-5).

    https://ieeexplore.ieee.org/document/9436621/

  • Vashistha N and Zubiaga A. (2020). Online Multilingual Hate Speech Detection: Experimenting with Hindi and English Social Media. Information. 10.3390/info12010005. 12:1. (5).

    https://www.mdpi.com/2078-2489/12/1/5

  • Islam K, Islam M and Amin M. (2020). Sentiment analysis in Bengali via transfer learning using multi-lingual BERT 2020 23rd International Conference on Computer and Information Technology (ICCIT). 10.1109/ICCIT51783.2020.9392653. 978-1-6654-2244-4. (1-5).

    https://ieeexplore.ieee.org/document/9392653/

  • Islam M, Uddin M, Islam L, Akter A, Sharmin S and Acharjee U. (2020). Cyberbullying Detection on Social Networks Using Machine Learning Approaches 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). 10.1109/CSDE50874.2020.9411601. 978-1-6654-1974-1. (1-6).

    https://ieeexplore.ieee.org/document/9411601/

  • Beatty M. Graph-based methods to detect hate speech diffusion on Twitter. Proceedings of the 12th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (502-506).

    https://doi.org/10.1109/ASONAM49781.2020.9381473

  • Bugueño M and Mendoza M. Learning to combine classifiers outputs with the transformer for text classification. Intelligent Data Analysis. 10.3233/IDA-200007. 24. (15-41).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-200007

  • Srivastava N, Sakshi and Sharma Y. (2020). Combating Online Hate: A Comparative Study on Identification of Hate Speech and Offensive Content in Social Media Text 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS). 10.1109/RAICS51191.2020.9332469. 978-1-7281-9052-5. (47-52).

    https://ieeexplore.ieee.org/document/9332469/

  • Alshalan R and Al-Khalifa H. (2020). A Deep Learning Approach for Automatic Hate Speech Detection in the Saudi Twittersphere. Applied Sciences. 10.3390/app10238614. 10:23. (8614).

    https://www.mdpi.com/2076-3417/10/23/8614

  • Salminen J, Hopf M, Chowdhury S, Jung S, Almerekhi H and Jansen B. (2020). Developing an online hate classifier for multiple social media platforms. Human-centric Computing and Information Sciences. 10.1186/s13673-019-0205-6. 10:1. Online publication date: 1-Dec-2020.

    https://hcis-journal.springeropen.com/articles/10.1186/s13673-019-0205-6

  • Melton J, Bagavathi A and Krishnan S. (2020). DeL-haTE: A Deep Learning Tunable Ensemble for Hate Speech Detection 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA51294.2020.00165. 978-1-7281-8470-8. (1015-1022).

    https://ieeexplore.ieee.org/document/9356174/

  • Kapil P and Ekbal A. (2020). A deep neural network based multi-task learning approach to hate speech detection. Knowledge-Based Systems. 10.1016/j.knosys.2020.106458. 210. (106458). Online publication date: 1-Dec-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0950705120305876

  • Modha S, Majumder P, Mandl T and Mandalia C. (2020). Detecting and visualizing hate speech in social media: A cyber Watchdog for surveillance. Expert Systems with Applications. 10.1016/j.eswa.2020.113725. 161. (113725). Online publication date: 1-Dec-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417420305492

  • Venturott L and Ciarelli P. Data Augmentation for improving Hate Speech Detection on Social Networks. Proceedings of the Brazilian Symposium on Multimedia and the Web. (249-252).

    https://doi.org/10.1145/3428658.3431760

  • Abdurrahman M, Irawan B and Setianingsih C. (2020). A Review of Light Gradient Boosting Machine Method for Hate Speech Classification on Twitter 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE). 10.1109/ICECIE50279.2020.9309565. 978-1-7281-9877-4. (1-6).

    https://ieeexplore.ieee.org/document/9309565/

  • Pham Q, Anh Nguyen V, Doan L, Tran N and Thanh T. (2020). From Universal Language Model to Downstream Task: Improving RoBERTa-Based Vietnamese Hate Speech Detection 2020 12th International Conference on Knowledge and Systems Engineering (KSE). 10.1109/KSE50997.2020.9287406. 978-1-7281-4510-5. (37-42).

    https://ieeexplore.ieee.org/document/9287406/

  • Samarasinghe S, Meegama R and Punchimudiyanse M. (2020). Machine Learning Approach for the Detection of Hate Speech in Sinhala Unicode Text 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTer51097.2020.9325493. 978-1-7281-8655-9. (65-70).

    https://ieeexplore.ieee.org/document/9325493/

  • Hettiarachchi N, Weerasinghe R and Pushpanda R. (2020). Detecting Hate Speech in Social Media Articles in Romanized Sinhala 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTer51097.2020.9325465. 978-1-7281-8655-9. (250-255).

    https://ieeexplore.ieee.org/document/9325465/

  • Ayo F, Folorunso O, Ibharalu F and Osinuga I. (2020). Hate speech detection in Twitter using hybrid embeddings and improved cuckoo search-based neural networks. International Journal of Intelligent Computing and Cybernetics. 10.1108/IJICC-06-2020-0061. ahead-of-print:ahead-of-print. Online publication date: 3-Nov-2020.

    https://www.emerald.com/insight/content/doi/10.1108/IJICC-06-2020-0061/full/html

  • Ayo F, Folorunso O, Ibharalu F and Osinuga I. (2020). Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future challenges and research directions. Computer Science Review. 10.1016/j.cosrev.2020.100311. 38. (100311). Online publication date: 1-Nov-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S1574013720304111

  • Uyheng J and Carley K. (2020). Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines. Journal of Computational Social Science. 10.1007/s42001-020-00087-4.

    http://link.springer.com/10.1007/s42001-020-00087-4

  • Istaiteh O, Al-Omoush R and Tedmori S. (2020). Racist and Sexist Hate Speech Detection: Literature Review 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). 10.1109/IDSTA50958.2020.9264052. 978-1-7281-8376-3. (95-99).

    https://ieeexplore.ieee.org/document/9264052/

  • Mathew B, Illendula A, Saha P, Sarkar S, Goyal P and Mukherjee A. (2020). Hate begets Hate. Proceedings of the ACM on Human-Computer Interaction. 4:CSCW2. (1-24). Online publication date: 14-Oct-2020.

    https://doi.org/10.1145/3415163

  • Wang L, Niu J and Yu S. SentiDiff: Combining Textual Information and Sentiment Diffusion Patterns for Twitter Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2913641. 32:10. (2026-2039).

    https://ieeexplore.ieee.org/document/8700266/

  • Sawhney R, Gautam A and Ratn Shah R. (2020). BMGC 2020 Grand Challenge: Multi-Aspect Analysis of the MeToo Movement on Twitter 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM). 10.1109/BigMM50055.2020.00080. 978-1-7281-9325-0. (481-484).

    https://ieeexplore.ieee.org/document/9232576/

  • Bansal S. (2020). A Mutli-Task Mutlimodal Framework for Tweet Classification Based on CNN (Grand Challenge) 2020 IEEE Sixth International Conference on Multimedia Big Data (BigMM). 10.1109/BigMM50055.2020.00075. 978-1-7281-9325-0. (456-460).

    https://ieeexplore.ieee.org/document/9232514/

  • Siegel A. (2020). Online Hate Speech. Social Media and Democracy. 10.1017/9781108890960.005. (56-88).

    https://www.cambridge.org/core/product/identifier/9781108890960%23CN-bp-4/type/book_part

  • Persily N and Tucker J. (2020). Social Media and Democracy

    https://www.cambridge.org/core/product/identifier/9781108890960/type/book

  • Noorshams N, Verma S and Hofleitner A. TIES. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (3128-3135).

    https://doi.org/10.1145/3394486.3403364

  • Pitropakis N, Kokot K, Gkatzia D, Ludwiniak R, Mylonas A and Kandias M. (2020). Monitoring Users’ Behavior: Anti-Immigration Speech Detection on Twitter. Machine Learning and Knowledge Extraction. 10.3390/make2030011. 2:3. (192-215).

    https://www.mdpi.com/2504-4990/2/3/11

  • Chaudhari A, Parseja A and Patyal A. (2020). CNN based Hate-o-Meter: A Hate Speech Detecting Tool 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT). 10.1109/ICSSIT48917.2020.9214247. 978-1-7281-5821-1. (940-944).

    https://ieeexplore.ieee.org/document/9214247/

  • Miranda E, Aryuni M, Fernando Y and Kibtiah T. (2020). A Study of Radicalism Contents Detection in Twitter: Insights From Support Vector Machine Technique 2020 International Conference on Information Management and Technology (ICIMTech). 10.1109/ICIMTech50083.2020.9211229. 978-1-7281-7071-8. (549-554).

    https://ieeexplore.ieee.org/document/9211229/

  • Suvarna A, Bhalla G, Kumar S and Bhardwaj A. Identifying Victim Blaming Language in Discussions about Sexual Assaults on Twitter. International Conference on Social Media and Society. (156-163).

    https://doi.org/10.1145/3400806.3400825

  • Chatzakou D, Soler-Company J, Tsikrika T, Wanner L, Vrochidis S and Kompatsiaris I. User Identity Linkage in Social Media Using Linguistic and Social Interaction Features. Proceedings of the 12th ACM Conference on Web Science. (295-304).

    https://doi.org/10.1145/3394231.3397920

  • Cao R, Lee R and Hoang T. DeepHate: Hate Speech Detection via Multi-Faceted Text Representations. Proceedings of the 12th ACM Conference on Web Science. (11-20).

    https://doi.org/10.1145/3394231.3397890

  • Zhao Z, Gao M, Luo F, Zhang Y and Xiong Q. (2020). LSHWE: Improving Similarity-Based Word Embedding with Locality Sensitive Hashing for Cyberbullying Detection 2020 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN48605.2020.9207640. 978-1-7281-6926-2. (1-8).

    https://ieeexplore.ieee.org/document/9207640/

  • Nikhila M, Bhalla A and Singh P. (2020). Text Imbalance Handling and Classification for Cross- platform Cyber-crime Detection using Deep Learning 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). 10.1109/ICCCNT49239.2020.9225402. 978-1-7281-6851-7. (1-7).

    https://ieeexplore.ieee.org/document/9225402/

  • Bashar M, Nayak R and Suzor N. (2020). Regularising LSTM classifier by transfer learning for detecting misogynistic tweets with small training set. Knowledge and Information Systems. 10.1007/s10115-020-01481-0.

    http://link.springer.com/10.1007/s10115-020-01481-0

  • Panda A, Chakraborty S, Raval N, Zhang H, Mohapatra M, Akbar S and Pal J. Affording Extremes. Proceedings of the 2020 International Conference on Information and Communication Technologies and Development. (1-12).

    https://doi.org/10.1145/3392561.3394637

  • Aind A, Ramnaney A and Sethia D. (2020). Q-Bully: A Reinforcement Learning based Cyberbullying Detection Framework 2020 International Conference for Emerging Technology (INCET). 10.1109/INCET49848.2020.9154092. 978-1-7281-6221-8. (1-6).

    https://ieeexplore.ieee.org/document/9154092/

  • Paschalides D, Stephanidis D, Andreou A, Orphanou K, Pallis G, Dikaiakos M and Markatos E. (2020). MANDOLA. ACM Transactions on Internet Technology. 20:2. (1-21). Online publication date: 31-May-2020.

    https://doi.org/10.1145/3371276

  • Gröndahl T and Asokan N. (2019). Text Analysis in Adversarial Settings. ACM Computing Surveys. 52:3. (1-36). Online publication date: 31-May-2020.

    https://doi.org/10.1145/3310331

  • Nikiforos S, Tzanavaris S and Kermanidis K. (2020). Virtual learning communities (VLCs) rethinking: influence on behavior modification—bullying detection through machine learning and natural language processing. Journal of Computers in Education. 10.1007/s40692-020-00166-5.

    http://link.springer.com/10.1007/s40692-020-00166-5

  • Mossie Z and Wang J. (2020). Vulnerable community identification using hate speech detection on social media. Information Processing and Management: an International Journal. 57:3. Online publication date: 1-May-2020.

    https://doi.org/10.1016/j.ipm.2019.102087

  • Cryan J, Tang S, Zhang X, Metzger M, Zheng H and Zhao B. Detecting Gender Stereotypes: Lexicon vs. Supervised Learning Methods. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. (1-11).

    https://doi.org/10.1145/3313831.3376488

  • Mossie Z. Social Media Dark Side Content Detection using Transfer Learning Emphasis on Hate and Conflict. Companion Proceedings of the Web Conference 2020. (259-263).

    https://doi.org/10.1145/3366424.3382084

  • Buan T and Ramachandra R. Automated Cyberbullying Detection in Social Media Using an SVM Activated Stacked Convolution LSTM Network. Proceedings of the 2020 4th International Conference on Compute and Data Analysis. (170-174).

    https://doi.org/10.1145/3388142.3388147

  • Laaksonen S, Haapoja J, Kinnunen T, Nelimarkka M and Pöyhtäri R. (2020). The Datafication of Hate: Expectations and Challenges in Automated Hate Speech Monitoring. Frontiers in Big Data. 10.3389/fdata.2020.00003. 3.

    https://www.frontiersin.org/article/10.3389/fdata.2020.00003/full

  • D'Sa A, Illina I and Fohr D. (2020). BERT and fastText Embeddings for Automatic Detection of Toxic Speech 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA). 10.1109/OCTA49274.2020.9151853. 978-1-7281-6403-8. (1-5).

    https://ieeexplore.ieee.org/document/9151853/

  • Mathew B, Kumar N, Goyal P and Mukherjee A. Interaction dynamics between hate and counter users on Twitter. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. (116-124).

    https://doi.org/10.1145/3371158.3371172

  • Zhou Q and Jing M. (2020). Detecting Expressional Anomie in Social Media via Fine-grained Content Mining. Journal of Database Management. 10.4018/JDM.2020010101. 31:1. (1-19). Online publication date: 1-Jan-2020.

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2020010101

  • Agarwal P, Hassan S, Mustafa S and Ahmad J. (2020). An Effective Diagnostic Model for Personalized Healthcare Using Deep Learning Techniques. Applications of Deep Learning and Big IoT on Personalized Healthcare Services. 10.4018/978-1-7998-2101-4.ch005. (70-88).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-2101-4.ch005

  • Khieu B and Moh M. (2020). Neural Network Applications in Hate Speech Detection. Neural Networks for Natural Language Processing. 10.4018/978-1-7998-1159-6.ch012. (188-204).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-1159-6.ch012

  • Sharma T, Bajaj A and Sangwan O. (2020). Deep Learning Approaches for Textual Sentiment Analysis. Handbook of Research on Emerging Trends and Applications of Machine Learning. 10.4018/978-1-5225-9643-1.ch009. (171-182).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-9643-1.ch009

  • Bisconti E and Montagnani M. (2020). Montanti @ HaSpeeDe2 EVALITA 2020: Hate Speech Detection inOnline Contents. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020. 10.4000/books.aaccademia.7067. (171-174).

    http://books.openedition.org/aaccademia/7067

  • Hoffmann J and Kruschwitz U. (2020). UR_NLP @ HaSpeeDe 2 at EVALITA 2020: Towards Robust Hate Speech Detection with Contextual Embeddings. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020. 10.4000/books.aaccademia.6967. (129-135).

    http://books.openedition.org/aaccademia/6967

  • Deng T, Bai Y and Dai H. (2020). By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020. 10.4000/books.aaccademia.6942. (116-120).

    http://books.openedition.org/aaccademia/6942

  • Fabrizi S. (2020). fabsam @ AMI: A Convolutional Neural Network Approach. EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020. 10.4000/books.aaccademia.6782. (35-39).

    http://books.openedition.org/aaccademia/6782

  • Niu M, Yu L, Tian S, Wang X and Zhang Q. (2020). Personal-Bullying Detection Based on Multi-Attention and Cognitive Feature. Automatic Control and Computer Sciences. 10.3103/S0146411620010083. 54:1. (52-61). Online publication date: 1-Jan-2020.

    http://link.springer.com/10.3103/S0146411620010083

  • Oyasor J, Raborife M and Ranchod P. (2020). Sentiment Analysis as an Indicator to Evaluate Gender disparity on Sexual Violence Tweets in South Africa 2020 International SAUPEC/RobMech/PRASA Conference. 10.1109/SAUPEC/RobMech/PRASA48453.2020.9040955. 978-1-7281-4162-6. (1-6).

    https://ieeexplore.ieee.org/document/9040955/

  • Moh M, Moh T and Khieu B. (2020). No "Love" Lost: Defending Hate Speech Detection Models Against Adversaries 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). 10.1109/IMCOM48794.2020.9001767. 978-1-7281-5453-4. (1-6).

    https://ieeexplore.ieee.org/document/9001767/

  • Rodriguez-Sanchez F, Carrillo-de-Albornoz J and Plaza L. Automatic Classification of Sexism in Social Networks: An Empirical Study on Twitter Data. IEEE Access. 10.1109/ACCESS.2020.3042604. 8. (219563-219576).

    https://ieeexplore.ieee.org/document/9281090/

  • Roy P, Tripathy A, Das T and Gao X. A Framework for Hate Speech Detection Using Deep Convolutional Neural Network. IEEE Access. 10.1109/ACCESS.2020.3037073. 8. (204951-204962).

    https://ieeexplore.ieee.org/document/9253658/

  • Singh R, Subramani S, Du J, Zhang Y, Wang H, Ahmed K and Chen Z. Deep Learning for Multi-Class Antisocial Behavior Identification From Twitter. IEEE Access. 10.1109/ACCESS.2020.3030621. 8. (194027-194044).

    https://ieeexplore.ieee.org/document/9222124/

  • Zhou Y, Yang Y, Liu H, Liu X and Savage N. Deep Learning Based Fusion Approach for Hate Speech Detection. IEEE Access. 10.1109/ACCESS.2020.3009244. 8. (128923-128929).

    https://ieeexplore.ieee.org/document/9139953/

  • Dhiman A and Toshniwal D. An Approximate Model for Event Detection From Twitter Data. IEEE Access. 10.1109/ACCESS.2020.3007004. 8. (122168-122184).

    https://ieeexplore.ieee.org/document/9133064/

  • Zeadally S, Adi E, Baig Z and Khan I. Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity. IEEE Access. 10.1109/ACCESS.2020.2968045. 8. (23817-23837).

    https://ieeexplore.ieee.org/document/8963730/

  • Battistelli D, Bruneau C and Dragos V. (2020). Building a formal model for hate detection in French corpora. Procedia Computer Science. 10.1016/j.procs.2020.09.299. 176. (2358-2365).

    https://linkinghub.elsevier.com/retrieve/pii/S1877050920322092

  • Khedkar S and Shinde S. (2020). Deep Learning and Ensemble Approach for Praise or Complaint Classification. Procedia Computer Science. 10.1016/j.procs.2020.03.254. 167. (449-458).

    https://linkinghub.elsevier.com/retrieve/pii/S1877050920307201

  • Patil C, Salmalge S and Nartam P. (2020). Cyberbullying Detection on Multiple SMPs Using Modular Neural Network. Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies. 10.1007/978-981-15-3125-5_20. (181-188).

    http://link.springer.com/10.1007/978-981-15-3125-5_20

  • Bisht A, Singh A, Bhadauria H, Virmani J and Kriti . (2020). Detection of Hate Speech and Offensive Language in Twitter Data Using LSTM Model. Recent Trends in Image and Signal Processing in Computer Vision. 10.1007/978-981-15-2740-1_17. (243-264).

    http://link.springer.com/10.1007/978-981-15-2740-1_17

  • Rajput K, Kapoor R, Mathur P, Hitkul , Kumaraguru P and Shah R. (2020). Transfer Learning for Detecting Hateful Sentiments in Code Switched Language. Deep Learning-Based Approaches for Sentiment Analysis. 10.1007/978-981-15-1216-2_7. (159-192).

    http://link.springer.com/10.1007/978-981-15-1216-2_7

  • Risch J and Krestel R. (2020). Toxic Comment Detection in Online Discussions. Deep Learning-Based Approaches for Sentiment Analysis. 10.1007/978-981-15-1216-2_4. (85-109).

    http://link.springer.com/10.1007/978-981-15-1216-2_4

  • Tirumala S. (2020). Artificial Intelligence and Common Sense: The Shady Future of AI. Advances in Data Science and Management. 10.1007/978-981-15-0978-0_18. (189-200).

    http://link.springer.com/10.1007/978-981-15-0978-0_18

  • Abburi H, Parikh P, Chhaya N and Varma V. (2020). Fine-grained Multi-label Sexism Classification Using Semi-supervised Learning. Web Information Systems Engineering – WISE 2020. 10.1007/978-3-030-62008-0_37. (531-547).

    http://link.springer.com/10.1007/978-3-030-62008-0_37

  • Wijesiriwardene T, Inan H, Kursuncu U, Gaur M, Shalin V, Thirunarayan K, Sheth A and Arpinar I. (2020). ALONE: A Dataset for Toxic Behavior Among Adolescents on Twitter. Social Informatics. 10.1007/978-3-030-60975-7_31. (427-439).

    http://link.springer.com/10.1007/978-3-030-60975-7_31

  • Grosz D and Conde-Cespedes P. (2020). Automatic Detection of Sexist Statements Commonly Used at the Workplace. Trends and Applications in Knowledge Discovery and Data Mining. 10.1007/978-3-030-60470-7_11. (104-115).

    http://link.springer.com/10.1007/978-3-030-60470-7_11

  • Wu S, Fei H and Ji D. (2020). Aggressive Language Detection with Joint Text Normalization via Adversarial Multi-task Learning. Natural Language Processing and Chinese Computing. 10.1007/978-3-030-60450-9_54. (683-696).

    http://link.springer.com/10.1007/978-3-030-60450-9_54

  • Makhnytkina O, Matveev A, Bogoradnikova D, Lizunova I, Maltseva A and Shilkina N. (2020). Detection of Toxic Language in Short Text Messages. Speech and Computer. 10.1007/978-3-030-60276-5_31. (315-325).

    http://link.springer.com/10.1007/978-3-030-60276-5_31

  • Alonso P, Saini R and Kovács G. (2020). Hate Speech Detection Using Transformer Ensembles on the HASOC Dataset. Speech and Computer. 10.1007/978-3-030-60276-5_2. (13-21).

    http://link.springer.com/10.1007/978-3-030-60276-5_2

  • Zhao Y, Prosperi M, Lyu T, Guo Y, Zhou L and Bian J. (2020). Integrating Crowdsourcing and Active Learning for Classification of Work-Life Events from Tweets. Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. 10.1007/978-3-030-55789-8_30. (333-344).

    http://link.springer.com/10.1007/978-3-030-55789-8_30

  • Li S, Zhang Y, Jiang P, Li Z, Zhang C and Liu Q. (2020). Predicting User Influence in the Propagation of Toxic Information. Knowledge Science, Engineering and Management. 10.1007/978-3-030-55130-8_40. (459-470).

    http://link.springer.com/10.1007/978-3-030-55130-8_40

  • Riehle D, Niemann M, Brunk J, Assenmacher D, Trautmann H and Becker J. (2020). Building an Integrated Comment Moderation System – Towards a Semi-automatic Moderation Tool. Social Computing and Social Media. Participation, User Experience, Consumer Experience, and Applications of Social Computing. 10.1007/978-3-030-49576-3_6. (71-86).

    http://link.springer.com/10.1007/978-3-030-49576-3_6

  • Bodrunova S, Nigmatullina K, Blekanov I, Smoliarova A, Zhuravleva N and Danilova Y. (2020). When Emotions Grow: Cross-Cultural Differences in the Role of Emotions in the Dynamics of Conflictual Discussions on Social Media. Social Computing and Social Media. Design, Ethics, User Behavior, and Social Network Analysis. 10.1007/978-3-030-49570-1_30. (433-441).

    http://link.springer.com/10.1007/978-3-030-49570-1_30

  • Jarquín-Vásquez H, Montes-y-Gómez M and Villaseñor-Pineda L. (2020). Not All Swear Words Are Used Equal: Attention over Word n-grams for Abusive Language Identification. Pattern Recognition. 10.1007/978-3-030-49076-8_27. (282-292).

    https://link.springer.com/10.1007/978-3-030-49076-8_27

  • Espinoza I and Weiss F. (2020). Detection of Harassment on Twitter with Deep Learning Techniques. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-030-43887-6_24. (307-313).

    https://link.springer.com/10.1007/978-3-030-43887-6_24

  • Bugueño M and Mendoza M. (2020). Learning to Detect Online Harassment on Twitter with the Transformer. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-030-43887-6_23. (298-306).

    https://link.springer.com/10.1007/978-3-030-43887-6_23

  • Saeidi M, da S. Sousa S, Milios E, Zeh N and Berton L. (2020). Categorizing Online Harassment on Twitter. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-030-43887-6_22. (283-297).

    https://link.springer.com/10.1007/978-3-030-43887-6_22

  • Niemann M, Riehle D, Brunk J and Becker J. (2020). What Is Abusive Language?. Disinformation in Open Online Media. 10.1007/978-3-030-39627-5_6. (59-73).

    http://link.springer.com/10.1007/978-3-030-39627-5_6

  • Niu J and Niu P. An intelligent automatic valuation system for real estate based on machine learning. Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. (1-6).

    https://doi.org/10.1145/3371425.3371454

  • Shang L, Zhang D, Wang M and Wang D. (2019). VulnerCheck: A Content-Agnostic Detector for Online Hatred-Vulnerable Videos 2019 IEEE International Conference on Big Data (Big Data). 10.1109/BigData47090.2019.9006329. 978-1-7281-0858-2. (573-582).

    https://ieeexplore.ieee.org/document/9006329/

  • Albadi N, Kurdi M and Mishra S. (2019). Investigating the effect of combining GRU neural networks with handcrafted features for religious hatred detection on Arabic Twitter space. Social Network Analysis and Mining. 10.1007/s13278-019-0587-5. 9:1. Online publication date: 1-Dec-2019.

    http://link.springer.com/10.1007/s13278-019-0587-5

  • Kumari K, Singh J, Dwivedi Y and Rana N. (2019). Towards Cyberbullying-free social media in smart cities: a unified multi-modal approach. Soft Computing. 10.1007/s00500-019-04550-x.

    http://link.springer.com/10.1007/s00500-019-04550-x

  • Alorainy W, Burnap P, Liu H and Williams M. (2019). “The Enemy Among Us”. ACM Transactions on the Web. 13:3. (1-26). Online publication date: 18-Nov-2019.

    https://doi.org/10.1145/3324997

  • Chen C, Feng S, Xing Z, Liu L, Zhao S and Wang J. (2019). Gallery D.C.: Design Search and Knowledge Discovery through Auto-created GUI Component Gallery. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-22). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359282

  • Hirskyj-Douglas I, Kytö M and McGookin D. (2019). Head-mounted Displays, Smartphones, or Smartwatches? -- Augmenting Conversations with Digital Representation of Self. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-32). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359281

  • Albadi N, Kurdi M and Mishra S. (2019). Hateful People or Hateful Bots?. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-25). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359163

  • Yao Y, Basdeo J, Mcdonough O and Wang Y. (2019). Privacy Perceptions and Designs of Bystanders in Smart Homes. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-24). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359161

  • Lee B, Lee M, Zhang P, Tessier A and Khan A. (2019). An Empirical Study of How Socio-Spatial Formations are Influenced by Interior Elements and Displays in an Office Context. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-26). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359160

  • Prost S, Vlachokyriakos V, Midgley J, Heron G, Meziant K and Crivellaro C. (2019). Infrastructuring Food Democracy. Proceedings of the ACM on Human-Computer Interaction. 3:CSCW. (1-27). Online publication date: 7-Nov-2019.

    https://doi.org/10.1145/3359159

  • Sinha P, Mishra R, Sawhney R, Mahata D, Shah R and Liu H. #suicidal - A Multipronged Approach to Identify and Explore Suicidal Ideation in Twitter. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (941-950).

    https://doi.org/10.1145/3357384.3358060

  • Rizos G, Hemker K and Schuller B. Augment to Prevent. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. (991-1000).

    https://doi.org/10.1145/3357384.3358040

  • Yazgili E and Baykara M. (2019). Cyberbullying and Detection Methods 2019 1st International Informatics and Software Engineering Conference (UBMYK). 10.1109/UBMYK48245.2019.8965514. 978-1-7281-3992-0. (1-5).

    https://ieeexplore.ieee.org/document/8965514/

  • Jiang L and Suzuki Y. (2019). Detecting hate speech from tweets for sentiment analysis 2019 6th International Conference on Systems and Informatics (ICSAI). 10.1109/ICSAI48974.2019.9010578. 978-1-7281-5256-1. (671-676).

    https://ieeexplore.ieee.org/document/9010578/

  • Syam S, Irawan B and Setianingsih C. (2019). Hate Speech Detection on Twitter Using Long Short-Term Memory (LSTM) Method 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE). 10.1109/ICITISEE48480.2019.9003992. 978-1-7281-5118-2. (305-310).

    https://ieeexplore.ieee.org/document/9003992/

  • Ratadiya P and Mishra D. (2019). An Attention Ensemble Based Approach for Multilabel Profanity Detection 2019 International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2019.00083. 978-1-7281-4896-0. (544-550).

    https://ieeexplore.ieee.org/document/8955555/

  • Pereira-Kohatsu J, Quijano-Sánchez L, Liberatore F and Camacho-Collados M. (2019). Detecting and Monitoring Hate Speech in Twitter. Sensors. 10.3390/s19214654. 19:21. (4654).

    https://www.mdpi.com/1424-8220/19/21/4654

  • Thomas J, Mudur S and Shiri N. Detecting Anomalous Behaviour from Textual Content in Financial Records. IEEE/WIC/ACM International Conference on Web Intelligence. (373-377).

    https://doi.org/10.1145/3350546.3352550

  • Malte A and Ratadiya P. (2019). Multilingual Cyber Abuse Detection using Advanced Transformer Architecture TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). 10.1109/TENCON.2019.8929493. 978-1-7281-1895-6. (784-789).

    https://ieeexplore.ieee.org/document/8929493/

  • Mohaouchane H, Mourhir A and Nikolov N. (2019). Detecting Offensive Language on Arabic Social Media Using Deep Learning 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). 10.1109/SNAMS.2019.8931839. 978-1-7281-2946-4. (466-471).

    https://ieeexplore.ieee.org/document/8931839/

  • Ombui E, Muchemi L and Wagacha P. (2019). Hate Speech Detection in Code-switched Text Messages 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). 10.1109/ISMSIT.2019.8932845. 978-1-7281-3789-6. (1-6).

    https://ieeexplore.ieee.org/document/8932845/

  • Sazany E and Budi I. (2019). Hate Speech Identification in Text Written in Indonesian with Recurrent Neural Network 2019 International Conference on Advanced Computer Science and information Systems (ICACSIS). 10.1109/ICACSIS47736.2019.8979959. 978-1-7281-5292-9. (211-216).

    https://ieeexplore.ieee.org/document/8979959/

  • Yousefinaghani S, Dara R and Sharif S. Impact of In-domain Vector Representations on the Classification of Disease-related Tweets. Proceedings of the ACM Symposium on Document Engineering 2019. (1-4).

    https://doi.org/10.1145/3342558.3345404

  • Sharif W, Mumtaz S, Shafiq Z, Riaz O, Ali T, Husnain M and Choi G. (2019). An Empirical Approach for Extreme Behavior Identification through Tweets Using Machine Learning. Applied Sciences. 10.3390/app9183723. 9:18. (3723).

    https://www.mdpi.com/2076-3417/9/18/3723

  • Wallbaum T, Stratmann T and Boll S. Classifying Sensitive Issues for Patients with Neurodevelopmental Disorders. Human-Computer Interaction – INTERACT 2019. (107-114).

    https://doi.org/10.1007/978-3-030-29381-9_7

  • Gautam A, Misra L, Kumar A, Misra K, Aggarwal S and Shah R. (2019). Multimodal Analysis of Disaster Tweets 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). 10.1109/BigMM.2019.00-38. 978-1-7281-5527-2. (94-103).

    https://ieeexplore.ieee.org/document/8919468/

  • Häberle M, Werner M and Zhu X. (2019). Geo-spatial text-mining from Twitter – a feature space analysis with a view toward building classification in urban regions. European Journal of Remote Sensing. 10.1080/22797254.2019.1586451. 52:sup2. (2-11). Online publication date: 9-Aug-2019.

    https://www.tandfonline.com/doi/full/10.1080/22797254.2019.1586451

  • Sajjad M, Zulifqar F, Khan M and Azeem M. (2019). Hate Speech Detection using Fusion Approach 2019 International Conference on Applied and Engineering Mathematics (ICAEM). 10.1109/ICAEM.2019.8853762. 978-1-7281-2353-0. (251-255).

    https://ieeexplore.ieee.org/document/8853762/

  • Al-Makhadmeh Z and Tolba A. (2019). Automatic hate speech detection using killer natural language processing optimizing ensemble deep learning approach. Computing. 10.1007/s00607-019-00745-0.

    http://link.springer.com/10.1007/s00607-019-00745-0

  • Fortuna P and Nunes S. (2018). A Survey on Automatic Detection of Hate Speech in Text. ACM Computing Surveys. 51:4. (1-30). Online publication date: 31-Jul-2019.

    https://doi.org/10.1145/3232676

  • Arango A, Pérez J and Poblete B. Hate Speech Detection is Not as Easy as You May Think. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. (45-54).

    https://doi.org/10.1145/3331184.3331262

  • Dionisio N, Alves F, Ferreira P and Bessani A. (2019). Cyberthreat Detection from Twitter using Deep Neural Networks 2019 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2019.8852475. 978-1-7281-1985-4. (1-8).

    https://ieeexplore.ieee.org/document/8852475/

  • Brunk J, Niemann M and Riehle D. (2019). Can Analytics as a Service Save the Online Discussion Culture? - The Case of Comment Moderation in the Media Industry 2019 IEEE 21st Conference on Business Informatics (CBI). 10.1109/CBI.2019.00061. 978-1-7281-0650-2. (472-481).

    https://ieeexplore.ieee.org/document/8808072/

  • Niemann M. (2019). Abusiveness is Non-Binary: Five Shades of Gray in German Online News-Comments 2019 IEEE 21st Conference on Business Informatics (CBI). 10.1109/CBI.2019.00009. 978-1-7281-0650-2. (11-20).

    https://ieeexplore.ieee.org/document/8808012/

  • Mathew B, Dutt R, Goyal P and Mukherjee A. Spread of Hate Speech in Online Social Media. Proceedings of the 10th ACM Conference on Web Science. (173-182).

    https://doi.org/10.1145/3292522.3326034

  • Founta A, Chatzakou D, Kourtellis N, Blackburn J, Vakali A and Leontiadis I. A Unified Deep Learning Architecture for Abuse Detection. Proceedings of the 10th ACM Conference on Web Science. (105-114).

    https://doi.org/10.1145/3292522.3326028

  • Basu M, Shandilya A, Khosla P, Ghosh K and Ghosh S. Extracting Resource Needs and Availabilities From Microblogs for Aiding Post-Disaster Relief Operations. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2019.2914179. 6:3. (604-618).

    https://ieeexplore.ieee.org/document/8715653/

  • Kocoń J, Miłkowski P, Wierzba M, Konat B, Klessa K, Janz A, Riegel M, Juszczyk K, Grimling D, Marchewka A and Piasecki M. Multilingual and Language-Agnostic Recognition of Emotions, Valence and Arousal in Large-Scale Multi-domain Text Reviews. Human Language Technology. Challenges for Computer Science and Linguistics. (214-231).

    https://doi.org/10.1007/978-3-031-05328-3_14

  • Liu H, Burnap P, Alorainy W and Williams M. Fuzzy Multi-task Learning for Hate Speech Type Identification. The World Wide Web Conference. (3006-3012).

    https://doi.org/10.1145/3308558.3313546

  • Badjatiya P, Gupta M and Varma V. Stereotypical Bias Removal for Hate Speech Detection Task using Knowledge-based Generalizations. The World Wide Web Conference. (49-59).

    https://doi.org/10.1145/3308558.3313504

  • Amrutha B and Bindu K. (2019). Detecting Hate Speech in Tweets Using Different Deep Neural Network Architectures 2019 International Conference on Intelligent Computing and Control Systems (ICCS). 10.1109/ICCS45141.2019.9065763. 978-1-5386-8113-8. (923-926).

    https://ieeexplore.ieee.org/document/9065763/

  • Aulia N and Budi I. Hate Speech Detection on Indonesian Long Text Documents Using Machine Learning Approach. Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence. (164-169).

    https://doi.org/10.1145/3330482.3330491

  • Basak R, Sural S, Ganguly N and Ghosh S. Online Public Shaming on Twitter: Detection, Analysis, and Mitigation. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2019.2895734. 6:2. (208-220).

    https://ieeexplore.ieee.org/document/8645797/

  • Liu H, Burnap P, Alorainy W and Williams M. A Fuzzy Approach to Text Classification With Two-Stage Training for Ambiguous Instances. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2019.2892037. 6:2. (227-240).

    https://ieeexplore.ieee.org/document/8657371/

  • Khatua A, Cambria E, Ghosh K, Chaki N and Khatua A. Tweeting in Support of LGBT?. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. (342-345).

    https://doi.org/10.1145/3297001.3297057

  • Santosh T and Aravind K. Hate Speech Detection in Hindi-English Code-Mixed Social Media Text. Proceedings of the ACM India Joint International Conference on Data Science and Management of Data. (310-313).

    https://doi.org/10.1145/3297001.3297048

  • Espinosa Anke L, Declerck T, Gromann D, Zhang Z, Luo L, Gromann D, Espinosa Anke L and Declerck T. (2019). Hate speech detection. Semantic Web. 10:5. (925-945). Online publication date: 1-Jan-2019.

    https://doi.org/10.3233/SW-180338

  • Subramani S, Michalska S, Wang H, Du J, Zhang Y and Shakeel H. Deep Learning for Multi-Class Identification From Domestic Violence Online Posts. IEEE Access. 10.1109/ACCESS.2019.2908827. 7. (46210-46224).

    https://ieeexplore.ieee.org/document/8685083/

  • Hayat M, Daud A, Alshdadi A, Banjar A, Abbasi R, Bao Y and Dawood H. Towards Deep Learning Prospects: Insights for Social Media Analytics. IEEE Access. 10.1109/ACCESS.2019.2905101. 7. (36958-36979).

    https://ieeexplore.ieee.org/document/8673951/

  • Bashar M, Nayak R, Suzor N and Weir B. (2019). Misogynistic Tweet Detection: Modelling CNN with Small Datasets. Data Mining. 10.1007/978-981-13-6661-1_1. (3-16).

    http://link.springer.com/10.1007/978-981-13-6661-1_1

  • Woda M and Torbiarczyk M. (2019). Use of Distributed Machine Learning Toolkit for Searching Content Promoting Hate Speech on the Web. Contemporary Complex Systems and Their Dependability. 10.1007/978-3-319-91446-6_50. (536-544).

    http://link.springer.com/10.1007/978-3-319-91446-6_50

  • Mubarak H and Darwish K. (2019). Arabic Offensive Language Classification on Twitter. Social Informatics. 10.1007/978-3-030-34971-4_18. (269-276).

    http://link.springer.com/10.1007/978-3-030-34971-4_18

  • Baghel S, Bhattacharjee M, Prasanna S and Guha P. (2019). Shouted and Normal Speech Classification Using 1D CNN. Pattern Recognition and Machine Intelligence. 10.1007/978-3-030-34872-4_52. (472-480).

    http://link.springer.com/10.1007/978-3-030-34872-4_52

  • Merayo-Alba S, Fidalgo E, González-Castro V, Alaiz-Rodríguez R and Velasco-Mata J. (2019). Use of Natural Language Processing to Identify Inappropriate Content in Text. Hybrid Artificial Intelligent Systems. 10.1007/978-3-030-29859-3_22. (254-263).

    http://link.springer.com/10.1007/978-3-030-29859-3_22

  • Du X, Bian J and Prosperi M. (2019). An Operational Deep Learning Pipeline for Classifying Life Events from Individual Tweets. Information Management and Big Data. 10.1007/978-3-030-11680-4_7. (54-66).

    http://link.springer.com/10.1007/978-3-030-11680-4_7

  • Pitsilis G, Ramampiaro H and Langseth H. (2018). Effective hate-speech detection in Twitter data using recurrent neural networks. Applied Intelligence. 48:12. (4730-4742). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s10489-018-1242-y

  • Pelzer B, Kaati L and Akrami N. (2018). Directed Digital Hate 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2018.8587396. 978-1-5386-7848-0. (205-210).

    https://ieeexplore.ieee.org/document/8587396/

  • Alvari H, Shaabani E and Shakarian P. (2018). Early Identification of Pathogenic Social Media Accounts 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). 10.1109/ISI.2018.8587339. 978-1-5386-7848-0. (169-174).

    https://ieeexplore.ieee.org/document/8587339/

  • Saeed H, Shahzad K and Kamiran F. (2018). Overlapping Toxic Sentiment Classification Using Deep Neural Architectures 2018 IEEE International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2018.00193. 978-1-5386-9288-2. (1361-1366).

    https://ieeexplore.ieee.org/document/8637460/

  • Sutejo T and Lestari D. (2018). Indonesia Hate Speech Detection Using Deep Learning 2018 International Conference on Asian Language Processing (IALP). 10.1109/IALP.2018.8629154. 978-1-7281-1175-9. (39-43).

    https://ieeexplore.ieee.org/document/8629154/

  • Gröndahl T, Pajola L, Juuti M, Conti M and Asokan N. All You Need is "Love". Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security. (2-12).

    https://doi.org/10.1145/3270101.3270103

  • Marwa T, Salima O and Souham M. (2018). Deep learning for online harassment detection in tweets 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS). 10.1109/PAIS.2018.8598530. 978-1-5386-4238-2. (1-5).

    https://ieeexplore.ieee.org/document/8598530/

  • Pratiwi N, Budi I and Alfina I. (2018). Hate Speech Detection on Indonesian Instagram Comments using FastText Approach 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS). 10.1109/ICACSIS.2018.8618182. 978-1-7281-0135-4. (447-450).

    https://ieeexplore.ieee.org/document/8618182/

  • Ruwandika N and Weerasinghe A. (2018). Identification of Hate Speech in Social Media 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTER.2018.8615517. 978-1-5386-7352-2. (273-278).

    https://ieeexplore.ieee.org/document/8615517/

  • Dias D, Welikala M and Dias N. (2018). Identifying Racist Social Media Comments in Sinhala Language Using Text Analytics Models with Machine Learning 2018 18th International Conference on Advances in ICT for Emerging Regions (ICTer). 10.1109/ICTER.2018.8615492. 978-1-5386-7352-2. (1-6).

    https://ieeexplore.ieee.org/document/8615492/

  • Sazany E and Budi I. (2018). Deep Learning-Based Implementation of Hate Speech Identification on Texts in Indonesian: Preliminary Study 2018 International Conference on Applied Information Technology and Innovation (ICAITI). 10.1109/ICAITI.2018.8686725. 978-1-5386-6726-2. (114-117).

    https://ieeexplore.ieee.org/document/8686725/

  • Campos de Oliveira F and Borin E. (2018). Partitioning Convolutional Neural Networks for Inference on Constrained Internet-of-Things Devices 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). 10.1109/CAHPC.2018.8645927. 978-1-5386-7769-8. (266-273).

    https://ieeexplore.ieee.org/document/8645927/

  • Bakator M and Radosav D. (2018). Deep Learning and Medical Diagnosis: A Review of Literature. Multimodal Technologies and Interaction. 10.3390/mti2030047. 2:3. (47).

    https://www.mdpi.com/2414-4088/2/3/47

  • Chandra N, Khatri S and Som S. (2018). Cyberbullying Detection using Recursive Neural Network through Offline Repository 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). 10.1109/ICRITO.2018.8748570. 978-1-5386-4692-2. (748-754).

    https://ieeexplore.ieee.org/document/8748570/

  • Khatua A, Cambria E and Khatua A. (2018). Sounds of Silence Breakers: Exploring Sexual Violence on Twitter 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 10.1109/ASONAM.2018.8508576. 978-1-5386-6051-5. (397-400).

    https://ieeexplore.ieee.org/document/8508576/

  • Albadi N, Kurdi M and Mishra S. (2018). Are they Our Brothers? Analysis and Detection of Religious Hate Speech in the Arabic Twittersphere 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). 10.1109/ASONAM.2018.8508247. 978-1-5386-6051-5. (69-76).

    https://ieeexplore.ieee.org/document/8508247/

  • Robertson S. (2018). Social Media and Civic Engagement: History, Theory, and Practice. Synthesis Lectures on Human-Centered Informatics. 10.2200/S00836ED1V01Y201803HCI040. 11:2. (i-1123). Online publication date: 23-May-2018.

    https://www.morganclaypool.com/doi/10.2200/S00836ED1V01Y201803HCI040

  • Elekes Á, Englhardt A, Schäler M and Böhm K. (2018). Toward meaningful notions of similarity in NLP embedding models. International Journal on Digital Libraries. 10.1007/s00799-018-0237-y.

    http://link.springer.com/10.1007/s00799-018-0237-y

  • Shekhar A and Venkatesan M. (2018). A Bag-of-Phonetic-Codes Modelfor Cyber-Bullying Detection in Twitter 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). 10.1109/ICCTCT.2018.8550938. 978-1-5386-3702-9. (1-7).

    https://ieeexplore.ieee.org/document/8550938/

  • Yang L, MacEachren A, Mitra P and Onorati T. (2018). Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review. ISPRS International Journal of Geo-Information. 10.3390/ijgi7020065. 7:2. (65).

    https://www.mdpi.com/2220-9964/7/2/65

  • Bianchini G, Ferri L and Giorni T. (2018). Text analysis for hate speech detection in Italian messages on Twitter and Facebook. EVALITA Evaluation of NLP and Speech Tools for Italian. 10.4000/books.aaccademia.4832. (250-255).

    https://books.openedition.org/aaccademia/4832

  • Santucci V, Spina S, Milani A, Biondi G and Di Bari G. (2018). Detecting Hate Speech for Italian Language in Social Media. EVALITA Evaluation of NLP and Speech Tools for Italian. 10.4000/books.aaccademia.4799. (239-243).

    https://books.openedition.org/aaccademia/4799

  • Fortuna P, Bonavita I and Nunes S. (2018). Merging datasets for hate speech classification in Italian. EVALITA Evaluation of NLP and Speech Tools for Italian. 10.4000/books.aaccademia.4752. (218-223).

    https://books.openedition.org/aaccademia/4752

  • Subramani S, Wang H, Vu H and Li G. Domestic Violence Crisis Identification From Facebook Posts Based on Deep Learning. IEEE Access. 10.1109/ACCESS.2018.2871446. 6. (54075-54085).

    https://ieeexplore.ieee.org/document/8469150/

  • Schuh T and Dreiseitl S. (2018). Evaluating Novel Features for Aggressive Language Detection. Speech and Computer. 10.1007/978-3-319-99579-3_60. (585-595).

    http://link.springer.com/10.1007/978-3-319-99579-3_60

  • Zhang Z, Robinson D and Tepper J. (2018). Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network. The Semantic Web. 10.1007/978-3-319-93417-4_48. (745-760).

    https://link.springer.com/10.1007/978-3-319-93417-4_48

  • Talat Z, Thorne J and Bingel J. (2018). Bridging the Gaps: Multi Task Learning for Domain Transfer of Hate Speech Detection. Online Harassment. 10.1007/978-3-319-78583-7_3. (29-55).

    https://link.springer.com/10.1007/978-3-319-78583-7_3

  • Agrawal S and Awekar A. (2018). Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms. Advances in Information Retrieval. 10.1007/978-3-319-76941-7_11. (141-153).

    https://link.springer.com/10.1007/978-3-319-76941-7_11

  • Salminen J, Luotolahti J, Almerekhi H, Jansen B and Jung S. (2018). Neural Network Hate Deletion: Developing a Machine Learning Model to Eliminate Hate from Online Comments. Internet Science. 10.1007/978-3-030-01437-7_3. (25-39).

    http://link.springer.com/10.1007/978-3-030-01437-7_3

  • Chen H, McKeever S and Delany S. (2018). A Comparison of Classical Versus Deep Learning Techniques for Abusive Content Detection on Social Media Sites. Social Informatics. 10.1007/978-3-030-01129-1_8. (117-133).

    http://link.springer.com/10.1007/978-3-030-01129-1_8

  • Mayer F and Steinebach M. Forensic Image Inspection Assisted by Deep Learning. Proceedings of the 12th International Conference on Availability, Reliability and Security. (1-9).

    https://doi.org/10.1145/3098954.3104051

  • Ahmed S. Sentence Continuation Inference of Urdu Text by BERT Technique. SSRN Electronic Journal. 10.2139/ssrn.4144163.

    https://www.ssrn.com/abstract=4144163

  • Iqbal W, Tyson G and Castro I. Looking on Efficiency of Content Moderation Systems from the Lens of Reddit's Content Moderation Experience During COVID-19. SSRN Electronic Journal. 10.2139/ssrn.4007864.

    https://www.ssrn.com/abstract=4007864

  • Ren Y, Zhang H and Kraut R. How Did They Build the Free Encyclopedia? A Literature Review of Collaboration and Coordination among Wikipedia Editors. ACM Transactions on Computer-Human Interaction. 0:0.

    https://doi.org/10.1145/3617369

  • Safdar K, Nisar S, Iqbal W, Ahmad A and Bangash Y. Demographical Based Sentiment Analysis for Detection of Hate Speech Tweets for Low Resource Language. ACM Transactions on Asian and Low-Resource Language Information Processing. 0:0.

    https://doi.org/10.1145/3616867

  • Kumar A, Saumya S and Singh A. Detecting Dravidian Offensive Posts in MIoT: A Hybrid Deep Learning Framework. ACM Transactions on Asian and Low-Resource Language Information Processing. 0:0.

    https://doi.org/10.1145/3592602