Gustav Herglotz

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Gustav Herglotz (und Steffi)

Gustav Ferdinand Maria Herglotz (* 2. Februar 1881 in Wallern, Böhmerwald; † 22. März 1953 in Göttingen) war ein deutscher Mathematiker.

Herglotz studierte ab 1899 an der Universität Wien Mathematik und Astronomie, wo er auch seine Jugend verbrachte, und hörte u. a. Vorlesungen bei Ludwig Boltzmann. Während seiner Studienzeit schloss er eine enge Freundschaft mit seinen Kommilitonen Paul Ehrenfest, Hans Hahn und Heinrich Tietze. 1900 ging er nach München und promovierte dort 1902 bei Hugo von Seeliger in Astronomie (mit einer Arbeit, die theoretisch die starken Helligkeitsschwankungen des neu entdeckten Planetoiden Eros erklären sollte, welche nach Herglotz aus seiner länglichen Gestalt folgten). Danach ging er 1902 nach Göttingen, wo er sich 1904 bei Felix Klein habilitierte. 1904 wurde er dort Privatdozent für Astronomie und Mathematik und 1907 außerordentlicher Professor. In seiner Göttinger Zeit begann er sich auch für die Theorie der Erdbeben zu interessieren, und in Zusammenarbeit mit Emil Wiechert, der damals Göttingen zu einem Zentrum der Erdbebenforschung ausbaute, entwickelte er die Wiechert-Herglotz-Methode zur Bestimmung der Geschwindigkeitsverteilung im Erdinnern aus den bekannten Laufzeiten von Erdbebenwellen (also ein inverses Problem). Herglotz löste dabei eine spezielle Integralgleichung (vom Abel-Typus). 1908 wurde er außerordentlicher Professor in Wien, ging aber schon 1909 als ordentlicher Professor nach Leipzig. Dort wurde er 1914 als ordentliches Mitglied in die Sächsische Akademie der Wissenschaften aufgenommen. 1925 bis zu seiner Emeritierung 1947 war er wieder in Göttingen, als Nachfolger von Carl Runge auf dem Lehrstuhl für angewandte Mathematik. 1925 wurde er zum korrespondierenden und 1927 zum ordentlichen Mitglied der Göttinger Akademie der Wissenschaften gewählt.[1]

Herglotz leistete Beiträge auf vielen Gebieten der angewandten und reinen Mathematik. Bekannt ist der Satz von Herglotz aus der Differentialgeometrie: Auf jeder Eifläche (geschlossene konvexe Fläche) des dreidimensionalen reellen Raums gibt es mindestens drei geschlossene geodätische Linien. In der angewandten Mathematik befasste er sich neben Himmelsmechanik u. a. mit den Anfang des 20. Jahrhunderts aktuellen Themen Elektronentheorie, der Speziellen Relativitätstheorie (1910), wobei er eine relativistische Elastizitätstheorie entwickelte, der Allgemeinen Relativitätstheorie sowie mit Hydrodynamik und Beugungstheorie. In der Analysis leistete er u. a. Beiträge zur Theorie der Differentialgleichungen und zur Potentialtheorie. Selbst zur Zahlentheorie leistete er Beiträge (Theorie der Dirichletreihen 1905). In der Analysis stammt von ihm ein einfacher Beweis der von Leonhard Euler gefundenen Partialbruchentwicklung der Kotangens-Funktion (Herglotz-Trick).[2]

1915 erhielt er den Richard-Lieben-Preis.

Zu seinen Schülern zählte Emil Artin, der bei ihm in Leipzig 1921 promovierte.

Sein Nachlass wird vom Zentralarchiv deutscher Mathematiker-Nachlässe an der Niedersächsischen Staats- und Universitätsbibliothek Göttingen aufbewahrt.

Beiträge zur Relativitätstheorie

[Bearbeiten | Quelltext bearbeiten]
  • 1909[5] formulierte er (und unabhängig auch Fritz Noether) das Herglotz-Noether-Theorem für die Bewegung Born-starrer Körper in der SRT. Dabei zeigt er auch, dass die Lorentz-Transformationen den hyperbolischen Bewegungen (d. h. Isometrien des hyperbolischen Raumes) entsprechen, und klassifizierte die ein-parameter Lorentz-Transformationen in loxodromische, parabolische, elliptische, und hyperbolische Gruppen.
  • 1911 formulierte er eine relativistische Elastizitätstheorie.[6] Dabei führte er die Lorentz-Transformation für beliebige Richtungen der Geschwindigkeit ein.[7]

Werke (Auswahl und Online zugängliche Arbeiten)

[Bearbeiten | Quelltext bearbeiten]
  • Siegfried Gottwald, Hans-Joachim Ilgauds, Karl-Heinz Schlote (Hrsg.): Lexikon bedeutender Mathematiker. Bibliographisches Institut, Leipzig 1990, ISBN 3-323-00319-5.
  • Heinrich Tietze: Herglotz, Gustav Ferdinand Joseph. In: Neue Deutsche Biographie (NDB). Band 8, Duncker & Humblot, Berlin 1969, ISBN 3-428-00189-3, S. 611 (Digitalisat).
  • H.-J. Rossberg Gustav Herglotz – eine Verbindung von reiner Mathematik und mathematischer Physik, in Herbert Beckert, Horst Schumann (Hrsg.) 100 Jahre Mathematisches Seminar der Karl-Marx-Universität Leipzig, VEB Deutscher Verlag der Wissenschaften, Berlin 1981.
Commons: Gustav Herglotz – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Holger Krahnke: Die Mitglieder der Akademie der Wissenschaften zu Göttingen 1751–2001 (= Abhandlungen der Akademie der Wissenschaften zu Göttingen, Philologisch-Historische Klasse. Folge 3, Bd. 246 = Abhandlungen der Akademie der Wissenschaften in Göttingen, Mathematisch-Physikalische Klasse. Folge 3, Bd. 50). Vandenhoeck & Ruprecht, Göttingen 2001, ISBN 3-525-82516-1, S. 111.
  2. Aigner, Ziegler, Das Buch der Beweise, Springer 2018, S. 207ff (Kapitel 26)
  3. Herglotz, Gustav: Über die Berechnung retardierter Potentiale. In: Gött. Nachr. Nr. 6, 1904, S. 549 – 556 (Online).
  4. Sommerfeld, Arnold: Zur Relativitätstheorie II: Vierdimensionale Vektoranalysis. In: Annalen der Physik. Band 338, Nr. 14, 1910, S. 649–689, doi:10.1002/andp.19103381402, bibcode:1910AnP...338..649S.
  5. Herglotz, Gustav: Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper. In: Annalen der Physik. Band 336, Nr. 2, 1910, S. 393–415, doi:10.1002/andp.19103360208, bibcode:1910AnP...336..393H.
  6. Herglotz, Gustav: Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie. In: Annalen der Physik. Band 341, Nr. 13, 1911, S. 493–533, doi:10.1002/andp.19113411303, bibcode:1911AnP...341..493H (Online).
  7. a b Pauli, Wolfgang: Die Relativitätstheorie. In: Encyclopädie der mathematischen Wissenschaften. Band 5, Nr. 2, 1921, S. 539–776 (Online).
  8. G. Herglotz, Zur Einsteinschen Gravitationstheorie, Ber. über d. Verh. d. königl. sächs. Gesellsch. d. Wissensch. zu Leipzig, pp. 199–203 (1916).