File:OrderTypeExamples.pdf

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search

Original file (1,268 × 560 pixels, file size: 46 KB, MIME type: application/pdf)

Captions

Captions

Add a one-line explanation of what this file represents

Summary

[edit]
Description
English: Three different strict well-orders on the natural numbers, each with a distinct order type. They correspond to three different ordinal numbers, but all to the same cardinal number (viz. ).
The red order cannot be order-isomorphic to the green , since the latter has a greatest element (viz. 4), while the former has not. For the same reason, the blue and the green order cannot be isomorphic. The red and the blue cannot be order-isomorphic, since the former has one limit point (i.e. corresponding to a limit ordinal), while the latter has two.
Date
Source Own work
Author Jochen Burghardt
Other versions File:OrderTypeExamples.pdf - File:OrderTypeExamples svg.svg
LaTeX source code
\documentclass[12pt]{article}

\setlength{\unitlength}{1mm}

\usepackage[pdftex]{color}
\usepackage{amssymb}
\usepackage[paperwidth=215mm,paperheight=95mm]{geometry}

\setlength{\topmargin}{-36mm}
\setlength{\textwidth}{215mm}
\setlength{\textheight}{95mm}
\setlength{\oddsidemargin}{-23mm}
\setlength{\parindent}{0cm}

\pagestyle{empty}

% colors
\definecolor{fN}        {rgb}{0.50,0.00,0.00}   % \omega
\definecolor{fNV}       {rgb}{0.00,0.50,0.00}   % \omega+5
\definecolor{fNN}       {rgb}{0.00,0.00,0.50}   %\omega+\omega

\renewcommand{\leq}{\leqslant}
\newcommand{\N}{I\!\!N}

\newcommand{\curY}{(curY undefined)}

\newcommand{\NUM}[2]{%
        \put(#2,\curY){\put(0,-2){\line(0,1){4}}}%
        \put(#2,\curY){\put(0,3){\makebox(0,0)[b]{$#1$}}}%
}

\newcommand{\Num}[2]{%
        \put(#2,\curY){\put(0,-2){\line(0,1){4}}}%
        %\put(#2,\curY){\put(0,3){\makebox(0,0)[b]{$#1$}}}%
}

\newcommand{\num}[2]{%
        \put(#2,\curY){\put(0,-2){\line(0,1){4}}}%
        %\put(#2,\curY){\put(0,3){\makebox(0,0)[b]{$#1$}}}%
}

\begin{document}
\sf
\begin{picture}(210,90)(-5,0)
        %\put(-5,0){\makebox(0,0){$+$}}
        %\put(205,90){\makebox(0,0){$+$}}
\color{fN}%
\renewcommand{\curY}{80}%
\put(0,\curY){\line(1,0){100}}%
%!}texfractal -geom 0.000 5.000 0.950 100
\NUM{  0}{ 0.000}%
\NUM{  1}{ 5.000}%
\NUM{  2}{ 9.750}%
\NUM{  3}{14.262}%
\NUM{  4}{18.549}%
\NUM{  5}{22.622}%
\NUM{  6}{26.491}%
\NUM{  7}{30.166}%
\NUM{  8}{33.658}%
\NUM{  9}{36.975}%
\NUM{ 10}{40.126}%
\num{ 11}{43.120}%
\num{ 12}{45.964}%
\num{ 13}{48.666}%
\num{ 14}{51.233}%
\NUM{ 15}{53.671}%
\num{ 16}{55.987}%
\num{ 17}{58.188}%
\num{ 18}{60.279}%
\num{ 19}{62.265}%
\NUM{ 20}{64.151}%
\num{ 21}{65.944}%
\num{ 22}{67.647}%
\num{ 23}{69.264}%
\num{ 24}{70.801}%
\NUM{ 25}{72.261}%
\num{ 26}{73.648}%
\num{ 27}{74.966}%
\num{ 28}{76.217}%
\num{ 29}{77.406}%
\NUM{ 30}{78.536}%
\num{ 31}{79.609}%
\num{ 32}{80.629}%
\num{ 33}{81.597}%
\num{ 34}{82.518}%
\num{ 35}{83.392}%
\num{ 36}{84.222}%
\num{ 37}{85.011}%
\num{ 38}{85.760}%
\num{ 39}{86.472}%
\NUM{ 40}{87.149}%
\num{ 41}{87.791}%
\num{ 42}{88.402}%
\num{ 43}{88.982}%
\num{ 44}{89.533}%
\num{ 45}{90.056}%
\num{ 46}{90.553}%
\num{ 47}{91.026}%
\num{ 48}{91.474}%
\num{ 49}{91.901}%
\NUM{ 50}{92.306}%
\num{ 51}{92.690}%
\num{ 52}{93.056}%
\num{ 53}{93.403}%
\num{ 54}{93.733}%
\num{ 55}{94.046}%
\num{ 56}{94.344}%
\num{ 57}{94.627}%
\num{ 58}{94.895}%
\num{ 59}{95.151}%
\Num{ 60}{95.393}%
\num{ 61}{95.623}%
\num{ 62}{95.842}%
\num{ 63}{96.050}%
\num{ 64}{96.248}%
\num{ 65}{96.435}%
\num{ 66}{96.613}%
\num{ 67}{96.783}%
\num{ 68}{96.944}%
\num{ 69}{97.096}%
\Num{ 70}{97.242}%
\num{ 71}{97.380}%
\num{ 72}{97.511}%
\num{ 73}{97.635}%
\num{ 74}{97.753}%
\num{ 75}{97.866}%
\num{ 76}{97.972}%
\num{ 77}{98.074}%
\num{ 78}{98.170}%
\num{ 79}{98.262}%
\Num{ 80}{98.348}%
\num{ 81}{98.431}%
\num{ 82}{98.509}%
\num{ 83}{98.584}%
\num{ 84}{98.655}%
\num{ 85}{98.722}%
\num{ 86}{98.786}%
\num{ 87}{98.847}%
\num{ 88}{98.904}%
\num{ 89}{98.959}%
\Num{ 90}{99.011}%
\num{ 91}{99.061}%
\num{ 92}{99.108}%
\num{ 93}{99.152}%
\num{ 94}{99.195}%
\num{ 95}{99.235}%
\num{ 96}{99.273}%
\num{ 97}{99.309}%
\num{ 98}{99.344}%
\num{ 99}{99.377}%
\Num{100}{99.408}%
\num{101}{99.438}%
\num{102}{99.466}%
\num{103}{99.492}%
\num{104}{99.518}%
\num{105}{99.542}%
\num{106}{99.565}%
\num{107}{99.587}%
\num{108}{99.607}%
\num{109}{99.627}%
\Num{110}{99.646}%
\num{111}{99.663}%
\num{112}{99.680}%
\num{113}{99.696}%
\num{114}{99.711}%
\num{115}{99.726}%
\num{116}{99.739}%
\num{117}{99.752}%
\num{118}{99.765}%
\num{119}{99.777}%
\Num{120}{99.788}%
\num{121}{99.798}%
\num{122}{99.808}%
\num{123}{99.818}%
\num{124}{99.827}%
\num{125}{99.836}%
\num{126}{99.844}%
\num{127}{99.852}%
\num{128}{99.859}%
\num{129}{99.866}%
\Num{130}{99.873}%
\num{131}{99.879}%
\num{132}{99.885}%
\num{133}{99.891}%
\num{134}{99.896}%
\num{135}{99.902}%
\num{136}{99.907}%
\num{137}{99.911}%
\num{138}{99.916}%
\num{139}{99.920}%
\Num{140}{99.924}%
\num{141}{99.928}%
\num{142}{99.931}%
\num{143}{99.935}%
\num{144}{99.938}%
\num{145}{99.941}%
\num{146}{99.944}%
\num{147}{99.947}%
\num{148}{99.950}%
\num{149}{99.952}%
\Num{150}{99.954}%
\num{151}{99.957}%
\num{152}{99.959}%
\num{153}{99.961}%
\num{154}{99.963}%
\num{155}{99.965}%
\num{156}{99.967}%
\num{157}{99.968}%
\num{158}{99.970}%
\num{159}{99.971}%
\Num{160}{99.973}%
\num{161}{99.974}%
\num{162}{99.975}%
\num{163}{99.977}%
\num{164}{99.978}%
\num{165}{99.979}%
\num{166}{99.980}%
\num{167}{99.981}%
\num{168}{99.982}%
\num{169}{99.983}%
\Num{170}{99.984}%
\num{171}{99.984}%
\num{172}{99.985}%
\num{173}{99.986}%
\num{174}{99.987}%
\num{175}{99.987}%
\num{176}{99.988}%
\num{177}{99.989}%
\num{178}{99.989}%
\num{179}{99.990}%
\Num{180}{99.990}%
\num{181}{99.991}%
\num{182}{99.991}%
\num{183}{99.992}%
\num{184}{99.992}%
\num{185}{99.992}%
\num{186}{99.993}%
\num{187}{99.993}%
\num{188}{99.994}%
\num{189}{99.994}%
\Num{190}{99.994}%
\num{191}{99.994}%
\num{192}{99.995}%
\num{193}{99.995}%
\num{194}{99.995}%
\num{195}{99.995}%
\num{196}{99.996}%
\num{197}{99.996}%
\num{198}{99.996}%
\num{199}{99.996}%
\num{200}{99.996}%
%
\put(0,73){\makebox(0,0)[l]{Usual order $(<)$ on $\N$}}%
\put(0,68){\makebox(0,0)[l]{Order type ~ $\omega$}}%

\color{fNV}%
\renewcommand{\curY}{50}%
\put(0,\curY){\line(1,0){123.549}}%
\NUM{  5}{  0.000}%
\NUM{  6}{  5.000}%
\NUM{  7}{  9.750}%
\NUM{  8}{ 14.262}%
\NUM{  9}{ 18.549}%
\NUM{ 10}{ 22.622}%
\num{ 11}{ 26.491}%
\num{ 12}{ 30.166}%
\num{ 13}{ 33.658}%
\num{ 14}{ 36.975}%
\NUM{ 15}{ 40.126}%
\num{ 16}{ 43.120}%
\num{ 17}{ 45.964}%
\num{ 18}{ 48.666}%
\num{ 19}{ 51.233}%
\NUM{ 20}{ 53.671}%
\num{ 21}{ 55.987}%
\num{ 22}{ 58.188}%
\num{ 23}{ 60.279}%
\num{ 24}{ 62.265}%
\NUM{ 25}{ 64.151}%
\num{ 26}{ 65.944}%
\num{ 27}{ 67.647}%
\num{ 28}{ 69.264}%
\num{ 29}{ 70.801}%
\NUM{ 30}{ 72.261}%
\num{ 31}{ 73.648}%
\num{ 32}{ 74.966}%
\num{ 33}{ 76.217}%
\num{ 34}{ 77.406}%
\num{ 35}{ 78.536}%
\num{ 36}{ 79.609}%
\num{ 37}{ 80.629}%
\num{ 38}{ 81.597}%
\num{ 39}{ 82.518}%
\NUM{ 40}{ 83.392}%
\num{ 41}{ 84.222}%
\num{ 42}{ 85.011}%
\num{ 43}{ 85.760}%
\num{ 44}{ 86.472}%
\num{ 45}{ 87.149}%
\num{ 46}{ 87.791}%
\num{ 47}{ 88.402}%
\num{ 48}{ 88.982}%
\num{ 49}{ 89.533}%
\NUM{ 50}{ 90.056}%
\num{ 51}{ 90.553}%
\num{ 52}{ 91.026}%
\num{ 53}{ 91.474}%
\num{ 54}{ 91.901}%
\num{ 55}{ 92.306}%
\num{ 56}{ 92.690}%
\num{ 57}{ 93.056}%
\num{ 58}{ 93.403}%
\num{ 59}{ 93.733}%
\num{ 60}{ 94.046}%
\num{ 61}{ 94.344}%
\num{ 62}{ 94.627}%
\num{ 63}{ 94.895}%
\num{ 64}{ 95.151}%
\Num{ 65}{ 95.393}%
\num{ 66}{ 95.623}%
\num{ 67}{ 95.842}%
\num{ 68}{ 96.050}%
\num{ 69}{ 96.248}%
\num{ 70}{ 96.435}%
\num{ 71}{ 96.613}%
\num{ 72}{ 96.783}%
\num{ 73}{ 96.944}%
\num{ 74}{ 97.096}%
\Num{ 75}{ 97.242}%
\num{ 76}{ 97.380}%
\num{ 77}{ 97.511}%
\num{ 78}{ 97.635}%
\num{ 79}{ 97.753}%
\num{ 80}{ 97.866}%
\num{ 81}{ 97.972}%
\num{ 82}{ 98.074}%
\num{ 83}{ 98.170}%
\num{ 84}{ 98.262}%
\Num{ 85}{ 98.348}%
\num{ 86}{ 98.431}%
\num{ 87}{ 98.509}%
\num{ 88}{ 98.584}%
\num{ 94}{ 98.655}%
\num{ 90}{ 98.722}%
\num{ 91}{ 98.786}%
\num{ 92}{ 98.847}%
\num{ 93}{ 98.904}%
\num{ 94}{ 98.959}%
\Num{ 95}{ 99.011}%
\num{ 96}{ 99.061}%
\num{ 97}{ 99.108}%
\num{ 98}{ 99.152}%
\num{ 99}{ 99.195}%
\num{100}{ 99.235}%
\num{101}{ 99.273}%
\num{102}{ 99.309}%
\num{103}{ 99.344}%
\num{104}{ 99.377}%
\Num{105}{ 99.408}%
\num{106}{ 99.438}%
\num{107}{ 99.466}%
\num{108}{ 99.492}%
\num{109}{ 99.518}%
\num{110}{ 99.542}%
\num{111}{ 99.565}%
\num{112}{ 99.587}%
\num{113}{ 99.607}%
\num{114}{ 99.627}%
\Num{115}{ 99.646}%
\num{116}{ 99.663}%
\num{117}{ 99.680}%
\num{118}{ 99.696}%
\num{119}{ 99.711}%
\num{120}{ 99.726}%
\num{121}{ 99.739}%
\num{122}{ 99.752}%
\num{123}{ 99.765}%
\num{124}{ 99.777}%
\Num{125}{ 99.788}%
\num{126}{ 99.798}%
\num{127}{ 99.808}%
\num{128}{ 99.818}%
\num{129}{ 99.827}%
\num{130}{ 99.836}%
\num{131}{ 99.844}%
\num{132}{ 99.852}%
\num{133}{ 99.859}%
\num{134}{ 99.866}%
\Num{135}{ 99.873}%
\num{136}{ 99.879}%
\num{137}{ 99.885}%
\num{138}{ 99.891}%
\num{139}{ 99.896}%
\num{140}{ 99.902}%
\num{141}{ 99.907}%
\num{142}{ 99.911}%
\num{143}{ 99.916}%
\num{144}{ 99.920}%
\Num{145}{ 99.924}%
\num{146}{ 99.928}%
\num{147}{ 99.931}%
\num{148}{ 99.935}%
\num{149}{ 99.938}%
\num{150}{ 99.941}%
\num{151}{ 99.944}%
\num{152}{ 99.947}%
\num{153}{ 99.950}%
\num{154}{ 99.952}%
\Num{155}{ 99.954}%
\num{156}{ 99.957}%
\num{157}{ 99.959}%
\num{158}{ 99.961}%
\num{159}{ 99.963}%
\num{160}{ 99.965}%
\num{161}{ 99.967}%
\num{162}{ 99.968}%
\num{163}{ 99.970}%
\num{164}{ 99.971}%
\Num{165}{ 99.973}%
\num{166}{ 99.974}%
\num{167}{ 99.975}%
\num{168}{ 99.977}%
\num{169}{ 99.978}%
\num{170}{ 99.979}%
\num{171}{ 99.980}%
\num{172}{ 99.981}%
\num{173}{ 99.982}%
\num{174}{ 99.983}%
\Num{175}{ 99.984}%
\num{176}{ 99.984}%
\num{177}{ 99.985}%
\num{178}{ 99.986}%
\num{179}{ 99.987}%
\num{180}{ 99.987}%
\num{181}{ 99.988}%
\num{182}{ 99.989}%
\num{183}{ 99.989}%
\num{184}{ 99.990}%
\Num{185}{ 99.990}%
\num{186}{ 99.991}%
\num{187}{ 99.991}%
\num{188}{ 99.992}%
\num{189}{ 99.992}%
\num{190}{ 99.992}%
\num{191}{ 99.993}%
\num{192}{ 99.993}%
\num{193}{ 99.994}%
\num{194}{ 99.994}%
\Num{195}{ 99.994}%
\num{196}{ 99.994}%
\num{197}{ 99.995}%
\num{198}{ 99.995}%
\num{199}{ 99.995}%
\num{200}{ 99.995}%
\num{201}{ 99.996}%
\num{202}{ 99.996}%
\num{203}{ 99.996}%
\num{204}{ 99.996}%
\num{205}{ 99.996}%
%
\NUM{  0}{105.000}%
\NUM{  1}{110.000}%
\NUM{  2}{114.750}%
\NUM{  3}{119.262}%
\NUM{  4}{123.549}%
%
\put(0,43){\makebox(0,0)[l]{%
        Define ~
        $m \prec n$
        ~ as  ~
        $5 \mathrel{\textcolor{fN}{\leq}} m \mathrel{\textcolor{fN}{<}} n$
        ~ or ~
        $m \mathrel{\textcolor{fN}{<}} n \mathrel{\textcolor{fN}{\leq}} 4$
        ~ or ~
        $n \mathrel{\textcolor{fN}{\leq}} 4 \mathrel{\textcolor{fN}{<}} m$
}}%
\put(0,38){\makebox(0,0)[l]{Order type ~ $\omega+5$}}%

\color{fNN}%
\renewcommand{\curY}{20}%
\put(0,\curY){\line(1,0){205}}%
\NUM{  0}{  0.000}%
\NUM{  2}{  5.000}%
\NUM{  4}{  9.750}%
\NUM{  6}{ 14.262}%
\NUM{  8}{ 18.549}%
\NUM{ 10}{ 22.622}%
\num{ 12}{ 26.491}%
\num{ 14}{ 30.166}%
\num{ 16}{ 33.658}%
\num{ 18}{ 36.975}%
\NUM{ 20}{ 40.126}%
\num{ 22}{ 43.120}%
\num{ 24}{ 45.964}%
\num{ 26}{ 48.666}%
\num{ 28}{ 51.233}%
\NUM{ 30}{ 53.671}%
\num{ 32}{ 55.987}%
\num{ 34}{ 58.188}%
\num{ 36}{ 60.279}%
\num{ 38}{ 62.265}%
\NUM{ 40}{ 64.151}%
\num{ 42}{ 65.944}%
\num{ 44}{ 67.647}%
\num{ 46}{ 69.264}%
\num{ 48}{ 70.801}%
\NUM{ 50}{ 72.261}%
\num{ 52}{ 73.648}%
\num{ 54}{ 74.966}%
\num{ 56}{ 76.217}%
\num{ 58}{ 77.406}%
\NUM{ 60}{ 78.536}%
\num{ 62}{ 79.609}%
\num{ 64}{ 80.629}%
\num{ 66}{ 81.597}%
\num{ 68}{ 82.518}%
\num{ 70}{ 83.392}%
\num{ 72}{ 84.222}%
\num{ 74}{ 85.011}%
\num{ 76}{ 85.760}%
\num{ 78}{ 86.472}%
\NUM{ 80}{ 87.149}%
\num{ 82}{ 87.791}%
\num{ 84}{ 88.402}%
\num{ 86}{ 88.982}%
\num{ 88}{ 89.533}%
\num{ 90}{ 90.056}%
\num{ 92}{ 90.553}%
\num{ 94}{ 91.026}%
\num{ 96}{ 91.474}%
\num{ 98}{ 91.901}%
\num{100}{ 92.306}%
\num{102}{ 92.690}%
\num{104}{ 93.056}%
\num{106}{ 93.403}%
\num{108}{ 93.733}%
\num{110}{ 94.046}%
\num{112}{ 94.344}%
\num{114}{ 94.627}%
\num{116}{ 94.895}%
\num{118}{ 95.151}%
\Num{120}{ 95.393}%
\num{122}{ 95.623}%
\num{124}{ 95.842}%
\num{126}{ 96.050}%
\num{128}{ 96.248}%
\num{130}{ 96.435}%
\num{132}{ 96.613}%
\num{134}{ 96.783}%
\num{136}{ 96.944}%
\num{138}{ 97.096}%
\Num{140}{ 97.242}%
\num{142}{ 97.380}%
\num{144}{ 97.511}%
\num{146}{ 97.635}%
\num{148}{ 97.753}%
\num{150}{ 97.866}%
\num{152}{ 97.972}%
\num{154}{ 98.074}%
\num{156}{ 98.170}%
\num{158}{ 98.262}%
\Num{160}{ 98.348}%
\num{162}{ 98.431}%
\num{164}{ 98.509}%
\num{166}{ 98.584}%
\num{168}{ 98.655}%
\num{170}{ 98.722}%
\num{172}{ 98.786}%
\num{174}{ 98.847}%
\num{176}{ 98.904}%
\num{178}{ 98.959}%
\Num{180}{ 99.011}%
\num{182}{ 99.061}%
\num{184}{ 99.108}%
\num{186}{ 99.152}%
\num{188}{ 99.195}%
\num{190}{ 99.235}%
\num{192}{ 99.273}%
\num{194}{ 99.309}%
\num{196}{ 99.344}%
\num{198}{ 99.377}%
\Num{200}{ 99.408}%
\num{202}{ 99.438}%
\num{204}{ 99.466}%
\num{206}{ 99.492}%
\num{208}{ 99.518}%
\num{210}{ 99.542}%
\num{212}{ 99.565}%
\num{214}{ 99.587}%
\num{216}{ 99.607}%
\num{218}{ 99.627}%
\Num{220}{ 99.646}%
\num{222}{ 99.663}%
\num{224}{ 99.680}%
\num{226}{ 99.696}%
\num{228}{ 99.711}%
\num{230}{ 99.726}%
\num{232}{ 99.739}%
\num{234}{ 99.752}%
\num{236}{ 99.765}%
\num{238}{ 99.777}%
\Num{240}{ 99.788}%
\num{242}{ 99.798}%
\num{244}{ 99.808}%
\num{246}{ 99.818}%
\num{248}{ 99.827}%
\num{250}{ 99.836}%
\num{252}{ 99.844}%
\num{254}{ 99.852}%
\num{256}{ 99.859}%
\num{258}{ 99.866}%
\Num{260}{ 99.873}%
\num{262}{ 99.879}%
\num{264}{ 99.885}%
\num{266}{ 99.891}%
\num{268}{ 99.896}%
\num{270}{ 99.902}%
\num{272}{ 99.907}%
\num{274}{ 99.911}%
\num{276}{ 99.916}%
\num{278}{ 99.920}%
\Num{280}{ 99.924}%
\num{282}{ 99.928}%
\num{284}{ 99.931}%
\num{286}{ 99.935}%
\num{288}{ 99.938}%
\num{290}{ 99.941}%
\num{292}{ 99.944}%
\num{294}{ 99.947}%
\num{296}{ 99.950}%
\num{298}{ 99.952}%
\Num{300}{ 99.954}%
\num{302}{ 99.957}%
\num{304}{ 99.959}%
\num{306}{ 99.961}%
\num{308}{ 99.963}%
\num{310}{ 99.965}%
\num{312}{ 99.967}%
\num{314}{ 99.968}%
\num{316}{ 99.970}%
\num{318}{ 99.971}%
\Num{320}{ 99.973}%
\num{322}{ 99.974}%
\num{324}{ 99.975}%
\num{326}{ 99.977}%
\num{328}{ 99.978}%
\num{330}{ 99.979}%
\num{332}{ 99.980}%
\num{334}{ 99.981}%
\num{336}{ 99.982}%
\num{338}{ 99.983}%
\Num{340}{ 99.984}%
\num{342}{ 99.984}%
\num{344}{ 99.985}%
\num{346}{ 99.986}%
\num{348}{ 99.987}%
\num{350}{ 99.987}%
\num{352}{ 99.988}%
\num{354}{ 99.989}%
\num{356}{ 99.989}%
\num{358}{ 99.990}%
\Num{360}{ 99.990}%
\num{362}{ 99.991}%
\num{364}{ 99.991}%
\num{366}{ 99.992}%
\num{368}{ 99.992}%
\num{370}{ 99.992}%
\num{372}{ 99.993}%
\num{374}{ 99.993}%
\num{376}{ 99.994}%
\num{378}{ 99.994}%
\Num{380}{ 99.994}%
\num{382}{ 99.994}%
\num{384}{ 99.995}%
\num{386}{ 99.995}%
\num{388}{ 99.995}%
\num{390}{ 99.995}%
\num{392}{ 99.996}%
\num{394}{ 99.996}%
\num{396}{ 99.996}%
\num{398}{ 99.996}%
\num{400}{ 99.996}%
%
\NUM{  1}{105.000}%
\NUM{  3}{110.000}%
\NUM{  5}{114.750}%
\NUM{  7}{119.262}%
\NUM{  9}{123.549}%
\NUM{ 11}{127.622}%
\num{ 13}{131.491}%
\num{ 15}{135.166}%
\num{ 17}{138.658}%
\num{ 19}{141.975}%
\NUM{ 21}{145.126}%
\num{ 23}{148.120}%
\num{ 25}{150.964}%
\num{ 27}{153.666}%
\num{ 29}{156.233}%
\NUM{ 31}{158.671}%
\num{ 33}{160.987}%
\num{ 35}{163.188}%
\num{ 37}{165.279}%
\num{ 39}{167.265}%
\NUM{ 41}{169.151}%
\num{ 43}{170.944}%
\num{ 45}{172.647}%
\num{ 47}{174.264}%
\num{ 49}{175.801}%
\NUM{ 51}{177.261}%
\num{ 53}{178.648}%
\num{ 55}{179.966}%
\num{ 57}{181.217}%
\num{ 59}{182.406}%
\NUM{ 61}{183.536}%
\num{ 63}{184.609}%
\num{ 65}{185.629}%
\num{ 67}{186.597}%
\num{ 69}{187.518}%
\num{ 71}{188.392}%
\num{ 73}{189.222}%
\num{ 75}{190.011}%
\num{ 77}{190.760}%
\num{ 79}{191.472}%
\NUM{ 81}{192.149}%
\num{ 83}{192.791}%
\num{ 85}{193.402}%
\num{ 87}{193.982}%
\num{ 89}{194.533}%
\num{ 91}{195.056}%
\num{ 93}{195.553}%
\num{ 95}{196.026}%
\num{ 97}{196.474}%
\num{ 99}{196.901}%
\num{101}{197.306}%
\num{103}{197.690}%
\num{105}{198.056}%
\num{107}{198.403}%
\num{109}{198.733}%
\num{111}{199.046}%
\num{113}{199.344}%
\num{115}{199.627}%
\num{117}{199.895}%
\num{119}{200.151}%
\Num{121}{200.393}%
\num{123}{200.623}%
\num{125}{200.842}%
\num{127}{201.050}%
\num{129}{201.248}%
\num{131}{201.435}%
\num{133}{201.613}%
\num{135}{201.783}%
\num{137}{201.944}%
\num{139}{202.096}%
\Num{141}{202.242}%
\num{143}{202.380}%
\num{145}{202.511}%
\num{147}{202.635}%
\num{149}{202.753}%
\num{151}{202.866}%
\num{153}{202.972}%
\num{155}{203.074}%
\num{157}{203.170}%
\num{159}{203.262}%
\Num{161}{203.348}%
\num{163}{203.431}%
\num{165}{203.509}%
\num{167}{203.584}%
\num{169}{203.655}%
\num{171}{203.722}%
\num{173}{203.786}%
\num{175}{203.847}%
\num{177}{203.904}%
\num{179}{203.959}%
\Num{181}{204.011}%
\num{183}{204.061}%
\num{185}{204.108}%
\num{187}{204.152}%
\num{189}{204.195}%
\num{191}{204.235}%
\num{193}{204.273}%
\num{195}{204.309}%
\num{197}{204.344}%
\num{199}{204.377}%
\Num{201}{204.408}%
\num{203}{204.438}%
\num{205}{204.466}%
\num{207}{204.492}%
\num{209}{204.518}%
\num{211}{204.542}%
\num{213}{204.565}%
\num{215}{204.587}%
\num{217}{204.607}%
\num{219}{204.627}%
\Num{221}{204.646}%
\num{223}{204.663}%
\num{225}{204.680}%
\num{227}{204.696}%
\num{229}{204.711}%
\num{231}{204.726}%
\num{233}{204.739}%
\num{235}{204.752}%
\num{237}{204.765}%
\num{239}{204.777}%
\Num{241}{204.788}%
\num{243}{204.798}%
\num{245}{204.808}%
\num{247}{204.818}%
\num{249}{204.827}%
\num{251}{204.836}%
\num{253}{204.844}%
\num{255}{204.852}%
\num{257}{204.859}%
\num{259}{204.866}%
\Num{261}{204.873}%
\num{263}{204.879}%
\num{265}{204.885}%
\num{267}{204.891}%
\num{269}{204.896}%
\num{271}{204.902}%
\num{273}{204.907}%
\num{275}{204.911}%
\num{277}{204.916}%
\num{279}{204.920}%
\Num{281}{204.924}%
\num{283}{204.928}%
\num{285}{204.931}%
\num{287}{204.935}%
\num{289}{204.938}%
\num{291}{204.941}%
\num{293}{204.944}%
\num{295}{204.947}%
\num{297}{204.950}%
\num{299}{204.952}%
\Num{301}{204.954}%
\num{303}{204.957}%
\num{305}{204.959}%
\num{307}{204.961}%
\num{309}{204.963}%
\num{311}{204.965}%
\num{313}{204.967}%
\num{315}{204.968}%
\num{317}{204.970}%
\num{319}{204.971}%
\Num{321}{204.973}%
\num{323}{204.974}%
\num{325}{204.975}%
\num{327}{204.977}%
\num{329}{204.978}%
\num{331}{204.979}%
\num{333}{204.980}%
\num{335}{204.981}%
\num{337}{204.982}%
\num{339}{204.983}%
\Num{341}{204.984}%
\num{343}{204.984}%
\num{345}{204.985}%
\num{347}{204.986}%
\num{349}{204.987}%
\num{351}{204.987}%
\num{353}{204.988}%
\num{355}{204.989}%
\num{357}{204.989}%
\num{359}{204.990}%
\Num{361}{204.990}%
\num{363}{204.991}%
\num{365}{204.991}%
\num{367}{204.992}%
\num{369}{204.992}%
\num{371}{204.992}%
\num{373}{204.993}%
\num{375}{204.993}%
\num{377}{204.994}%
\num{379}{204.994}%
\Num{381}{204.994}%
\num{383}{204.994}%
\num{385}{204.995}%
\num{387}{204.995}%
\num{389}{204.995}%
\num{391}{204.995}%
\num{393}{204.996}%
\num{395}{204.996}%
\num{397}{204.996}%
\num{399}{204.996}%
\num{401}{204.996}%
%
\put(0,13){\makebox(0,0)[l]{%
        Define ~
        $m \sqsubset n$
        ~ as  ~
        ( $m+n$ even
        ~ and ~
        $m \mathrel{\textcolor{fN}{<}} n$ )
        ~ or ~
        ( $m$ even
        ~ and ~
        $n$ odd )
}}%
\put(0,8){\makebox(0,0)[l]{Order type ~ $\omega+\omega$}}%

\end{picture}
\end{document}

Licensing

[edit]
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:29, 2 November 2019Thumbnail for version as of 16:29, 2 November 20191,268 × 560 (46 KB)Jochen Burghardt (talk | contribs)User created page with UploadWizard

Metadata