Secondary indexes

In a Spanner database, Spanner automatically creates an index for each table's primary key. For example, you don't need to do anything to index the primary key of Singers, because it's automatically indexed for you.

You can also create secondary indexes for other columns. Adding a secondary index on a column makes it more efficient to look up data in that column. For example, if you need to quickly look up an album by title, you should create a secondary index on AlbumTitle, so that Spanner does not need to scan the entire table.

If the lookup in the previous example is done within a read-write transaction, then the more efficient lookup also avoids holding locks on the entire table, which allows concurrent inserts and updates to the table for rows outside of the AlbumTitle lookup range.

In addition to the benefits they bring to lookups, secondary indexes can also help Spanner execute scans more efficiently, enabling index scans rather than full table scans.

Spanner stores the following data in each secondary index:

Over time, Spanner analyzes your tables to ensure that your secondary indexes are used for the appropriate queries.

Add a secondary index

The most efficient time to add a secondary index is when you create the table. To create a table and its indexes at the same time, send the DDL statements for the new table and the new indexes in a single request to Spanner.

In Spanner, you can also add a new secondary index to an existing table while the database continues to serve traffic. Like any other schema changes in Spanner, adding an index to an existing database does not require taking the database offline and does not lock entire columns or tables.

Whenever a new index is added to an existing table, Spanner automatically backfills, or populates, the index to reflect an up-to-date view of the data being indexed. Spanner manages this backfill process for you, and the process runs in the background using node resources at low priority. In most cases, it is not possible to speed-up the process (e.g., by adding more nodes), and backfilling does not significantly affect the performance of the database.

Index creation can take from several minutes to many hours. Because index creation is a schema update, it is bound by the same performance constraints as any other schema update. The time needed to create a secondary index depends on several factors:

  • The size of the dataset
  • The compute capacity of the instance
  • The load on the instance

To view the progress made for an index backfill process, refer to the progress section.

Be aware that using the commit timestamp column as the first part of the secondary index can create hotspots and reduce write performance.

Use the CREATE INDEX statement to define a secondary index in your schema. Here are some examples:

To index all Singers in the database by their first and last name:

GoogleSQL

CREATE INDEX SingersByFirstLastName ON Singers(FirstName, LastName);

PostgreSQL

CREATE INDEX SingersByFirstLastName ON Singers(FirstName, LastName);

To create an index of all Songs in the database by the value of SongName:

GoogleSQL

CREATE INDEX SongsBySongName ON Songs(SongName);

PostgreSQL

CREATE INDEX SongsBySongName ON Songs(SongName);

To index only the songs for a particular singer, use the INTERLEAVE IN clause to interleave the index in the table Singers:

GoogleSQL

CREATE INDEX SongsBySingerSongName ON Songs(SingerId, SongName),
    INTERLEAVE IN Singers;

PostgreSQL

CREATE INDEX SongsBySingerSongName ON Songs(SingerId, SongName)
    INTERLEAVE IN Singers;

To index only the songs on a particular album:

GoogleSQL

CREATE INDEX SongsBySingerAlbumSongName ON Songs(SingerId, AlbumId, SongName),
    INTERLEAVE IN Albums;

PostgreSQL

CREATE INDEX SongsBySingerAlbumSongName ON Songs(SingerId, AlbumId, SongName)
    INTERLEAVE IN Albums;

To index by descending order of SongName:

GoogleSQL

CREATE INDEX SongsBySingerAlbumSongNameDesc ON Songs(SingerId, AlbumId, SongName DESC),
    INTERLEAVE IN Albums;

PostgreSQL

CREATE INDEX SongsBySingerAlbumSongNameDesc ON Songs(SingerId, AlbumId, SongName DESC)
    INTERLEAVE IN Albums;

Note that the previous DESC annotation applies only to SongName. To index by descending order of other index keys, annotate them with DESC as well: SingerId DESC, AlbumId DESC.

Also note that PRIMARY_KEY is a reserved word and cannot be used as the name of an index. It is the name given to the pseudo-index that is created when a table with PRIMARY KEY specification is created

For more details and best practices for choosing non-interleaved indexes and interleaved indexes, see Index options and Use an interleaved index on a column whose value monotonically increases or decreases.

Check index backfill progress

Console

  1. In the Spanner navigation menu, click the Operations tab. The Operations page shows a list of currently running operations.

  2. Find the backfill operation in the list. If it's still running, the progress indicator in the End time column shows the percentage of the operation that is complete, as shown in the following image:

    Screenshot of progress indicator showing 98%

gcloud

Use gcloud spanner operations describe to check the progress of an operation.

  1. Get the operation ID:

    gcloud spanner operations list --instance=INSTANCE-NAME \
    --database=DATABASE-NAME --type=DATABASE_UPDATE_DDL
    

    Replace the following:

    • INSTANCE-NAME with the Spanner instance name.
    • DATABASE-NAME with the name of the database.

    Usage notes:

    • To limit the list, specify the --filter flag. For example:

      • --filter="metadata.name:example-db" only lists the operations on a specific database.
      • --filter="error:*" only lists the backup operations that failed.

      For information on filter syntax, see gcloud topic filters. For information on filtering backup operations, see the filter field in ListBackupOperationsRequest.

    • The --type flag is not case sensitive.

    The output looks similar to the following:

    OPERATION_ID     STATEMENTS                                                                                          DONE   @TYPE
    _auto_op_123456  CREATE INDEX SingersByFirstLastName ON Singers(FirstName, LastName)                                 False  UpdateDatabaseDdlMetadata
                    CREATE INDEX SongsBySingerAlbumSongName ON Songs(SingerId, AlbumId, SongName), INTERLEAVE IN Albums
    _auto_op_234567                                                                                                      True   CreateDatabaseMetadata
    
  2. Run gcloud spanner operations describe:

    gcloud spanner operations describe \
    --instance=INSTANCE-NAME \
    --database=DATABASE-NAME \
    projects/PROJECT-NAME/instances/INSTANCE-NAME/databases/DATABASE-NAME/operations/OPERATION_ID
    

    Replace the following:

    • INSTANCE-NAME: The Spanner instance name.
    • DATABASE-NAME: The Spanner database name.
    • PROJECT-NAME: The project name.
    • OPERATION-ID: The operation ID of the operation that you want to check.

    The progress section in the output shows the percentage of the operation that's complete. The output looks similar to the following::

    done: true
    ...
      progress:
      - endTime: '2021-01-22T21:58:42.912540Z'
        progressPercent: 100
        startTime: '2021-01-22T21:58:11.053996Z'
      - progressPercent: 67
        startTime: '2021-01-22T21:58:11.053996Z'
    ...
    

REST v1

Get the operation ID:

  gcloud spanner operations list --instance=INSTANCE-NAME 
--database=DATABASE-NAME --type=DATABASE_UPDATE_DDL

Replace the following:

  • INSTANCE-NAME with the Spanner instance name.
  • DATABASE-NAME with the name of the database.

Before using any of the request data, make the following replacements:

  • PROJECT-ID: the project ID.
  • INSTANCE-ID: the instance ID.
  • DATABASE-ID: the database ID.
  • OPERATION-ID: the operation ID.

HTTP method and URL:

GET https://spanner.googleapis.com/v1/projects/PROJECT-ID/instances/INSTANCE-ID/databases/DATABASE-ID/operations/OPERATION-ID

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
...
    "progress": [
      {
        "progressPercent": 100,
        "startTime": "2023-05-27T00:52:27.366688Z",
        "endTime": "2023-05-27T00:52:30.184845Z"
      },
      {
        "progressPercent": 100,
        "startTime": "2023-05-27T00:52:30.184845Z",
        "endTime": "2023-05-27T00:52:40.750959Z"
      }
    ],
...
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

For gcloud and REST, you can find the progress of each index backfill statement in the progress section. For each statement in the statement array, there is a corresponding field in the progress array. This progress array order corresponds to the order of the statements array. Once available, the startTime, progressPercent, and endTime fields are populated accordingly. Note that the output doesn't show an estimated time for when the backfill progress will complete.

If the operation takes too long, you can cancel it. For more information, see Cancel index creation.

Scenarios when viewing index backfill progress

There are different scenarios that you can encounter when trying to check the progress of an index backfill. Index creation statements that require an index backfill are part of schema update operations, and there can be several statements that are part of a schema update operation.

The first scenario is the simplest, which is when the index creation statement is the first statement in the schema update operation. Since the index creation statement is the first statement, it is the first one processed and executed due to the order of execution. Immediately, the startTime field of the index creation statement will populate with the start time of the schema update operation. Next, the index creation statement's progressPercent field is populated when the progress of the index backfill is over 0%. Finally, the endTime field is populated once the statement is committed.

The second scenario is when the index creation statement is not the first statement in the schema update operation. No fields related to the index creation statement will populate until the previous statement(s) have been committed due to the order of execution. Similar to the previous scenario, once the previous statements are committed, the startTime field of the index creation statement populates first, followed by the progressPercent field. Lastly, the endTime field populates once the statement finishes committing.

Cancel index creation

You can use the Google Cloud CLI to cancel index creation. To retrieve a list of schema-update operations for a Spanner database, use the gcloud spanner operations list command, and include the --filter option:

gcloud spanner operations list \
    --instance=INSTANCE \
    --database=DATABASE \
    --filter="@TYPE:UpdateDatabaseDdlMetadata"

Find the OPERATION_ID for the operation you want to cancel, then use the gcloud spanner operations cancel command to cancel it:

gcloud spanner operations cancel OPERATION_ID \
    --instance=INSTANCE \
    --database=DATABASE

View existing indexes

To view information about existing indexes in a database, you can use the Google Cloud console or the Google Cloud CLI:

Console

  1. Go to the Spanner Instances page in the Google Cloud console.

    Go to the Instances page

  2. Click the name of the instance you want to view.

  3. In the left pane, click the database you want to view, then click the table you want to view.

  4. Click the Indexes tab. The Google Cloud console shows a list of indexes.

  5. Optional: To get details about an index, such as the columns that it includes, click the name of the index.

gcloud

Use the gcloud spanner databases ddl describe command:

    gcloud spanner databases ddl describe DATABASE \
        --instance=INSTANCE

The gcloud CLI prints the Data Definition Language (DDL) statements to create the database's tables and indexes. The CREATE INDEX statements describe the existing indexes. For example:

    --- |-
  CREATE TABLE Singers (
    SingerId INT64 NOT NULL,
    FirstName STRING(1024),
    LastName STRING(1024),
    SingerInfo BYTES(MAX),
  ) PRIMARY KEY(SingerId)
---
  CREATE INDEX SingersByFirstLastName ON Singers(FirstName, LastName)

Query with a specific index

The following sections explain how to specify an index in a SQL statement and with the read interface for Spanner. The examples in these sections assume that you added a MarketingBudget column to the Albums table and created an index called AlbumsByAlbumTitle:

GoogleSQL

CREATE TABLE Albums (
  SingerId         INT64 NOT NULL,
  AlbumId          INT64 NOT NULL,
  AlbumTitle       STRING(MAX),
  MarketingBudget  INT64,
) PRIMARY KEY (SingerId, AlbumId),
  INTERLEAVE IN PARENT Singers ON DELETE CASCADE;

CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle);

PostgreSQL

CREATE TABLE Albums (
  SingerId         BIGINT NOT NULL,
  AlbumId          BIGINT NOT NULL,
  AlbumTitle       VARCHAR,
  MarketingBudget  BIGINT,
  PRIMARY KEY (SingerId, AlbumId)
) INTERLEAVE IN PARENT Singers ON DELETE CASCADE;

CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle);

Specify an index in a SQL statement

When you use SQL to query a Spanner table, Spanner automatically uses any indexes that are likely to make the query more efficient. As a result, you don't need to specify an index for SQL queries. However, for queries that are critical for your workload, Google advises you to use FORCE_INDEX directives in your SQL statements for more consistent performance.

In a few cases, Spanner might choose an index that causes query latency to increase. If you've followed the troubleshooting steps for performance regressions and confirmed that it makes sense to try a different index for the query, you can specify the index as part of your query.

To specify an index in a SQL statement, use the FORCE_INDEX hint to provide an index directive. Index directives use the following syntax:

GoogleSQL

FROM MyTable@{FORCE_INDEX=MyTableIndex}

PostgreSQL

FROM MyTable /*@ FORCE_INDEX = MyTableIndex */

You can also use an index directive to tell Spanner to scan the base table instead of using an index:

GoogleSQL

FROM MyTable@{FORCE_INDEX=_BASE_TABLE}

PostgreSQL

FROM MyTable /*@ FORCE_INDEX = _BASE_TABLE */

The following example shows a SQL query that specifies an index:

GoogleSQL

SELECT AlbumId, AlbumTitle, MarketingBudget
    FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle}
    WHERE AlbumTitle >= "Aardvark" AND AlbumTitle < "Goo";

PostgreSQL

SELECT AlbumId, AlbumTitle, MarketingBudget
    FROM Albums /*@ FORCE_INDEX = AlbumsByAlbumTitle */
    WHERE AlbumTitle >= 'Aardvark' AND AlbumTitle < 'Goo';

An index directive might force Spanner's query processor to read additional columns that are required by the query but not stored in the index. The query processor retrieves these columns by joining the index and the base table. To avoid this extra join, use a STORING clause (GoogleSQL-dialect databases) or INCLUDE clause (PostgreSQL-dialect databases) to store the additional columns in the index.

In the previous example, the MarketingBudget column is not stored in the index, but the SQL query selects this column. As a result, Spanner must look up the MarketingBudget column in the base table, then join it with data from the index, to return the query results.

Spanner raises an error if the index directive has any of the following issues:

The following examples show how to write and execute queries that fetch the values of AlbumId, AlbumTitle, and MarketingBudget using the index AlbumsByAlbumTitle:

C++

void QueryUsingIndex(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  spanner::SqlStatement select(
      "SELECT AlbumId, AlbumTitle, MarketingBudget"
      " FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle}"
      " WHERE AlbumTitle >= @start_title AND AlbumTitle < @end_title",
      {{"start_title", spanner::Value("Aardvark")},
       {"end_title", spanner::Value("Goo")}});
  using RowType =
      std::tuple<std::int64_t, std::string, absl::optional<std::int64_t>>;
  auto rows = client.ExecuteQuery(std::move(select));
  for (auto& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::move(row).status();
    std::cout << "AlbumId: " << std::get<0>(*row) << "\t";
    std::cout << "AlbumTitle: " << std::get<1>(*row) << "\t";
    auto marketing_budget = std::get<2>(*row);
    if (marketing_budget) {
      std::cout << "MarketingBudget: " << *marketing_budget << "\n";
    } else {
      std::cout << "MarketingBudget: NULL\n";
    }
  }
  std::cout << "Read completed for [spanner_query_data_with_index]\n";
}

C#


using Google.Cloud.Spanner.Data;
using System.Collections.Generic;
using System.Threading.Tasks;

public class QueryDataWithIndexAsyncSample
{
    public class Album
    {
        public int AlbumId { get; set; }
        public string AlbumTitle { get; set; }
        public long MarketingBudget { get; set; }
    }

    public async Task<List<Album>> QueryDataWithIndexAsync(string projectId, string instanceId, string databaseId,
        string startTitle, string endTitle)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";
        using var connection = new SpannerConnection(connectionString);
        using var cmd = connection.CreateSelectCommand(
            "SELECT AlbumId, AlbumTitle, MarketingBudget FROM Albums@ "
            + "{FORCE_INDEX=AlbumsByAlbumTitle} "
            + $"WHERE AlbumTitle >= @startTitle "
            + $"AND AlbumTitle < @endTitle",
            new SpannerParameterCollection
            {
                { "startTitle", SpannerDbType.String, startTitle },
                { "endTitle", SpannerDbType.String, endTitle }
            });

        var albums = new List<Album>();
        using var reader = await cmd.ExecuteReaderAsync();
        while (await reader.ReadAsync())
        {
            albums.Add(new Album
            {
                AlbumId = reader.GetFieldValue<int>("AlbumId"),
                AlbumTitle = reader.GetFieldValue<string>("AlbumTitle"),
                MarketingBudget = reader.IsDBNull(reader.GetOrdinal("MarketingBudget")) ? 0 : reader.GetFieldValue<long>("MarketingBudget")
            });
        }
        return albums;
    }
}

Go


import (
	"context"
	"fmt"
	"io"
	"strconv"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func queryUsingIndex(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	stmt := spanner.Statement{
		SQL: `SELECT AlbumId, AlbumTitle, MarketingBudget
			FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle}
			WHERE AlbumTitle >= @start_title AND AlbumTitle < @end_title`,
		Params: map[string]interface{}{
			"start_title": "Aardvark",
			"end_title":   "Goo",
		},
	}
	iter := client.Single().Query(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		var albumID int64
		var marketingBudget spanner.NullInt64
		var albumTitle string
		if err := row.ColumnByName("AlbumId", &albumID); err != nil {
			return err
		}
		if err := row.ColumnByName("AlbumTitle", &albumTitle); err != nil {
			return err
		}
		if err := row.ColumnByName("MarketingBudget", &marketingBudget); err != nil {
			return err
		}
		budget := "NULL"
		if marketingBudget.Valid {
			budget = strconv.FormatInt(marketingBudget.Int64, 10)
		}
		fmt.Fprintf(w, "%d %s %s\n", albumID, albumTitle, budget)
	}
	return nil
}

Java

static void queryUsingIndex(DatabaseClient dbClient) {
  Statement statement =
      Statement
          // We use FORCE_INDEX hint to specify which index to use. For more details see
          // https://cloud.google.com/spanner/docs/query-syntax#from-clause
          .newBuilder(
              "SELECT AlbumId, AlbumTitle, MarketingBudget "
                  + "FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle} "
                  + "WHERE AlbumTitle >= @StartTitle AND AlbumTitle < @EndTitle")
          // We use @BoundParameters to help speed up frequently executed queries.
          //  For more details see https://cloud.google.com/spanner/docs/sql-best-practices
          .bind("StartTitle")
          .to("Aardvark")
          .bind("EndTitle")
          .to("Goo")
          .build();
  try (ResultSet resultSet = dbClient.singleUse().executeQuery(statement)) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %s %s\n",
          resultSet.getLong("AlbumId"),
          resultSet.getString("AlbumTitle"),
          resultSet.isNull("MarketingBudget") ? "NULL" : resultSet.getLong("MarketingBudget"));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const instanceId = 'my-instance';
// const databaseId = 'my-database';
// const projectId = 'my-project-id';
// const startTitle = 'Ardvark';
// const endTitle = 'Goo';

// Imports the Google Cloud Spanner client library
const {Spanner} = require('@google-cloud/spanner');

// Instantiates a client
const spanner = new Spanner({
  projectId: projectId,
});

async function queryDataWithIndex() {
  // Gets a reference to a Cloud Spanner instance and database
  const instance = spanner.instance(instanceId);
  const database = instance.database(databaseId);

  const query = {
    sql: `SELECT AlbumId, AlbumTitle, MarketingBudget
                FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle}
                WHERE AlbumTitle >= @startTitle AND AlbumTitle <= @endTitle`,
    params: {
      startTitle: startTitle,
      endTitle: endTitle,
    },
  };

  // Queries rows from the Albums table
  try {
    const [rows] = await database.run(query);

    rows.forEach(row => {
      const json = row.toJSON();
      const marketingBudget = json.MarketingBudget
        ? json.MarketingBudget
        : null; // This value is nullable
      console.log(
        `AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}, MarketingBudget: ${marketingBudget}`
      );
    });
  } catch (err) {
    console.error('ERROR:', err);
  } finally {
    // Close the database when finished.
    database.close();
  }
}
queryDataWithIndex();

PHP

use Google\Cloud\Spanner\SpannerClient;

/**
 * Queries sample data from the database using SQL and an index.
 *
 * The index must exist before running this sample. You can add the index
 * by running the `add_index` sample or by running this DDL statement against
 * your database:
 *
 *     CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)
 *
 * Example:
 * ```
 * query_data_with_index($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 * @param string $startTitle The start of the title index.
 * @param string $endTitle   The end of the title index.
 */
function query_data_with_index(
    string $instanceId,
    string $databaseId,
    string $startTitle = 'Aardvark',
    string $endTitle = 'Goo'
): void {
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $parameters = [
        'startTitle' => $startTitle,
        'endTitle' => $endTitle
    ];

    $results = $database->execute(
        'SELECT AlbumId, AlbumTitle, MarketingBudget ' .
        'FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle} ' .
        'WHERE AlbumTitle >= @startTitle AND AlbumTitle < @endTitle',
        ['parameters' => $parameters]
    );

    foreach ($results as $row) {
        printf('AlbumId: %s, AlbumTitle: %s, MarketingBudget: %d' . PHP_EOL,
            $row['AlbumId'], $row['AlbumTitle'], $row['MarketingBudget']);
    }
}

Python

def query_data_with_index(
    instance_id, database_id, start_title="Aardvark", end_title="Goo"
):
    """Queries sample data from the database using SQL and an index.

    The index must exist before running this sample. You can add the index
    by running the `add_index` sample or by running this DDL statement against
    your database:

        CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)

    This sample also uses the `MarketingBudget` column. You can add the column
    by running the `add_column` sample or by running this DDL statement against
    your database:

        ALTER TABLE Albums ADD COLUMN MarketingBudget INT64

    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    params = {"start_title": start_title, "end_title": end_title}
    param_types = {
        "start_title": spanner.param_types.STRING,
        "end_title": spanner.param_types.STRING,
    }

    with database.snapshot() as snapshot:
        results = snapshot.execute_sql(
            "SELECT AlbumId, AlbumTitle, MarketingBudget "
            "FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle} "
            "WHERE AlbumTitle >= @start_title AND AlbumTitle < @end_title",
            params=params,
            param_types=param_types,
        )

        for row in results:
            print("AlbumId: {}, AlbumTitle: {}, " "MarketingBudget: {}".format(*row))

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"
# start_title = "An album title to start with such as 'Ardvark'"
# end_title   = "An album title to end with such as 'Goo'"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

sql_query = "SELECT AlbumId, AlbumTitle, MarketingBudget
             FROM Albums@{FORCE_INDEX=AlbumsByAlbumTitle}
             WHERE AlbumTitle >= @start_title AND AlbumTitle < @end_title"

params      = { start_title: start_title, end_title: end_title }
param_types = { start_title: :STRING,     end_title: :STRING }

client.execute(sql_query, params: params, types: param_types).rows.each do |row|
  puts "#{row[:AlbumId]} #{row[:AlbumTitle]} #{row[:MarketingBudget]}"
end

Specify an index in the read interface

When you use the read interface to Spanner, and you want Spanner to use an index, you must specify the index. The read interface does not select the index automatically.

In addition, your index must contain all of the data that appears in the query results, excluding columns that are part of the primary key. This restriction exists because the read interface does not support joins between the index and the base table. If you need to include other columns in the query results, you have a few options:

  • Use a STORING or INCLUDE clause to store the additional columns in the index.
  • Query without including the additional columns, then use the primary keys to send another query that reads the additional columns.

Spanner returns values from the index in ascending sort order by index key. To retrieve values in descending order, complete these steps:

  • Annotate the index key with DESC. For example:

    CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle DESC);
    

    The DESC annotation applies to a single index key. If the index includes more than one key, and you want the query results to appear in descending order based on all keys, include a DESC annotation for each key.

  • If the read specifies a key range, ensure that the key range is also in descending order. In other words, the value of the start key must be greater than the value of the end key.

The following example shows how to retrieve the values of AlbumId and AlbumTitle using the index AlbumsByAlbumTitle:

C++

void ReadDataWithIndex(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  auto rows =
      client.Read("Albums", google::cloud::spanner::KeySet::All(),
                  {"AlbumId", "AlbumTitle"},
                  google::cloud::Options{}.set<spanner::ReadIndexNameOption>(
                      "AlbumsByAlbumTitle"));
  using RowType = std::tuple<std::int64_t, std::string>;
  for (auto& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::move(row).status();
    std::cout << "AlbumId: " << std::get<0>(*row) << "\t";
    std::cout << "AlbumTitle: " << std::get<1>(*row) << "\n";
  }
  std::cout << "Read completed for [spanner_read_data_with_index]\n";
}

C#


using Google.Cloud.Spanner.Data;
using System.Collections.Generic;
using System.Threading.Tasks;

public class QueryDataWithIndexAsyncSample
{
    public class Album
    {
        public int AlbumId { get; set; }
        public string AlbumTitle { get; set; }
        public long MarketingBudget { get; set; }
    }

    public async Task<List<Album>> QueryDataWithIndexAsync(string projectId, string instanceId, string databaseId,
        string startTitle, string endTitle)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";
        using var connection = new SpannerConnection(connectionString);
        using var cmd = connection.CreateSelectCommand(
            "SELECT AlbumId, AlbumTitle, MarketingBudget FROM Albums@ "
            + "{FORCE_INDEX=AlbumsByAlbumTitle} "
            + $"WHERE AlbumTitle >= @startTitle "
            + $"AND AlbumTitle < @endTitle",
            new SpannerParameterCollection
            {
                { "startTitle", SpannerDbType.String, startTitle },
                { "endTitle", SpannerDbType.String, endTitle }
            });

        var albums = new List<Album>();
        using var reader = await cmd.ExecuteReaderAsync();
        while (await reader.ReadAsync())
        {
            albums.Add(new Album
            {
                AlbumId = reader.GetFieldValue<int>("AlbumId"),
                AlbumTitle = reader.GetFieldValue<string>("AlbumTitle"),
                MarketingBudget = reader.IsDBNull(reader.GetOrdinal("MarketingBudget")) ? 0 : reader.GetFieldValue<long>("MarketingBudget")
            });
        }
        return albums;
    }
}

Go


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readUsingIndex(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	iter := client.Single().ReadUsingIndex(ctx, "Albums", "AlbumsByAlbumTitle", spanner.AllKeys(),
		[]string{"AlbumId", "AlbumTitle"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var albumID int64
		var albumTitle string
		if err := row.Columns(&albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %s\n", albumID, albumTitle)
	}
}

Java

static void readUsingIndex(DatabaseClient dbClient) {
  try (ResultSet resultSet =
      dbClient
          .singleUse()
          .readUsingIndex(
              "Albums",
              "AlbumsByAlbumTitle",
              KeySet.all(),
              Arrays.asList("AlbumId", "AlbumTitle"))) {
    while (resultSet.next()) {
      System.out.printf("%d %s\n", resultSet.getLong(0), resultSet.getString(1));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const instanceId = 'my-instance';
// const databaseId = 'my-database';
// const projectId = 'my-project-id';

// Imports the Google Cloud Spanner client library
const {Spanner} = require('@google-cloud/spanner');

// Instantiates a client
const spanner = new Spanner({
  projectId: projectId,
});

async function readDataWithIndex() {
  // Gets a reference to a Cloud Spanner instance and database
  const instance = spanner.instance(instanceId);
  const database = instance.database(databaseId);

  const albumsTable = database.table('Albums');

  const query = {
    columns: ['AlbumId', 'AlbumTitle'],
    keySet: {
      all: true,
    },
    index: 'AlbumsByAlbumTitle',
  };

  // Reads the Albums table using an index
  try {
    const [rows] = await albumsTable.read(query);

    rows.forEach(row => {
      const json = row.toJSON();
      console.log(`AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`);
    });
  } catch (err) {
    console.error('ERROR:', err);
  } finally {
    // Close the database when finished.
    database.close();
  }
}
readDataWithIndex();

PHP

use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads sample data from the database using an index.
 *
 * The index must exist before running this sample. You can add the index
 * by running the `add_index` sample or by running this DDL statement against
 * your database:
 *
 *     CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)
 *
 * Example:
 * ```
 * read_data_with_index($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_data_with_index(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['AlbumId', 'AlbumTitle'],
        ['index' => 'AlbumsByAlbumTitle']
    );

    foreach ($results->rows() as $row) {
        printf('AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['AlbumId'], $row['AlbumTitle']);
    }
}

Python

def read_data_with_index(instance_id, database_id):
    """Reads sample data from the database using an index.

    The index must exist before running this sample. You can add the index
    by running the `add_index` sample or by running this DDL statement against
    your database:

        CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)

    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot() as snapshot:
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums",
            columns=("AlbumId", "AlbumTitle"),
            keyset=keyset,
            index="AlbumsByAlbumTitle",
        )

        for row in results:
            print("AlbumId: {}, AlbumTitle: {}".format(*row))

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

result = client.read "Albums", [:AlbumId, :AlbumTitle],
                     index: "AlbumsByAlbumTitle"

result.rows.each do |row|
  puts "#{row[:AlbumId]} #{row[:AlbumTitle]}"
end

Create an index for index-only scans

Optionally, you can use the STORING clause (for GoogleSQL-dialect databases) or INCLUDE clause (for PostgreSQL-dialect databases) to store a copy of a column in the index. This type of index provides advantages for queries and read calls using the index, at the cost of using extra storage:

  • SQL queries that use the index and select columns stored in the STORING or INCLUDE clause don't require an extra join to the base table.
  • read() calls that use the index can read columns stored by the STORING/INCLUDE clause.

For example, suppose you created an alternate version of AlbumsByAlbumTitle that stores a copy of the MarketingBudget column in the index (note the STORING or INCLUDE clause in bold):

GoogleSQL

CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle) STORING (MarketingBudget);

PostgreSQL

CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle) INCLUDE (MarketingBudget);

With the old AlbumsByAlbumTitle index, Spanner must join the index with the base table, then retrieve the column from the base table. With the new AlbumsByAlbumTitle2 index, Spanner reads the column directly from the index, which is more efficient.

If you use the read interface instead of SQL, the new AlbumsByAlbumTitle2 index also lets you read the MarketingBudget column directly:

C++

void ReadDataWithStoringIndex(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  auto rows =
      client.Read("Albums", google::cloud::spanner::KeySet::All(),
                  {"AlbumId", "AlbumTitle", "MarketingBudget"},
                  google::cloud::Options{}.set<spanner::ReadIndexNameOption>(
                      "AlbumsByAlbumTitle2"));
  using RowType =
      std::tuple<std::int64_t, std::string, absl::optional<std::int64_t>>;
  for (auto& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::move(row).status();
    std::cout << "AlbumId: " << std::get<0>(*row) << "\t";
    std::cout << "AlbumTitle: " << std::get<1>(*row) << "\t";
    auto marketing_budget = std::get<2>(*row);
    if (marketing_budget) {
      std::cout << "MarketingBudget: " << *marketing_budget << "\n";
    } else {
      std::cout << "MarketingBudget: NULL\n";
    }
  }
  std::cout << "Read completed for [spanner_read_data_with_storing_index]\n";
}

C#


using Google.Cloud.Spanner.Data;
using System.Collections.Generic;
using System.Threading.Tasks;

public class QueryDataWithStoringIndexAsyncSample
{
    public class Album
    {
        public int AlbumId { get; set; }
        public string AlbumTitle { get; set; }
        public long? MarketingBudget { get; set; }
    }

    public async Task<List<Album>> QueryDataWithStoringIndexAsync(string projectId, string instanceId, string databaseId)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";

        using var connection = new SpannerConnection(connectionString);
        var cmd = connection.CreateSelectCommand(
            "SELECT AlbumId, AlbumTitle, MarketingBudget FROM Albums@ "
            + "{FORCE_INDEX=AlbumsByAlbumTitle2}");

        var albums = new List<Album>();
        using var reader = await cmd.ExecuteReaderAsync();
        while (await reader.ReadAsync())
        {
            albums.Add(new Album
            {
                AlbumId = reader.GetFieldValue<int>("AlbumId"),
                AlbumTitle = reader.GetFieldValue<string>("AlbumTitle"),
                MarketingBudget = reader.IsDBNull(reader.GetOrdinal("MarketingBudget")) ? 0 : reader.GetFieldValue<long>("MarketingBudget")
            });
        }
        return albums;
    }
}

Go


import (
	"context"
	"fmt"
	"io"
	"strconv"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readStoringIndex(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	iter := client.Single().ReadUsingIndex(ctx, "Albums", "AlbumsByAlbumTitle2", spanner.AllKeys(),
		[]string{"AlbumId", "AlbumTitle", "MarketingBudget"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var albumID int64
		var marketingBudget spanner.NullInt64
		var albumTitle string
		if err := row.Columns(&albumID, &albumTitle, &marketingBudget); err != nil {
			return err
		}
		budget := "NULL"
		if marketingBudget.Valid {
			budget = strconv.FormatInt(marketingBudget.Int64, 10)
		}
		fmt.Fprintf(w, "%d %s %s\n", albumID, albumTitle, budget)
	}
}

Java

static void readStoringIndex(DatabaseClient dbClient) {
  // We can read MarketingBudget also from the index since it stores a copy of MarketingBudget.
  try (ResultSet resultSet =
      dbClient
          .singleUse()
          .readUsingIndex(
              "Albums",
              "AlbumsByAlbumTitle2",
              KeySet.all(),
              Arrays.asList("AlbumId", "AlbumTitle", "MarketingBudget"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %s %s\n",
          resultSet.getLong(0),
          resultSet.getString(1),
          resultSet.isNull("MarketingBudget") ? "NULL" : resultSet.getLong("MarketingBudget"));
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const instanceId = 'my-instance';
// const databaseId = 'my-database';
// const projectId = 'my-project-id';

// Imports the Google Cloud Spanner client library
const {Spanner} = require('@google-cloud/spanner');

// Instantiates a client
const spanner = new Spanner({
  projectId: projectId,
});

// "Storing" indexes store copies of the columns they index
// This speeds up queries, but takes more space compared to normal indexes
// See the link below for more information:
// https://cloud.google.com/spanner/docs/secondary-indexes#storing_clause
async function readDataWithStoringIndex() {
  // Gets a reference to a Cloud Spanner instance and database
  const instance = spanner.instance(instanceId);
  const database = instance.database(databaseId);

  const albumsTable = database.table('Albums');

  const query = {
    columns: ['AlbumId', 'AlbumTitle', 'MarketingBudget'],
    keySet: {
      all: true,
    },
    index: 'AlbumsByAlbumTitle2',
  };

  // Reads the Albums table using a storing index
  try {
    const [rows] = await albumsTable.read(query);

    rows.forEach(row => {
      const json = row.toJSON();
      let rowString = `AlbumId: ${json.AlbumId}`;
      rowString += `, AlbumTitle: ${json.AlbumTitle}`;
      if (json.MarketingBudget) {
        rowString += `, MarketingBudget: ${json.MarketingBudget}`;
      }
      console.log(rowString);
    });
  } catch (err) {
    console.error('ERROR:', err);
  } finally {
    // Close the database when finished.
    database.close();
  }
}
readDataWithStoringIndex();

PHP

use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads sample data from the database using an index with a storing
 * clause.
 *
 * The index must exist before running this sample. You can add the index
 * by running the `add_storing_index` sample or by running this DDL statement
 * against your database:
 *
 *     CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle)
 *     STORING (MarketingBudget)
 *
 * Example:
 * ```
 * read_data_with_storing_index($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_data_with_storing_index(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['AlbumId', 'AlbumTitle', 'MarketingBudget'],
        ['index' => 'AlbumsByAlbumTitle2']
    );

    foreach ($results->rows() as $row) {
        printf('AlbumId: %s, AlbumTitle: %s, MarketingBudget: %d' . PHP_EOL,
            $row['AlbumId'], $row['AlbumTitle'], $row['MarketingBudget']);
    }
}

Python

def read_data_with_storing_index(instance_id, database_id):
    """Reads sample data from the database using an index with a storing
    clause.

    The index must exist before running this sample. You can add the index
    by running the `add_scoring_index` sample or by running this DDL statement
    against your database:

        CREATE INDEX AlbumsByAlbumTitle2 ON Albums(AlbumTitle)
        STORING (MarketingBudget)

    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot() as snapshot:
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums",
            columns=("AlbumId", "AlbumTitle", "MarketingBudget"),
            keyset=keyset,
            index="AlbumsByAlbumTitle2",
        )

        for row in results:
            print("AlbumId: {}, AlbumTitle: {}, " "MarketingBudget: {}".format(*row))

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

result = client.read "Albums", [:AlbumId, :AlbumTitle, :MarketingBudget],
                     index: "AlbumsByAlbumTitle2"

result.rows.each do |row|
  puts "#{row[:AlbumId]} #{row[:AlbumTitle]} #{row[:MarketingBudget]}"
end

Alter an index

You can use the ALTER INDEX statement to add additional columns into an existing index or drop columns. This can update the columns list defined by the STORING clause (GoogleSQL-dialect databases) or INCLUDE clause (PostgreSQL-dialect databases) when you create the index. You can't use this statement to add columns to or drop columns from the index key. For example, instead of creating a new index AlbumsByAlbumTitle2, you can use ALTER INDEX to add a column into AlbumsByAlbumTitle, as shown in the following example:

GoogleSQL

ALTER INDEX AlbumsByAlbumTitle ADD STORED COLUMN MarketingBudget

PostgreSQL

ALTER INDEX AlbumsByAlbumTitle ADD INCLUDE COLUMN MarketingBudget

When you add a new column into an existing index, Spanner uses a background backfilling process. While the backfill is ongoing, the column in the index is not readable, so you might not get the expected performance boost. You can use the gcloud spanner operations command to list the long-running operation and view its status. For more information, see describe operation.

You can also use cancel operation to cancel a running operation.

After the backfill is done, Spanner adds the column into the index. As the Index grows bigger, this might slow down the queries that use the index.

The following example shows how to drop a column from an index:

GoogleSQL

ALTER INDEX AlbumsByAlbumTitle DROP STORED COLUMN MarketingBudget

PostgreSQL

ALTER INDEX AlbumsByAlbumTitle DROP INCLUDE COLUMN MarketingBudget

Index of NULL values

By default, Spanner indexes NULL values. For example, recall the definition of the index SingersByFirstLastName on the table Singers:

CREATE INDEX SingersByFirstLastName ON Singers(FirstName, LastName);

All rows of Singers are indexed even if either FirstName or LastName, or both, are NULL.

A diagram shows rows that are omitted from a NULL filtered index.

When NULL values are indexed, you can perform efficient SQL queries and reads over data that includes NULL values. For example, use this SQL query statement to find all Singers with a NULL FirstName:

GoogleSQL

SELECT s.SingerId, s.FirstName, s.LastName
    FROM Singers@{FORCE_INDEX=SingersByFirstLastName} AS s
    WHERE s.FirstName IS NULL;

PostgreSQL

SELECT s.SingerId, s.FirstName, s.LastName
    FROM Singers /* @ FORCE_INDEX = SingersByFirstLastName */ AS s
    WHERE s.FirstName IS NULL;

Sort order for NULL values

Spanner sorts NULL as the smallest value for any given type. For a column in ascending (ASC) order, NULL values sort first. For a column in descending (DESC) order, NULL values sort last.

Disable indexing of NULL values

GoogleSQL

To disable the indexing of nulls, add the NULL_FILTERED keyword to the index definition. NULL_FILTERED indexes are particularly useful for indexing sparse columns, where most rows contain a NULL value. In these cases, the NULL_FILTERED index can be considerably smaller and more efficient to maintain than a normal index that includes NULL values.

Here's an alternate definition of SingersByFirstLastName that does not index NULL values:

CREATE NULL_FILTERED INDEX SingersByFirstLastNameNoNulls
    ON Singers(FirstName, LastName);

The NULL_FILTERED keyword applies to all index key columns. You cannot specify NULL filtering on a per-column basis.

PostgreSQL

To filter out rows with null values in one or more indexed columns, use the WHERE COLUMN IS NOT NULL predicate. Null-filtered indexes are particularly useful for indexing sparse columns, where most rows contain a NULL value. In these cases, the null-filtered index can be considerably smaller and more efficient to maintain than a normal index that includes NULL values.

Here's an alternate definition of SingersByFirstLastName that does not index NULL values:

CREATE INDEX SingersByFirstLastNameNoNulls
    ON Singers(FirstName, LastName)
    WHERE FirstName IS NOT NULL
    AND LastName IS NOT NULL;

Filtering out NULL values prevents Spanner from using it for some queries. For example, Spanner does not use the index for this query, because the index omits any Singers rows for which LastName is NULL; as a result, using the index would prevent the query from returning the correct rows:

GoogleSQL

FROM Singers@{FORCE_INDEX=SingersByFirstLastNameNoNulls}
    WHERE FirstName = "John";

PostgreSQL

FROM Singers /*@ FORCE_INDEX = SingersByFirstLastNameNoNulls */
    WHERE FirstName = 'John';

To enable Spanner to use the index, you must rewrite the query so it excludes the rows that are also excluded from the index:

GoogleSQL

SELECT FirstName, LastName
    FROM Singers@{FORCE_INDEX=SingersByFirstLastNameNoNulls}
    WHERE FirstName = 'John' AND LastName IS NOT NULL;

PostgreSQL

SELECT FirstName, LastName
    FROM Singers /*@ FORCE_INDEX = SingersByFirstLastNameNoNulls */
    WHERE FirstName = 'John' AND LastName IS NOT NULL;

Index proto fields

Use generated columns to index fields in protocol buffers stored in PROTO columns, as long as the fields being indexed use the primitive or ENUM data types.

If you define an index on a protocol message field, you can't modify or remove that field from the proto schema. For more information, see Updates to schemas that contain an index on proto fields.

The following is an example of the Singers table with a SingerInfo proto message column. To define an index on the nationality field of the PROTO, you need to create a stored generated column:

GoogleSQL

CREATE PROTO BUNDLE (googlesql.example.SingerInfo, googlesql.example.SingerInfo.Residence);

CREATE TABLE Singers (
  SingerId INT64 NOT NULL,
  ...
  SingerInfo googlesql.example.SingerInfo,
  SingerNationality STRING(MAX) AS (SingerInfo.nationality) STORED
) PRIMARY KEY (SingerId);

It has the following definition of the googlesql.example.SingerInfo proto type:

GoogleSQL

package googlesql.example;

message SingerInfo {
optional string    nationality = 1;
repeated Residence residence   = 2;

  message Residence {
    required int64  start_year   = 1;
    optional int64  end_year     = 2;
    optional string city         = 3;
    optional string country      = 4;
  }
}

Then define an index on the nationality field of the proto:

GoogleSQL

CREATE INDEX SingersByNationality ON Singers(SingerNationality);

The following SQL query reads data using the previous index:

GoogleSQL

SELECT s.SingerId, s.FirstName
FROM Singers AS s
WHERE s.SingerNationality = "English";

Notes:

  • Use an index directive to access indexes on the fields of protocol buffer columns.
  • You can't create an index on repeated protocol buffer fields.

Updates to schemas that contain an index on proto fields

If you define an index on a protocol message field, you can't modify or remove that field from the proto schema. This is because after you define the index, type checking is performed every time the schema is updated. Spanner captures the type information for all fields in the path that are used in the index definition.

Unique indexes

Indexes can be declared UNIQUE. UNIQUE indexes add a constraint to the data being indexed that prohibits duplicate entries for a given index key. This constraint is enforced by Spanner at transaction commit time. Specifically, any transaction that would cause multiple index entries for the same key to exist will fail to commit.

If a table contains non-UNIQUE data in it to begin with, attempting to create a UNIQUE index on it will fail.

A note about UNIQUE NULL_FILTERED indexes

A UNIQUE NULL_FILTERED index does not enforce index key uniqueness when at least one of the index's key parts is NULL.

For example, suppose that you created the following table and index:

GoogleSQL

CREATE TABLE ExampleTable (
  Key1 INT64 NOT NULL,
  Key2 INT64,
  Key3 INT64,
  Col1 INT64,
) PRIMARY KEY (Key1, Key2, Key3);

CREATE UNIQUE NULL_FILTERED INDEX ExampleIndex ON ExampleTable (Key1, Key2, Col1);

PostgreSQL

CREATE TABLE ExampleTable (
  Key1 BIGINT NOT NULL,
  Key2 BIGINT,
  Key3 BIGINT,
  Col1 BIGINT,
  PRIMARY KEY (Key1, Key2, Key3)
);

CREATE UNIQUE INDEX ExampleIndex ON ExampleTable (Key1, Key2, Col1)
    WHERE Key1 IS NOT NULL
    AND Key2 IS NOT NULL
    AND Col1 IS NOT NULL;

The following two rows in ExampleTable have the same values for the secondary index keys Key1, Key2 and Col1:

1, NULL, 1, 1
1, NULL, 2, 1

Because Key2 is NULL and the index is null-filtered, the rows won't be present in the index ExampleIndex. Because they are not inserted into the index, the index won't reject them for violating uniqueness on (Key1, Key2, Col1).

If you want the index to enforce the uniqueness of values of the tuple (Key1, Key2, Col1), then you must annotate Key2 with NOT NULL in the table definition or create the index without filtering nulls.

Drop an index

Use the DROP INDEX statement to drop a secondary index from your schema.

To drop the index named SingersByFirstLastName:

DROP INDEX SingersByFirstLastName;

Index for faster scanning

When Spanner needs to perform a table scan (rather than an indexed lookup) to fetch values from one or more columns, you can receive faster results if an index exists for those columns, and in the order specified by the query. If you frequently perform queries that require scans, consider creating secondary indexes to help these scans happen more efficiently.

In particular, if you need Spanner to frequently scan a table's primary key or other index in reverse order, then you can increase its efficiency through a secondary index that makes the chosen order explicit.

For example, the following query always returns a fast result, even though Spanner needs to scan Songs to find the lowest value of SongId:

SELECT SongId FROM Songs LIMIT 1;

SongId is the table's primary key, stored (as with all primary keys) in ascending order. Spanner can scan that key's index and find the first result rapidly.

However, without the help of a secondary index, the following query wouldn't return as quickly, especially if Songs holds a lot of data:

SELECT SongId FROM Songs ORDER BY SongId DESC LIMIT 1;

Even though SongId is the table's primary key, Spanner has no way to fetch the column's highest value without resorting to a full table scan.

Adding the following index would allow this query to return more quickly:

CREATE INDEX SongIdDesc On Songs(SongId DESC);

With this index in place, Spanner would use it to return a result for the second query much more quickly.

What's next