- 1.75.0 (latest)
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
Featurestore(
featurestore_name: str,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)
Managed featurestore resource for Vertex AI.
Properties
create_time
Time this resource was created.
display_name
Display name of this resource.
encryption_spec
Customer-managed encryption key options for this Vertex AI resource.
If this is set, then all resources created by this Vertex AI resource will be encrypted with the provided encryption key.
gca_resource
The underlying resource proto representation.
labels
User-defined labels containing metadata about this resource.
Read more about labels at https://goo.gl/xmQnxf
name
Name of this resource.
resource_name
Full qualified resource name.
update_time
Time this resource was last updated.
Methods
Featurestore
Featurestore(
featurestore_name: str,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)
Retrieves an existing managed featurestore given a featurestore resource name or a featurestore ID.
Example Usage:
my_featurestore = aiplatform.Featurestore(
featurestore_name='projects/123/locations/us-central1/featurestores/my_featurestore_id'
)
or
my_featurestore = aiplatform.Featurestore(
featurestore_name='my_featurestore_id'
)
Parameters | |
---|---|
Name | Description |
featurestore_name |
str
Required. A fully-qualified featurestore resource name or a featurestore ID. Example: "projects/123/locations/us-central1/featurestores/my_featurestore_id" or "my_featurestore_id" when project and location are initialized or passed. |
project |
str
Optional. Project to retrieve featurestore from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional. Location to retrieve featurestore from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to retrieve this Featurestore. Overrides credentials set in aiplatform.init. |
batch_serve_to_bq
batch_serve_to_bq(
bq_destination_output_uri: str,
serving_feature_ids: typing.Dict[str, typing.List[str]],
read_instances_uri: str,
pass_through_fields: typing.Optional[typing.List[str]] = None,
feature_destination_fields: typing.Optional[typing.Dict[str, str]] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
serve_request_timeout: typing.Optional[float] = None,
sync: bool = True,
) -> google.cloud.aiplatform.featurestore.featurestore.Featurestore
Batch serves feature values to BigQuery destination
Exceptions | |
---|---|
Type | Description |
NotFound |
if the BigQuery destination Dataset does not exist. |
FailedPrecondition |
if the BigQuery destination Dataset/Table is in a different project. |
Returns | |
---|---|
Type | Description |
Featurestore |
The featurestore resource object batch read feature values from. |
batch_serve_to_df
batch_serve_to_df(
serving_feature_ids: typing.Dict[str, typing.List[str]],
read_instances_df: pd.DataFrame,
pass_through_fields: typing.Optional[typing.List[str]] = None,
feature_destination_fields: typing.Optional[typing.Dict[str, str]] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
serve_request_timeout: typing.Optional[float] = None,
bq_dataset_id: typing.Optional[str] = None,
) -> pd.DataFrame
Batch serves feature values to pandas DataFrame
Parameters | |
---|---|
Name | Description |
serving_feature_ids |
Dict[str, List[str]]
Required. A user defined dictionary to define the entity_types and their features for batch serve/read. The keys of the dictionary are the serving entity_type ids and the values are lists of serving feature ids in each entity_type. .. rubric:: Example serving_feature_ids = { 'my_entity_type_id_1': ['feature_id_1_1', 'feature_id_1_2'], 'my_entity_type_id_2': ['feature_id_2_1', 'feature_id_2_2'], } |
read_instances_df |
pd.DataFrame
Required. Read_instances_df is a pandas DataFrame containing the read instances. Each read instance should consist of exactly one read timestamp and one or more entity IDs identifying entities of the corresponding EntityTypes whose Features are requested. Each output instance contains Feature values of requested entities concatenated together as of the read time. An example read_instances_df may be pd.DataFrame( data=[ { "my_entity_type_id_1": "my_entity_type_id_1_entity_1", "my_entity_type_id_2": "my_entity_type_id_2_entity_1", "timestamp": "2020-01-01T10:00:00.123Z" ], ) An example batch_serve_output_df may be pd.DataFrame( data=[ { "my_entity_type_id_1": "my_entity_type_id_1_entity_1", "my_entity_type_id_2": "my_entity_type_id_2_entity_1", "foo": "feature_id_1_1_feature_value", "feature_id_1_2": "feature_id_1_2_feature_value", "feature_id_2_1": "feature_id_2_1_feature_value", "bar": "feature_id_2_2_feature_value", "timestamp": "2020-01-01T10:00:00.123Z" ], ) Timestamp in each read instance must be millisecond-aligned. The columns can be in any order. Values in the timestamp column must use the RFC 3339 format, e.g. |
pass_through_fields |
List[str]
Optional. When not empty, the specified fields in the read_instances source will be joined as-is in the output, in addition to those fields from the Featurestore Entity. For BigQuery source, the type of the pass-through values will be automatically inferred. For CSV source, the pass-through values will be passed as opaque bytes. |
feature_destination_fields |
Dict[str, str]
Optional. A user defined dictionary to map a feature's fully qualified resource name to its destination field name. If the destination field name is not defined, the feature ID will be used as its destination field name. .. rubric:: Example feature_destination_fields = { 'projects/123/locations/us-central1/featurestores/fs_id/entityTypes/et_id1/features/f_id11': 'foo', 'projects/123/locations/us-central1/featurestores/fs_id/entityTypes/et_id2/features/f_id22': 'bar', } |
serve_request_timeout |
float
Optional. The timeout for the serve request in seconds. |
bq_dataset_id |
str
Optional. The full dataset ID for the BigQuery dataset to use for temporarily staging data. If specified, caller must have |
start_time |
timestamp_pb2.Timestamp
Optional. Excludes Feature values with feature generation timestamp before this timestamp. If not set, retrieve oldest values kept in Feature Store. Timestamp, if present, must not have higher than millisecond precision. |
Returns | |
---|---|
Type | Description |
pd.DataFrame |
The pandas DataFrame containing feature values from batch serving. |
batch_serve_to_gcs
batch_serve_to_gcs(
gcs_destination_output_uri_prefix: str,
gcs_destination_type: str,
serving_feature_ids: typing.Dict[str, typing.List[str]],
read_instances_uri: str,
pass_through_fields: typing.Optional[typing.List[str]] = None,
feature_destination_fields: typing.Optional[typing.Dict[str, str]] = None,
start_time: typing.Optional[google.protobuf.timestamp_pb2.Timestamp] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
sync: bool = True,
serve_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.featurestore.featurestore.Featurestore
Batch serves feature values to GCS destination
Exceptions | |
---|---|
Type | Description |
ValueErro |
if gcs_destination_type is not supported.: |
Returns | |
---|---|
Type | Description |
Featurestore |
The featurestore resource object batch read feature values from. |
create
create(
featurestore_id: str,
online_store_fixed_node_count: typing.Optional[int] = None,
labels: typing.Optional[typing.Dict[str, str]] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
encryption_spec_key_name: typing.Optional[str] = None,
sync: bool = True,
create_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.featurestore.featurestore.Featurestore
Creates a Featurestore resource.
Example Usage:
my_featurestore = aiplatform.Featurestore.create(
featurestore_id='my_featurestore_id',
)
create_entity_type
create_entity_type(
entity_type_id: str,
description: typing.Optional[str] = None,
labels: typing.Optional[typing.Dict[str, str]] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
sync: bool = True,
create_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.featurestore.entity_type.EntityType
Creates an EntityType resource in this Featurestore.
Example Usage:
my_featurestore = aiplatform.Featurestore.create(
featurestore_id='my_featurestore_id'
)
my_entity_type = my_featurestore.create_entity_type(
entity_type_id='my_entity_type_id',
)
Parameters | |
---|---|
Name | Description |
entity_type_id |
str
Required. The ID to use for the EntityType, which will become the final component of the EntityType's resource name. This value may be up to 60 characters, and valid characters are |
description |
str
Optional. Description of the EntityType. |
labels |
Dict[str, str]
Optional. The labels with user-defined metadata to organize your EntityTypes. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one EntityType (System labels are excluded)." System reserved label keys are prefixed with "aiplatform.googleapis.com/" and are immutable. |
request_metadata |
Sequence[Tuple[str, str]]
Optional. Strings which should be sent along with the request as metadata. |
create_request_timeout |
float
Optional. The timeout for the create request in seconds. |
sync |
bool
Optional. Whether to execute this creation synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. |
delete
delete(sync: bool = True, force: bool = False) -> None
Deletes this Featurestore resource. If force is set to True, all entityTypes in this Featurestore will be deleted prior to featurestore deletion, and all features in each entityType will be deleted prior to each entityType deletion.
WARNING: This deletion is permanent.
delete_entity_types
delete_entity_types(
entity_type_ids: typing.List[str], sync: bool = True, force: bool = False
) -> None
Deletes entity_type resources in this Featurestore given their entity_type IDs. WARNING: This deletion is permanent.
get_entity_type
get_entity_type(
entity_type_id: str,
) -> google.cloud.aiplatform.featurestore.entity_type.EntityType
Retrieves an existing managed entityType in this Featurestore.
Parameter | |
---|---|
Name | Description |
entity_type_id |
str
Required. The managed entityType resource ID in this Featurestore. |
list
list(
filter: typing.Optional[str] = None,
order_by: typing.Optional[str] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
parent: typing.Optional[str] = None,
) -> typing.List[google.cloud.aiplatform.base.VertexAiResourceNoun]
List all instances of this Vertex AI Resource.
Example Usage:
aiplatform.BatchPredictionJobs.list( filter='state="JOB_STATE_SUCCEEDED" AND display_name="my_job"', )
aiplatform.Model.list(order_by="create_time desc, display_name")
Parameters | |
---|---|
Name | Description |
filter |
str
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. |
order_by |
str
Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: |
project |
str
Optional. Project to retrieve list from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional. Location to retrieve list from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to retrieve list. Overrides credentials set in aiplatform.init. |
parent |
str
Optional. The parent resource name if any to retrieve list from. |
list_entity_types
list_entity_types(
filter: typing.Optional[str] = None, order_by: typing.Optional[str] = None
) -> typing.List[google.cloud.aiplatform.featurestore.entity_type.EntityType]
Lists existing managed entityType resources in this Featurestore.
Example Usage:
my_featurestore = aiplatform.Featurestore(
featurestore_name='my_featurestore_id',
)
my_featurestore.list_entity_types()
Parameters | |
---|---|
Name | Description |
filter |
str
Optional. Lists the EntityTypes that match the filter expression. The following filters are supported: - |
order_by |
str
Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: - |
to_dict
to_dict() -> typing.Dict[str, typing.Any]
Returns the resource proto as a dictionary.
update
update(
labels: typing.Optional[typing.Dict[str, str]] = None,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
update_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.featurestore.featurestore.Featurestore
Updates an existing managed featurestore resource.
Example Usage:
my_featurestore = aiplatform.Featurestore(
featurestore_name='my_featurestore_id',
)
my_featurestore.update(
labels={'update my key': 'update my value'},
)
Parameters | |
---|---|
Name | Description |
labels |
Dict[str, str]
Optional. The labels with user-defined metadata to organize your Featurestores. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one Feature (System labels are excluded)." System reserved label keys are prefixed with "aiplatform.googleapis.com/" and are immutable. |
request_metadata |
Sequence[Tuple[str, str]]
Optional. Strings which should be sent along with the request as metadata. |
update_request_timeout |
float
Optional. The timeout for the update request in seconds. |
update_online_store
update_online_store(
fixed_node_count: int,
request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
update_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.featurestore.featurestore.Featurestore
Updates the online store of an existing managed featurestore resource.
Example Usage:
my_featurestore = aiplatform.Featurestore(
featurestore_name='my_featurestore_id',
)
my_featurestore.update_online_store(
fixed_node_count=2,
)
Parameters | |
---|---|
Name | Description |
fixed_node_count |
int
Required. Config for online serving resources, can only update the node count to >= 1. |
request_metadata |
Sequence[Tuple[str, str]]
Optional. Strings which should be sent along with the request as metadata. |
update_request_timeout |
float
Optional. The timeout for the update request in seconds. |
wait
wait()
Helper method that blocks until all futures are complete.