গাণিতিক প্রমাণ
গাণিতিক প্রমাণ হল গাণিতিক বিবৃতির জন্য এক ধরনের অনুমিতিক যুক্তি। এ ধরনের যুক্তিতে ইতোমধ্যে প্রতিষ্ঠিত বিভিন্ন বিবৃতি (যেমন- উপপাদ্য) ব্যবহার করা যায়। তাত্ত্বিকভাবে, অনুমিতির বিভিন্ন স্বীকৃত নিয়মের পাশাপাশি বেশকিছু অনুমিত বিবৃতির উপর নির্ভর করে একটি প্রমাণ সম্পন্ন করা হয়। এ ধরনের অনুমিত বিবৃতিগুলোকে গাণিতিক ভাষায় স্বতঃসিদ্ধ বলা হয়।[২][৩][৪] স্বতঃসিদ্ধগুলোকে উক্ত বিবৃতি প্রমাণের ক্ষেত্রে প্রধান শর্ত হিসেবে ভাবা যেতে পারে। অর্থাৎ, একটি গাণিতিক বিবৃতি তখনই প্রমাণ করার যোগ্য হবে যখন উক্ত স্বতঃসিদ্ধগুলো উপস্থিত থাকবে। অনেকগুলো সমর্থনসূচক ঘটনা দেখিয়ে কোনো বিবৃতি গাণিতিকভাবে প্রমাণ করা যায় না। গাণিতিক প্রমাণের ক্ষেত্রে অবশ্যই দেখাতে হবে উক্ত বিবৃতিটি সব সময়ের জন্য সত্য (এক্ষেত্রে অনেকগুলো ঘটনার পরিবর্তে সবগুলো ঘটনা নিয়ে পর্যালোচনা করা যেতে পারে। সেক্ষেত্রে দেখাতে হবে যে উক্ত বিবৃতিতে সকল ঘটনার জন্য সত্য)। গাণিতিকভাবে প্রমাণিত নয়, কিন্তু সত্য হিসেবে ধরে নেয়া হয় — এমন বিবৃতিকে অনুমান বলা হয়।
প্রমাণের ক্ষেত্রে যুক্তির পাশাপাশি কিছু স্বাভাবিক ভাষারও ব্যবহার হয়, যা কিছুটা অস্পষ্টতা তৈরি করে। বাস্তবে, গণিতে ব্যবহৃত অধিকাংশ প্রমাণকেই অনানুষ্ঠানিক যুক্তির প্রয়োগ হিসেবে গণ্য করা যায়। আনুষ্ঠানিক প্রমাণগুলোকে সাংকেতিক ভাষায় লেখা হয়, যা প্রমাণ তত্ত্বের অন্তর্গত। এ আনুষ্ঠানিক ও অনানুষ্ঠানিক প্রমাণের ভিন্নতার কারণে বর্তমান ও ঐতিহাসিক গাণিতিক চর্চা, লোকগণিত নিয়ে ব্যাপক পরীক্ষা-নিরীক্ষা হয়েছে। এসব বিষয় নিয়ে গণিতের দর্শন আলোচনা করে।
ইতিহাস ও ব্যুৎপত্তি
[সম্পাদনা]প্রমাণের ইংরেজি "proof" শব্দটি এসেছে ল্যাটিন probare যার অর্থ "পরখ করা"। এর কাছাকাছি শব্দগুলো হল: আধুনিক ইংরেজিতে "probe", "probation", এবং "probability", স্পেনীয় ভাষায় probar (স্বাদ অথবা গন্ধ নেয়া, অথবা স্পর্শ বা পরখ করা), ইতালীয় ভাষায় provare (চেষ্টা করা), এবং জার্মান ভাষায় probieren (চেষ্টা করা)। পূর্বে ইংরেজিতে "probity" শব্দটি আইনি সাক্ষ্য প্রদানে ব্যবহৃত।[৫]
পূর্বে ছবি, উপমা, ইত্যাদি অনুসন্ধানমূলক কৌশল ব্যবহার করে প্রমাণ করা হত, যা পরবর্তীতে গাণিতিক প্রমাণে রূপ নেয়।[৬] হতে পারে, কোনো উপসংহারে পৌঁছানোর এ ধরনের অভিপ্রায় ঘটেছিল সর্বপ্রথম জ্যামিতি থেকে, যার অর্থ ভূমির পরিমাপ।[৭] প্রাথমিকভাবে গাণিতিক প্রমাণের উদ্ভব হয়েছিল প্রাচীন গ্রিক গণিতশাস্ত্র থেকে, যা তাদের একটি অনন্য কৃতিত্ব ছিল। থেলিস (৬২৪-৫৪৬ খৃস্টপূর্ব) এবং হিপোক্রাটিস অব খায়স (৪৭০-৪১০ খৃস্টপূর্ব) জ্যামিতির কিছু উপপাদ্য প্রমাণ করে গিয়েছিলেন। ইউডক্সাস (৪০৮-৩৫৫ খৃস্টপূর্ব) এবং থিইটিটাস (৪১৭-৩৬৯ খৃস্টপূর্ব) উপপাদ্য প্রণয়ন করেছিলেন কিন্তু প্রমাণ করেননি। অ্যারিস্টটল (৩৮৪-৩২২ খৃস্টপূর্ব) বলেছিলেন, কোনো সংজ্ঞা দ্বারা যে বিষয়ের সংজ্ঞায়ন হচ্ছে, ইতোমধ্যে জ্ঞাত বিষয়গুলো দিয়ে এর বর্ণনা করা উচিত। ইউক্লিডের (৩০০ খৃস্টপূর্ব) মাধ্যমে গাণিতিক প্রমাণে আমূল পরিবর্তন এসেছিল। তিনি সর্বপ্রথম স্বতঃসিদ্ধ ব্যবস্থার প্রবর্তন করেন যা আজও ব্যবহৃত হচ্ছে। এ ব্যবস্থায় কিছু অসংজ্ঞায়িত শব্দ এবং স্বতঃসিদ্ধ (এসব অসংজ্ঞায়িত শব্দের সাথে জড়িত কতিপয় সত্য বিবৃতি) ধরে নিয়ে ন্যায়িক যুক্তির মাধ্যমে উপপাদ্য প্রমাণ করা হয়। বিংশ শতাব্দীর মধ্যভাগ পর্যন্ত পশ্চিমে যারা শিক্ষিত নামে গণ্য হত তারা সকলেই তার লেখা বই, উপাদানসমূহ, পড়ত।[৮] জ্যামিতিক উপপাদ্য, যেমন- পিথাগোরাসের উপপাদ্য ছাড়াও সংখ্যাতত্ত্ব, যেমন- দুই এর বর্গমূল একটি অমূলদ সংখ্যা কিংবা মৌলিক সংখ্যার পরিমাণ অসীম, ইত্যাদি নিয়েও উপাদানসমূহে আলোচনা রয়েছে।
গণিতের আরো অগ্রগতি হয় মধ্যযুগের ইসলামি গণিতের মাধ্যমে। গোড়ার দিকের গ্রিক প্রমাণাদি জ্যামিতিক প্রদর্শনের ওপর অতি নির্ভরশীল ছিল, কিন্তু মুসলিম গণিতবিদদের দ্বারা বিকশিত পাটিগণিত ও বীজগণিতের ফলে সেই নির্ভরশীলতা আর থাকল না।
পদ্ধতিসমূহ
[সম্পাদনা]সরাসরি প্রমাণ
[সম্পাদনা]সরাসরি প্রমাণের ক্ষেত্রে স্বতঃসিদ্ধ, সংজ্ঞা, এবং পূর্ববর্তী উপপাদ্যসমূহের যুক্তিবহ ব্যবহারের মাধ্যমে উপসংহার টানা হয়।[৯] যেমন- এ পদ্ধতি ব্যবহার করে প্রমাণ করা যায় যে দুটি জোড় পূর্ণসংখ্যার যোগফল সর্বদা জোড়:
- ধরা যাক, x এবং y দুটি জোড় পূর্ণসংখ্যা। যেহেতু এরা উভয়ই জোড় সংখ্যা, সেহেতু এদেরকে যথাক্রমে লেখা যায় x = 2a এবং y = 2b, যেখানে a ও b যে কোনো পূর্ণসংখ্যা। সুতরাং x + y = 2a + 2b = 2(a+b)। অতএব, সংজ্ঞানুযায়ী x + y জোড় যেহেতু 2 এদের একটি গুণিতক। সুতরাং যে কোনো দুটি জোড় পূর্ণসংখ্যার যোগফল সর্বদা জোড়।
উক্ত প্রমাণটি সম্পন্ন করতে জোড় পূর্ণসংখ্যার সংজ্ঞা (যে কোনো জোড় পূর্ণসংখ্যা দুইয়ের গুণিতক), পূর্ণসংখ্যার বণ্টন, যোগ ও গুণের আবদ্ধ বৈশিষ্টদ্বয়ের ব্যবহার হয়েছে।
গাণিতিক আরোহ পদ্ধতিতে প্রমাণ
[সম্পাদনা]গাণিতিক আরোহ পদ্ধতি হ্রাস করার একটি পদ্ধতি, এটি আরোহী যুক্তির কোনও রূপ নয়।
গাণিতিক আরোহ পদ্ধতিতে প্রমাণের একটি সাধারণ উদাহরণ হলো একটি সংখ্যার জন্য প্রযোজ্য বৈশিষ্ট্য সকল প্রাকৃতিক সংখ্যার জন্য প্রযোজ্য:[১০]
মনে করি, N = {1,2,3,4,...} একটি স্বাভাবিক সংখ্যা সেট, এবং P(n) একটি গাণিতিক বিবৃতি যেখানে n একটি স্বাভাবিক সংখ্যা যা N এর অন্তর্গত যেন
(i) P(1) সত্য হয়, অর্থাৎ, n = 1 এর জন্য P(n) সত্য।
(ii) P(n+1) সত্য হয় যদি এবং কেবল যদি P(n) সত্য হয়, অর্থাৎ, P(n) সত্য বলতে বোঝায় যে P(n+1)ও সত্য।
সুতরাং সকল স্বাভাবিক সংখ্যা n এর জন্য P(n) সত্য।
উদাহরণস্বরূপ, আমরা গাণিতিক আরোহ পদ্ধতির সাহায্যে প্রমাণ করতে পারি যে 2n − 1 আকারের সকল ধনাত্বক পূর্ণ সংখ্যা বিজোড়।
মনে করি, P(n) = 2n − 1 বিজোড়
তাহলে,
(i) 2n − 1 = 2(1) − 1 = 1 যখন n = 1, এবং 1 একটি বিজোড় সংখ্যা যেহেতু একে 2 দ্বারা ভাগ করলে ভাগশেষ 1 থাকে। সুতরাং, P(1) সত্য।
(ii) যে কোনো সংখ্যা n এর জন্য যদি 2n − 1 (অর্থাৎ, P(n)) বিজোড় হয় তাহলে (2n − 1) + 2-কেও অবশ্যই বিজোড় হতে হবে। কারণ বিজোড় সংখ্যার সাথে 2 যোগ করলে বিজোড় সংখ্যাই পাওয়া যায়। কিন্তু (2n − 1) + 2 = 2n + 1 = 2(n+1) − 1, সুতরাং 2(n+1) − 1 (অর্থাৎ, P(n+1)) বিজোড়। সুতরাং, P(n) এর জন্য P(n+1) সত্য।
সুতরাং সকল ধনাত্বক পূর্ণসংখ্যা n এর জন্য 2n − 1 বিজোড়।
"গাণিতিক আরোহ পদ্ধতিতে প্রমাণ"-এর পরিবর্তে শুধু "আরোহ পদ্ধতিতে প্রমাণ" ব্যবহৃত হয়ে থাকে।[১১]
বৈপরিত্য দ্বারা প্রমাণ
[সম্পাদনা]ক ও খ যদি দুটি বিবৃতি হয়, তাহলে প্রমাণ করা হয় "যদি খ সত্য না হয়, তাহলে কও সত্য হবে না", যা আসলে "যদি ক সত্য হয়, তাহলে খও সত্য হবে" বিবৃতিটিরই বিপরীতার্থক। যেমন- বৈপরিত্য দ্বারা প্রমাণ করা যায় যে, যদি একটি পুর্ণসংখ্যা হয় এবং যদি জোড় হয়, তাহলে ও জোড় হবে:
- ধরা যাক, জোড় নয়। অর্থাৎ, বিজোড়। আবার, দুটি বিজোড় সংখ্যার গুণফলও বিজোড়। কাজেই, বিজোড়। সুতরাং, জোড় নয়। ফলে, যদি জোড় হয়, তাহলে শুরুতে করা অনুমানটি অবশ্যই ভুল ছিল। অর্থাৎ, -কে অবশ্যই জোড় হতে হবে।
অসঙ্গতি দ্বারা প্রমাণ
[সম্পাদনা]অসঙ্গতি দ্বারা প্রমাণের ক্ষেত্রে দেখানো হয় যে যদি একটা বিবৃতি সত্য হত, তাহলে যুক্তিগত অসঙ্গতি তৈরি হবে; কাজেই, ঐ বিবৃতিটি অবশ্যই মিথ্যা হবে। এই প্রক্রিয়াটি reductio ad absurdum নামেও পরিচিত যা একটি ল্যাটিন বাক্যাংশ এবং এর অর্থ "পরোক্ষ প্রমাণ"। এই পদ্ধতির একটি বিখ্যাত উদাহরণ হল, একটি অমূলদ সংখ্যা:
- মনে করি, একটি মূলদ সংখ্যা। সংজ্ঞানুসারে, যেখানে a এবং b শুন্য নয় এমন দুটি পূর্ণসংখ্যা ও সহমৌলিক। ফলে, । এর উভয়দিকে বর্গ করে পাই, 2b2 = a2 । যেহেতু সমীকরণটির বামপক্ষ 2 দ্বারা বিভাজ্য, সেহেতু এর ডানপক্ষও 2 দ্বারা বিভাজ্য হবে (অন্যথায় একটি জোড় ও একটি বিজোড় সংখ্যা পরস্পর সমান হবে, যা অসম্ভব)। সুতরাং a2 জোড় সংখ্যা। অর্থাৎ a-ও একটি জোড় সংখ্যা কেননা জোড় সংখ্যা বর্গ সর্বদা জোড় এবং বিজোড় সংখ্যার বর্গ সর্বদা বিজোড়। অতএব আমরা লিখতে পারি a = 2c, যেখানে c একটি পূর্ণসংখ্যা। একে মূল সমীকরণে প্রতিস্থাপন করে পাই 2b2 = (2c)2 = 4c2। প্রাপ্ত সমীকরণের উভয়দিকে 2 দ্বারা ভাগ করে পাই b2 = 2c2। পূর্বের যুক্তি অনুসারে বলা যায় যে b2-ও 2 দ্বারা বিভাজ্য। অর্থাৎ b-ও একটি জোড় সংখ্যা। কিন্তু যদি a এবং b উভয়ই জোড় হয়, তাহলে তাদের মধ্যে অবশ্যই একটা সাধারণ গুণিতক (এক্ষেত্রে 2) থাকবে যা শুরুতে করা অনুমান (অর্থাৎ a এবং b যে সহমৌলিক এই অনুমান)-এর সাথে অসঙ্গতি প্রকাশ করে। সুতরাং আমরা এ উপসংহারে পৌঁছুতে পারি যে একটি অমূলদ সংখ্যা।
প্রমাণের সমাপ্তিতে
[সম্পাদনা]প্রমাণের শেষে সাধারণতঃ "Q.E.D." লেখা হয়। এর পূর্ণরূপ হল "Quod Erat Demonstrandum"। এটি একটি ল্যাটিন বাক্যাংশ যার অর্থ "যা দেখানোর কথা ছিল"। ইদানীং বর্গ বা আয়তক্ষেত্র দিয়ে প্রমাণ শেষ করা হয়,[তথ্যসূত্র প্রয়োজন] যাকে ইংরেজিতে "টুম্বস্টোন" (tombstone) বা "halmos" বলা হয়। আর মুখে বলার ক্ষেত্রে বলা হয় "যা হওয়ার কথা ছিল"। বাংলাদেশে প্রমাণ শেষে সাধারণতঃ "প্রমাণিত" বা ইংরেজিতে "proved" লেখা হয়।
তথ্যসূত্র
[সম্পাদনা]- ↑ Bill Casselman। "One of the Oldest Extant Diagrams from Euclid"। University of British Columbia। সংগ্রহের তারিখ সেপ্টেম্বর ২৬, ২০০৮।
- ↑ Clapham, C. & Nicholson, JN.। The Concise Oxford Dictionary of Mathematics, Fourth edition।
A statement whose truth is either to be taken as self-evident or to be assumed. Certain areas of mathematics involve choosing a set of axioms and discovering what results can be derived from them, providing proofs for the theorems that are obtained.
- ↑ Cupillari, Antonella. The Nuts and Bolts of Proofs. Academic Press, 2001. p. 3.
- ↑ Gossett, Eric (জুলাই ২০০৯)। Discrete Mathematics with Proof। John Wiley & Sons। পৃষ্ঠা 86। আইএসবিএন 978-0470457931।
Definition 3.1. Proof: An Informal Definition
- ↑ Hacking, Ian (১৯৮৪)। The Emergence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical Inference। Cambridge University Press। আইএসবিএন 978-0-521-31803-7।
- ↑ উদ্ধৃতি ত্রুটি:
<ref>
ট্যাগ বৈধ নয়;Krantz
নামের সূত্রটির জন্য কোন লেখা প্রদান করা হয়নি - ↑ Kneale, William; Kneale, Martha (মে ১৯৮৫) [1962]। The development of logic (New সংস্করণ)। Oxford University Press। পৃষ্ঠা 3। আইএসবিএন 978-0-19-824773-9।
- ↑ Eves, Howard W. (জানুয়ারি ১৯৯০) [1962]। An Introduction to the History of Mathematics (Saunders Series) (6th সংস্করণ)। Brooks/Cole। পৃষ্ঠা 141। আইএসবিএন 978-0030295584।
No work, except The Bible, has been more widely used...
- ↑ Cupillari, p. 20.
- ↑ Examples of simple proofs by mathematical induction for all natural numbers
- ↑ Proof by induction ওয়েব্যাক মেশিনে আর্কাইভকৃত ১৮ ফেব্রুয়ারি ২০১২ তারিখে, University of Warwick Glossary of Mathematical Terminology
আরও পড়ুন
[সম্পাদনা]- Pólya, G. (১৯৫৪), Mathematics and Plausible Reasoning, প্রিন্সটন ইউনিভার্সিটি প্রেস ।
- Fallis, Don (২০০২), "What Do Mathematicians Want? Probabilistic Proofs and the Epistemic Goals of Mathematicians", Logique et Analyse, ৪৫: ৩৭৩–৮৮ .
- Franklin, J.; Daoud, A. (২০১১), Proof in Mathematics: An Introduction, Kew Books, আইএসবিএন 978-0-646-54509-7 .
- Gold, Bonnie; Simons, Rogers A. (২০০৮)। Proof and Other Dilemmas: Mathematics and Philosophy। MAA।
- Solow, D. (২০০৪), How to Read and Do Proofs: An Introduction to Mathematical Thought Processes, Wiley, আইএসবিএন 978-0-471-68058-1 .
- Velleman, D. (২০০৬), How to Prove It: A Structured Approach, Cambridge University Press, আইএসবিএন 978-0-521-67599-4 .
বহিঃসংযোগ
[সম্পাদনা]- Proofs in Mathematics: Simple, Charming and Fallacious
- উইকিভার্সিটি-তে গাণিতিক প্রমাণ বিষয়ক একটি পাঠ