
DirtyCred: Escalating Privilege in Linux Kernel
Zhenpeng Lin

zplin@u.northwestern.edu
Northwestern University

Yuhang Wu
yuhang.wu@northwestern.edu

Northwestern University

Xinyu Xing
xinyu.xing@northwestern.edu

Northwestern University

ABSTRACT
The kernel vulnerability DirtyPipe was reported to be present in
nearly all versions of Linux since 5.8. Using this vulnerability, a bad
actor could fulfill privilege escalation without triggering existing
kernel protection and exploit mitigation, making this vulnerabil-
ity particularly disconcerting. However, the success of DirtyPipe
exploitation heavily relies on this vulnerability’s capability (i.e.,
injecting data into the arbitrary file through Linux’s pipes). Such
an ability is rarely seen for other kernel vulnerabilities, making
the defense relatively easy. As long as Linux users eliminate the
vulnerability, the system could be relatively secure.

This work proposes a new exploitation method – DirtyCred –
pushing other Linux kernel vulnerabilities to the level of DirtyP-
ipe. Technically speaking, given a Linux kernel vulnerability, our
exploitation method swaps unprivileged and privileged kernel cre-
dentials and thus provides the vulnerability with the DirtyPipe-like
exploitability. With this exploitability, a bad actor could obtain
the ability to escalate privilege and even escape the container. We
evaluated this exploitation approach on 24 real-world kernel vul-
nerabilities in a fully-protected Linux system. We discovered that
DirtyCred could demonstrate exploitability on 16 vulnerabilities,
implying DirtyCred’s security severity. Following the exploitabil-
ity assessment, this work further proposes a new kernel defense
mechanism. Unlike existing Linux kernel defenses, our new defense
isolates kernel credential objects on non-overlapping memory re-
gions based on their own privilege. Our experiment result shows
that the new defense introduces primarily negligible overhead.

CCS CONCEPTS
• Security and privacy → Operating systems security; Software
security engineering;

KEYWORDS
OS Security; Kernel Exploitation; Privilege Escalation

ACM Reference Format:
Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. 2022. DirtyCred: Escalating
Privilege in Linux Kernel. In Proceedings of Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, Los Angeles,
CA, USA., November 7–11, 2022 (CCS ’22), 15 pages.
https://doi.org/10.1145/3548606.3560585

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560585

1 INTRODUCTION
Nowadays, Linux has become a popular target for cybercrooks
due to its popularity among mobile devices, cloud infrastructure,
and Web servers. To secure Linux, kernel developers and security
experts introduce a variety of kernel protection and exploit miti-
gation techniques (e.g., KASLR [14] and CFI [19]), making kernel
exploitation unprecedentedly difficult. To fulfill an exploitation goal
successfully, today’s bad actor has to identify those powerful ker-
nel vulnerabilities with the capability of disabling corresponding
protection and mitigation.

However, a recent vulnerability (cataloged as CVE-2022-0847 [10])
and its exploitation method are getting significant attention from
the cybersecurity community. Because of its maliciousness and
impact, it was even branded a nickname – DirtyPipe [30]. Unlike
non-branded kernel vulnerabilities, DirtyPipe’s exploitation fulfills
privilege escalation without involving the effort of disabling broadly
adopted kernel protection and exploit mitigation. This characteris-
tic results in existing Linux defenses ineffective and thus leads many
Linux-kernel-driven systems in danger (e.g., Android devices).

While DirtyPipe is powerful, its exploitability is closely tied to
the vulnerability’s capability (i.e., abusing the Linux kernel pipe
mechanism to inject data to arbitrary files). For other Linux kernel
vulnerabilities, such a pipe-abusive ability is rarely provided. As a
result, the action taken by the Linux community and device manu-
facturers (e.g., Google) is to release a patch against the kernel bug
rapidly and thus eliminate the attack surface. Without this attack
surface, the exploitation against a fully-protected Linux kernel is
still challenging. For other kernel vulnerabilities, it is still difficult
to bring the same level of security impact as DirtyPipe.

In this work, we present a novel, general exploitation method
through which even ordinary kernel vulnerabilities could fulfill the
same exploitation objective as DirtyPipe. From a technical perspec-
tive, our exploitation method is different from DirtyPipe. It does
not rely on the pipeline mechanism of Linux nor the nature of the
vulnerability CVE-2022-0847. Instead, it employs a heap memory
corruption vulnerability to replace a low privileged kernel creden-
tial object with a high privileged one. This practice confuses the
Linux kernel into thinking that an unprivileged user could gain
permission to operate on high privileged files or processes. As such,
we name this exploitation method after DirtyCred.

To perform exploitation, DirtyCred confronts three critical tech-
nical challenges. First, it needs to pivot a vulnerability’s capability
to the one useful for credential object swap because vulnerabilities
in different types provide different capabilities in memory corrup-
tion, which may not look sufficient for a credential object swap at
first glance. Second, DirtyCred needs to control the time window
to launch object swap strictly. As we will discuss in Section 3, the
time window valuable for DirtyCred is short. Without a practical
mechanism to extend the time window, the exploitation would be
unstable. Third, DirtyCred needs to find an effective mechanism

https://doi.org/10.1145/3548606.3560585
https://doi.org/10.1145/3548606.3560585

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

that allows an unprivileged user to allocate privileged credentials
in an active fashion because failing to have this ability would make
the credential object swap ineffectual.

To address the technical challenges above, we first introduce a
series of vulnerability pivoting schemes that allow us to convert any
heap-based vulnerability into an ability to free credential objects
in an invalid manner. Second, we leverage three different kernel
features – userfaultfd [38], FUSE [37], and lock in filesystem – to
extend the time window needed for object swap and thus stabilize
exploitation. Last but not least, we employ various kernel mecha-
nisms to spawn high privileged threads from both userspace and
kernel space and thus actively allocate privileged objects. In this
work, we evaluate DirtyCred’s exploitability by using 24 real-world
kernel vulnerabilities. We surprisingly discovered that DirtyCred
could demonstrate privilege escalation on 16 vulnerabilities and con-
tainer escape. We shared our newly proposed exploitation method
with Google Vulnerability Rewards Program (kCTF VRP [20]) and
received their acknowledgment and $20,000 bounty reward.

With the strong exploitability demonstration and the lack of
effective defenses, we believe that DirtyCred could soon become
a severe threat to Linux if the community does not take immedi-
ate action to explore and deploy a new defense mechanism. As a
result, following our new exploitation approach, we further pro-
posed a new Linux kernel defense mechanism. The basic idea of
this defense is to host high privileged and low privileged objects in
non-overlapping memory regions. In this work, we do it by utilizing
the vmalloc region to store high privileged objects and the normal
region for low privileged ones. We implemented this defense as a
Linux kernel prototype and evaluated its performance using a stan-
dard benchmark. We show that our defense primarily introduces
negligible overhead. For some operations involving file operations,
it demonstrates only moderate performance overhead.

Compared with existing kernel exploitation techniques, Drity-
Cred has many unique characteristics. First, it is a general exploita-
tion approach because it enables privilege escalation for arbitrary
heap-based vulnerabilities. Second, it could significantly unload
the burden of exploit migration because – following DirtyCred –
one could craft an exploit that can transfer from one kernel ver-
sion or architecture to another without any modification. Third, it
could bypass many powerful kernel protection and exploit mitiga-
tion mechanisms (e.g., CFI [15], KASLR [14], SMEP/SMAP [7, 29],
KPTI [8], etc.). Last, it could go beyond privilege escalation, leading
to more severe security problems, such as rooting Android and
escaping a container.

In summary, this paper makes the following contributions.

• We propose a new, general exploitation method – DirtyCred
– that could circumvent widely adopted kernel protections and
exploit mitigation and thus fulfill privilege escalation in the Linux
system.

• We demonstrate that DirtyCred could manifest strong exploitabil-
ity onmany real-world Linux kernel vulnerabilities.We also show
that the exploitable objects useful for DirtyCred are diverse and
abundant.

• We analyze existing kernel defenses’ limitations and propose
a new defense mechanism. We implemented this defense as a

prototype on Linux Kernel, showing it introduces negligible and
moderate performance overhead.
The rest of this paper is organized as follows. Section 2 intro-

duces the background needed for this research and discusses the
threat model. Section 3 introduces the high-level idea of DirtyCred
and summarizes the technical challenges that DirtyCred confronts.
Section 4, 5, and 6 presents various techniques methods to handle
the technical challenges. Section 7 evaluates the effectiveness of
the proposed exploitation approach on real-world Linux kernel
vulnerabilities. Section 8 introduces a new defense mechanism and
evaluates its performance on standard benchmarks. Section 9 pro-
vides the discussion of related work, followed by the discussion
of some related issues and future work in Section 10. Finally, we
conclude the work in Section 11.

2 BACKGROUND & THREAT MODEL
This section introduces some technical background necessary for
understanding our newly proposed exploitation method. Besides,
we discuss our threat model and assumptions.

2.1 Credentials in Linux kernel
As is defined in [26], credentials refer to some kernel properties
that contain privilege information. Through these properties, the
Linux kernel could examine users’ access privileges. In the Linux
kernel, credentials are implemented as kernel objects which carry
privilege information. To the best of our knowledge, those objects
include “cred”, “file”, and “inode”. In this paper, we designed our
exploitation methods by using only “cred" and “file" objects. We
excluded the “inode” object because it can only be allocated when
a new file is created on the filesystem, which does not provide
sufficient flexibility for memory manipulation (a critical operation
in a successful program exploitation). We provide some necessary
background for “cred”, “file”, and “inode”, objects in the following.

Every Linux task contains a pointer referencing a ‘cred’ object.
The ‘cred’ object contains the UID field, indicating the task privilege.
For example, GLOBAL_ROOT_UID indicates the task has the root privilege.
When a task attempts to access a resource (e.g., a file), the kernel
checks the UID in the task’s ‘cred’ object, determining whether the
access could be granted. In addition to UID, the ‘cred’ object also
contains capability. The capability specifies the task’s fine-grained
privilege. For example, CAP_NET_BIND_SERVICE indicates the task could
bind a socket to an internet domain privileged port. For each task,
their credential is configurable. When altering the task credential,
the kernel follows the copy-and-replace principle. It first copies the
credential. Second, it modifies the copy. Finally, it changes that cred
pointer in the task to the newly modified copy. In Linux, each task
may alter only its own credentials.

In the Linux kernel, every file comes with its owner’s UID and
GID, other users’ access permission, and capability. For executable
files, they also have SUID/SGID flags indicating special permission
that allows other users to run with the owner’s privileges. In the
Linux kernel implementation, each file is tied to an ‘inode’ object
linking to the credentials. When a task attempts to open a file, the
kernel invokes function inode_permision, checking the inode and the
corresponding permission before granting the file access. After a file
is opened, the kernel delinks the credentials from the ‘inode’ object

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

/tmp/x

source

fs_context

filp_cache

fs_context

filp_cache /etc/passwd

fs_context

filp_cache

Step 1: allocate a writable

file object.

hacker:x:0:0:root:/:/

bin/sh

root:x:0:0:root:/root:/
bin/bash
daemon:x:1:1:daemon:/
usr/sbin:/usr/sbin/
nologin
…

Content of /etc/passwd:

After attack
Step 2: free the file object

through the vulnerability.

Step 3: allocate privileged file

object to reclaim the freed slot.

Write “hacker:x:0:0:root:/:/bin/sh” to the opened file

Timeline

sourcesource

Open file /tmp/x

kmalloc-192 kmalloc-192 kmalloc-192

/tmp/x /etc/passwdfile object for
/tmp/x

fs_context
object

freed
object

file object for
/etc/passwd

Figure 1: The overview of exploiting CVE-2021-4154, the write operation to the opened file starts between step 1 and step 2 and finishes after step 3.

and attaches them to the ‘file’ object. In addition to maintaining
the credentials, the ‘file’ object also contains the file’s read/write
permission. Through the ‘file’ object, the kernel could index to the
cred object and thus examine the privilege. Besides, it could check
read/write permission and thus ensure that a task does not write
data to a file opened in a read-only mode.

2.2 Kernel Heap Memory Management
Linux kernel designs memory allocators to manage small memory
allocation to improve performance and prevent fragmentation. Al-
though there are three different memory allocators in the Linux
kernel, they follow the same high-level design. To be specific, they
all use caches to maintain the same size memory. For each cache,
the kernel allocates memory pages and divides the memory into
multiple pieces of the same size, and each piece is a memory slot
used for hosting an object. When the memory page for a cache is
exhausted, the kernel allocates new pages for the cache. If a cache
no longer uses the memory page, i.e., all the objects on the memory
page are freed, the kernel recycles the memory page accordingly.
There are two main kinds of caches in the Linux kernel, as is briefly
described below.

Generic Caches. Linux kernel has different generic caches to al-
locate different-sized memory. When allocating memory from the
generic caches, the kernel will first round up the requested size
and find the cache matching the size request. Then, it allocates a
memory slot from the corresponding cache. In the Linux kernel,
if an allocation request does not specify which kinds of caches it
allocates from, the allocation by default occurs at generic caches.
For allocations that fall into the same generic cache, they may share
the same memory address as they may be maintained on the same
memory page.

Dedicated Caches. Linux kernel creates dedicated caches for per-
formance and security purposes. As some objects are used fre-
quently in the kernel, dedicating caches for these objects could
reduce the time spent on their allocation and thus improve system

performance. Allocations that fall into dedicated caches do not
share the same memory page with general allocations. As a result,
objects allocated in the generic cache are not adjacent to objects in
dedicated caches. It could be viewed as cache-level isolation, which
mitigates the overflow threat from objects in general caches.

2.3 Threat Model
In our threat model, we assume an unprivileged user has local access
to the Linux system, aiming to exploit a heap memory corruption
vulnerability in the kernel and thus escalate his/her privilege. Be-
sides, we assume that Linux enables all the exploit mitigation and
kernel protection mechanisms available in the upstream kernel
(version 5.15). These mechanisms include KASLR, SMAP, SMEP,
CFI [7, 14, 15, 29], KPTI [8], etc. With these mitigation and protec-
tions, the kernel address is randomized, the kernel cannot access
user-space memory directly during execution, and its control-flow
integrity is guaranteed. Last but not least, we do not assume there
is a hardware side channel that could facilitate kernel exploitation.

3 TECHNICAL OVERVIEW & CHALLENGES
In this section, we first introduce the high-level idea of DirtyCred
by using a real-world example. Then, we analyze and discuss the
technical challenges that DirtyCred needs to address.

3.1 Overview
We take a real-world Linux kernel vulnerability (CVE-2021-4154 [9])
as an example showcasing how DirtyCred works at a high level.
CVE-2021-4154 is due to a type confusion error that a file object is
referenced by the source field of fs_context object incorrectly. In the
Linux kernel, the lifetime of a file object is maintained through ref-
erence count mechanism. The file object will be free automatically
when the reference count becomes zero, meaning that the file object
is no longer being used. However, by triggering the vulnerability,
the kernel will free the file object invalidly even if the file is still in
use.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

As is depicted in Figure 1, DirtyCred first opens a writable file
“/tmp/x”, which will allocate a writable file object in kernel. By
triggering the vulnerability, the source pointer will reference the
file object in the corresponding cache. Then, DirtyCred attempts
to write content to the opened file “/tmp/x”. Prior to the actual
content write, the Linux kernel checks whether the current file has
permission to write and whether the position is writable, etc. After
passing the check, DirtyCred holds on to this actual file writing
action and enters the second step. In this step, DirtyCred triggers
the free site of the fs_context object to deallocate the file object, which
leaves the file object as a freed memory spot.

Then, in the third step, DirtyCred opens a read-only file “/etc/-
passwd”, which triggers the kernel to allocate the file object for
“/etc/passwd”. As is illustrated in Figure 1, the newly allocated file ob-
ject takes over the freed spot. After this setup, DirtyCredwill release
its on-hold write action, and the kernel will perform the actual con-
tent writing. Since the file object has been swapped, the content on
hold will be redirected to the read-only file “/etc/passwd”. Assuming
that contentwritten to “/etc/password” is “hacker:x:0:0:root:/:/bin/sh”,
a bad actor could use this scheme to inject a privileged account and
thus fulfill privilege escalation.

The example above is just a demonstration indicating how Dirty-
Cred uses file objects for exploitation. As is mentioned in Section 2,
in addition to “file” objects, “cred” objects are also considered cre-
dential objects. Like the file swap showcased above, a bad actor can
also use a similar idea to swap cred objects and thus fulfill privilege
escalation. Due to the space limit, we do not elaborate. Readers
interested in cred object exploitation could refer to our exploitation
demo published at [2].

From the real-world example described above, we can observe
that DirtyCred does not alter the control flow but exploits kernel
memorymanagement’s nature to manipulate objects in thememory.
As a result, many existing defenses that prevent control flow tam-
pering do not affect DirtyCred’s exploitation. While some recent
research works enable kernel defense by re-designing the memory
management (e.g. AUTOSLAB [34]), they are also ineffective in
blocking DirtyCred. As we will discuss in Section 8, the newly pro-
posed memory management methods are still in coarse-granularity,
not sufficient for hindering our memory manipulation.

3.2 Technical Challenges
While the example above illustrates how DirtyCred performs ex-
ploitation and thus fulfills privilege escalation, there are still many
technical details that need to be further clarified andmany technical
challenges that need to be tackled.

• As is mentioned above, DirtyCred needs an invalid-free capabil-
ity to deallocate a low-privileged object (e.g., a file object with
write permission) and then reallocate a high-privileged one (e.g.,
a file object with read-only permission). In practice, a kernel
vulnerability may not always provide us with such a capabil-
ity. For example, a vulnerability may provide only out-of-bound
overwriting capability instead of an invalid-free directly against
a credential object. Therefore, DirtyCred needs corresponding
approaches to pivot vulnerability’s capability for vulnerabilities
with different capabilities. In Section 4, we, therefore, describe

ptr

0xf…c20000

…

0xf…c20000

…

ptr

0xf…c21f00
0xf…c21f00

0xf…c20000

Credential
object

Victim
object

Vulnerable
object

(a) Memory layout before the overflow. (b) Memory layout after the overflow.

overflow

Figure 2: The memory layout before and after converting a heap overflow
capability into the ability to deallocate a credential object.

how to pivot capability for different types of kernel vulnerabili-
ties.

• As described in the example above, DirtyCred needs to hold
on to the actual file writing after completing the permission
check and prior to the file object swap. However, holding on
to the actual writing is challenging. In the Linux kernel, the
permission check and the actual content writing happen back-to-
back quickly. Without a practical scheme to accurately control
the occurrence of file object swap, the exploitation would be
inevitably unstable. In Section 5, we introduce a series of effective
mechanisms that guarantee the file object swap could occur at
the desired time window.

• As is discussed above, one of the most critical steps in DirtyCred
is to use a high-privilege credentials to replace the low-privilege
one. To do that, DirtyCred allocates high-privileged objects, tak-
ing over the freed memory spot. However, it is challenging for a
low-privilege user to allocate high-privileged credentials. While
simply waiting for the activities from privileged users may po-
tentially resolve the problem, such a passive strategy greatly in-
fluences exploitation stability. First, DirtyCred has no clue when
the desired memory spot could be reclaimed and thus continues
its consecutive exploitation. Second, DirtyCred has no control
over the newly allocated objects. Therefore, it is possible that the
object that takes over the desired memory slot does not have the
expected privilege level. In Section 6, we introduce a userspace
mechanism and a kernel space scheme to address this problem.

4 PIVOTING VULNERABILITY CAPABILITY
As is demonstrated in the example depicted in Figure 1, the kernel
vulnerability cataloged as CVE-2021-4154 provides DirtyCred with
the ability to deallocate the file object in an invalid fashion. However,
in practice, a vulnerability may not demonstrate such a capability.
For example, a double-free (DF) or use-after-free (UAF) capability
may not directly tie to a credential object. Some vulnerabilities, like
out-of-bound (OOB) access, do not have invalid free capability. To
this end, DirtyCred needs to pivot a vulnerability’s capability. In

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

the following, we describe how we design DirtyCred for capability
pivot.

4.1 Pivoting OOB & UAF Write
Given an OOB vulnerability or a UAF vulnerability with the ca-
pability of overwriting data in a cache, DirtyCred first identifies
an object (i.e., victim object) that shares the same cache and en-
closes a pointer referencing a credential object. Then, it utilizes
heap manipulation techniques [6, 49] to allocate the object at the
memory region where the overwriting happens. As shown in Fig-
ure 2 (a), to pivot an OOB vulnerability, the victim object is just
right after the vulnerable object. Using the overwriting capabil-
ity, DirtyCred further modifies the object-enclosed pointer. More
specifically, DirtyCred uses the overwriting capability to write zero
to the last two bytes of the pointer referencing the credential object
(see Figure 2 (b)).

Recall that a cache is organized on contiguous pages. In the
Linux kernel, the address of a memory page is always in a format
where the last byte is zero. When allocating objects in a new cache,
the object starts from the beginning of the memory page. As a
result, the zero-byte overwriting above would force the pointer
to reference the beginning of a memory page. For example, as is
illustrated in Figure 2 (b), after nullifying the last two bytes of the
pointer referencing a credential object, the pointer references to
the beginning of a memory page in which another credential object
resides.

As is shown in Figure 2 (b), after the pointer manipulation, Dirty-
Cred obtains an additional reference to the first object of the mem-
ory page. We argue that this additional object reference means
success in capability pivot. The reason is that kernel could free
the object normally, leaving the pointer in the victim object as a
dangling pointer. Then, following the similar procedure described
in Section 3, DirtyCred could perform a heap spray, occupy that
freed spot with a high-privileged credential object, and thus fulfill
privilege escalation.

4.2 Pivoting DF
In the Linux kernel, general caches (e.g., kmalloc-96) and dedicated
caches (e.g., cred_jar) are isolated. The objects enclosed in these
caches have no overlap. However, the Linux kernel has a recycling
mechanism. When destroying a memory cache, it recycles the cor-
responding unused memory pages and then assigns the recycled
pages to the caches that need more space. This characteristic en-
ables cross-cache memory manipulation, providing DirtyCred with
the ability to pivot capability for double-free vulnerabilities.

Figure 3 shows the procedure of how DirtyCred converts a
double-free capability to the capability needed for privileged object
swap. First, DirtyCred allocates many objects in the cache where the
vulnerability occurs. Among these newly allocated objects, there is
a vulnerable object. Using two different pointers, DirtyCred could
deallocate the vulnerable object twice in an invalid fashion. Since
the number of allocations is large, DirtyCred could ensure that a
cache is full of newly allocated objects after the massive object
allocation (see Figure 3 (a)).

Following the massive allocation, DirtyCred utilizes the first
pointer to deallocate the vulnerable object in an invalid fashion,

(f) Reclaim the memory page with credential
object.

ptr 1’ ptr 1’ ptr 2’

ptr 1’ ptr 2’

ptr 1’ptr 1’

ptr 1’ ptr 2’

(a) Allocate a vulnerable object. (b) Free the vulnerable object through ptr 1.

(c) Reclaim the freed slot with another
vulnerable object.

(d) Free the vulnerable object through ptr 2.

(e) Destroy the memory cache.

(g) Trigger the free through ptr 2’. (h) Reclaim the freed slot with a credential
object.

Allocated
object

Vulnerable
object

Freed
memory

Credential
object

Credential
object being

attacked

ptr 1 ptr 2 ptr 2

ptr 2’ ptr 2

Figure 3: The step-by-step example demonstrating converting a double-
free capability into the ability to deallocate a credential object.

1 struct iovec
2 {
3 void __user *iov_base; /* BSD uses caddr_t (1003.1g requires

void *) */↩→
4 __kernel_size_t iov_len; /* Must be size_t (1003.1g) */
5 };
6
7 ssize_t vfs_writev(...)
8 {
9 // permission checks
10 if (!(file->f_mode & FMODE_WRITE))
11 return -EBADF;
12 if (!(file->f_mode & FMODE_CAN_WRITE))
13 return -EINVAL;
14
15 ...
16 // import iovec to kernel, where kernel would be paused
17 // using userfaultfd & FUSE
18 res = import_iovec(type, uvector, nr_segs,
19 ARRAY_SIZE(iovstack), &iov, &iter);
20 ...
21 // do file writev
22 }

Listing 1: The code snippet of vfs_writev function in kernel before 4.13.

leaving the second pointer behind (see Figure 3 (b)). Then, it re-
allocates the vulnerable object, taking over the freed memory spot.
As is shown in Figure 3 (c), after the reallocation, there are three
pointers referencing the vulnerable object. One is the pointer left
behind by the first vulnerable object. The other two are those tied
to the double-free capability against the newly allocated vulnerable
object.

Using one of the three-pointers referencing the vulnerable object,
DirtyCred further deallocates the newly allocated vulnerable object,
leaving a freed memory spot referenced by two dangling pointers
(see Figure 3 (d)). As mentioned above, the Linux kernel recycles the
memory page and assigns it to another cache if a cache contains no
allocated objects. Therefore, after the deallocation of the vulnerable

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

object, DirtyCred further deallocates other objects in the cache and
thus frees up the cache accordingly (see Figure 3 (e)).

On the recycled memory page, the kernel creates a new cache
that stores credential objects. The new cache divides the page mem-
ory into slots. As is depicted in Figure 3 (f), if the size of the vulnera-
ble object is different from that of the credential object, the address
of the credential object will not align with that of the vulnerable
object, making the two remaining pointers reference the middle
of the credential object. In this memory status, DirtyCred cannot
follow the exploitation procedure described in Section 3 because the
success of exploitation requires the ability to deallocate a credential
object.

To address this problem, DirtyCred first uses one of the remain-
ing pointers to deallocate the credential object in the middle. As is
illustrated in Figure 3 (g), after this deallocation, the kernel creates
a freed memory spot. This freed spot is the size as same as a creden-
tial object. Therefore, when DirtyCred allocates a new credential
object, the kernel fills that freed spot with the new credential object.
As we can observe in Figure 3 (h), after the freed spot is taken over,
the last remaining pointer references the newly allocated credential
object. It implies the success of the capability pivot. The reason is
that DirtyCred could utilize the remaining pointer to deallocate the
credential object in an invalid fashion and then perform an object
swap for privilege escalation.

5 EXTENDING TIMEWINDOW
Recall that the Linux kernel needs to check file permission before
performing a file write operation. DirtyCred needs to perform a
file object swap between the permission check and the actual file
writing. However, this window is too short to perform a successful
exploitation since the swapping need to trigger the vulnerability
and do heap layout manipulation, which might take a few seconds.
To address this problem, DirtyCred utilizes several techniques to
extend this time window to ensure it is larger than the time spent
for the swapping process. Here, we describe these techniques and
discuss how they could facilitate exploitation.

5.1 Exploitation of Userfaultfd & FUSE
Userfaultfd [38] and FUSE [37] are two critical features in the Linux
kernel. The userfaultfd feature allows userspace to handle page
faults. When a page fault is triggered on the memory registered in
userfaultfd, the user registered page fault handler will get notified
to handle the page fault. Unlike userfaultfd, FUSE is a userspace
filesystem framework, allowing users to implement the userspace
filesystem. Users could register their handler for the implemented
userspace filesystem to specify how to respond to file operating
requests. Both userfaultfd and FUSE could be utilized to pause
Linux kernel execution as long as the user want. For userfaultfd, an
adversary could register a page fault handler for a memory page.
When the kernel attempts to access that memory and triggers a page
fault, the registered handler will be invoked, allowing the adversary
to pause kernel execution. For FUSE, an adversary could allocate the
memory from the userspace filesystem. When the kernel accesses
this memory, it invokes the pre-defined file access handler and thus
pauses kernel execution.

1 ssize_t vfs_writev(...)
2 {
3 ...
4 // import iovec to kernel, where kernel would be paused
5 // using userfaultfd
6 res = import_iovec(type, uvector, nr_segs,
7 ARRAY_SIZE(iovstack), &iov, &iter);
8 ...
9 // permission checks
10 if (!(file->f_mode & FMODE_WRITE))
11 return -EBADF;
12 if (!(file->f_mode & FMODE_CAN_WRITE))
13 return -EINVAL;
14 ...
15 // do file writev
16 }

Listing 2: The code snippet of vfs_writev function in kernel after 4.13.

In this work, DirtyCred utilizes these features to pause kernel
execution after the file permission check is completed. In the follow-
ing, we take userfaultfd as an example to describe how DirtyCred
fulfills the kernel pause and extends the exploitation time window.
For FUSE, the kernel pause procedure is similar. Readers could refer
to the exploit sample we developed [2].

When performing file write, DirtyCred invokes syscall writev, the
implementation of vectored I/O. Unlike syscall write, this syscall
uses structure iovec to pass data from userspace to kernel space.
List 1 in Line 1∼5 defines the structure iovec. As we can observe, it
contains a userspace address and a size field indicating the amount
of data that will be transferred. In the Linux kernel space, in order
to copy the data enclosed in iovec, the kernel needs to first import
the iovec to the kernel space. Therefore, before Linux kernel version
v4.13, as is shown in List 1, the implementation of writev first checks
the file object, ensuring that the current file is in open status and
with write permission. Once the check passes, it then imports the
iovec from userspace and writes user data to the corresponding
file. In this implementation, the import of iovec is in between the
permission check and data write. DirtyCred can simply utilize the
aforementioned userfaultfd feature to pause kernel execution right
after completing the permission check and thus win sufficient time
to swap the file object. To the best of our knowledge, this technique
was firstly used by Jann Horn’s exploitation for CVE-2016-4557 [25],
but it is no longer available after kernel v4.13.

5.2 Alternative Exploitation of Userfaultfd &
FUSE

After Linux kernel version v4.13, the kernel implementation gets
changed. The import of iovec was moved ahead of permission check
(see List 2). In this new implementation, DirtyCred could still use
the userfaultfd feature to pause kernel execution at the site of iovec

import. However, it no longer gives DirtyCred the ability to extend
the time window between permission check and actual file write.
To address this problem, DirtyCred exploits the design of the Linux
filesystem.

In Linux, the filesystem design follows a strict hierarchy in which
the high-level interface is common for file write operations, whereas
the low-level interface varies across filesystems. When writing a
file, the kernel first invokes the high-level interface. As is shown
in List 3, generic_perform_write is a high-level interface for file write

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 ssize_t generic_perform_write(struct file *file,
2 struct iov_iter *i, loff_t pos)
3 {
4 /*
5 * Bring in the user page that we will copy from _first_.
6 * Otherwise there's a nasty deadlock on copying from the
7 * same page as we're writing to, without it being marked
8 * up-to-date.
9 */
10 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
11 status = -EFAULT;
12 break;
13 }
14 ...
15 // call the write operation of the file system
16 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
17 &page, &fsdata);
18 ...
19 }

Listing 3: The code snippet of generic_perform_write function in the
Linux kernel.

1 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
2 struct iov_iter *from)
3 {
4 ssize_t ret;
5 struct inode *inode = file_inode(iocb->ki_filp);
6 inode_lock(inode);
7 ...
8 ret = generic_perform_write(iocb->ki_filp, from,

iocb->ki_pos);↩→
9 ...
10 inode_unlock(inode);
11 return ret;
12 }

Listing 4: The code snippet of ext4 filesystem in the Linux kernel.

operation. As we can observe, in Line 15∼17, generic_perform_write

invokes the write operation of the filesystem and writes data to the
file. To guarantee performance and compatibility, just before the
write operation, the kernel triggers a page fault for the userspace
data enclosed in iovec. As a result, using the userfaultfd feature in
Line 10, DirtyCred could pause kernel execution prior to actual file
writing and thus obtain a sufficient time window for privileged file
object swap.

Compared with pausing kernel execution at the site of iovec im-
port, we argue that exploiting the filesystem’s design is more chal-
lenging to mitigate. First, as is described in the Linux code comment,
removing page fault in iovec could potentially cause a deadlock issue
(see List 3). Some filesystems will inevitably encounter trouble if
the page is not pre-faulted. Second, while moving the page fault
prior to the permission check could potentially resolve the problem,
this straightforward defense reaction scarifies kernel performance
and, more importantly, suffers from potential circumvention. For
example, DirtyCred could remove the page right after triggering
the first-page fault. In this way, the kernel inevitably triggers the
page fault again and thus pauses the kernel execution right after
the permission check.

5.3 Exploitation of Lock in Filesystem
In order to avoid messing up the content of a file, a filesystem does
not allow two processes to write a file at the same time. In Linux,

its filesystem enforces this practice by using a lock mechanism. To
illustrate this, List 4 shows a simplified code snippet that performs
a write operation in the ext4 filesystem. As we can observe, the
filesystem first tries to obtain the inode lock in Line 6. If the inode
is under the operation of another file (i.e., others hold the lock), the
filesystem will wait until the lock is released. After obtaining the
lock, the filesystem calls generic_perform_write to write the data to the
file. When it completes the write, the filesystem will release the
lock and return from the function.

The lockmechanism above could ensure the write operation does
not go wrong. Unfortunately, it leaves an opportunity for DirtyCred
to extend the time window and thus perform an object swap. To
be specific, DirtyCred could spawn two processes – process A
and process B – to write data on the same file simultaneously.
Assume that process A holds the lock, writing a massive amount
of data. When process A writes the file, process B would have to
wait for an extended period until the lock is released in Line 10.
Since prior to the invocation of generic_perform_write, process B has
already completed the file permission check, the time spent on lock
waiting provides DirtyCred with a sufficiently large time window
to complete file object swap without worrying about the block
of permission check. Based on our observation, the hold-on time
could elapse to dozens of seconds when writing a 4GB file to a hard
disk drive. Within this time window, triggering the vulnerability
and performing memory manipulation could be completed without
incurring any instability issue in exploitation.

6 ALLOCATING PRIVILEGED OBJECT
As is mentioned in Section 3.2, DirtyCred cannot passively wait
for privileged users’ activities and expect that these activities could
result in a privileged object taking over the desired freed spot and
thus fulfill privilege escalation. Therefore, DirtyCred has to take
active action to trigger a privileged object allocation in the kernel
space. This section discusses how DirtyCred – running as a low-
privileged user – performs privileged object allocation.

6.1 Allocation from Userspace
In the Linux kernel, the “cred” objects represent the privilege level
of corresponding kernel tasks. The root user has a privileged cred
object, representing the highest privilege. Therefore, if DirtyCred
can actively trigger a root user’s activities, the kernel could allocate
the privileged cred objects accordingly. In Linux, when a binary
has SUID permission, it could be executed as if it is executed by the
owner, regardless of whoever executes the binary. Using this char-
acteristic, a low-privileged user could spawn a root process when
he/she executes a root-user-owned binary with a SUID permission
set.

In the past, attackers focused on exploiting a vulnerability in a
privileged binary and thus fulfilled privilege escalation. In this work,
DirtyCred does not rely on the vulnerabilities residing in privileged
binaries. Instead, it abuses the aforementioned feature to spawn
SUID-set binaries owned by root users, allocating the privileged
cred object to occupy the free memory spot. In Linux, the binaries
that match the feature are many, including the executables such as
su, ping, sudo, mount, pkexec, etc.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

As discussed earlier, in addition to cred objects, DirtyCred also
could swap file objects for privilege escalation. Unlike cred objects,
file object allocation is relatively easy. Recall that DirtyCred replaces
a write-permitted file’s object with a read-only file’s object when
swapping file objects. To allocate file objects specifying read-only
permission, DirtyCred could open multiple target files with only
the read permission. In this way, the kernel would allocate many
corresponding file objects in the corresponding kernel memory.

6.2 Allocation from Kernel Space
The method described above indicates a way that allocates privi-
leged objects from userspace. In fact, DirtyCred can also perform
privileged object allocation from kernel space. When the Linux
kernel starts a new kernel thread, it duplicates its current running
process. Together with the process duplication, the kernel allocates
a copied cred object on the kernel heap accordingly. In the Linux
kernel, most of the kernel threads have a privileged cred object. As
a result, the copied cred object is also in high privilege. Using the
ability to spawn privileged kernel threads, DirtyCred could actively
allocate privileged cred objects.

To the best of our knowledge, there are two major approaches
to allocating high privileged credential objects. The first is to inter-
act with the kernel code snippets, triggering the kernel to spawn
a privileged thread internally. For example, creating workers for
kernel workqueue can also be used to spawn kernel threads. In the
Linux kernel, the work queue is designed for handling deferred
functions. A work queue comes with a number of work pools. Each
work pool contains workers. A worker is the underlying execution
unit that runs the work committed to the workqueue. The number
of the workers in each work pool is, at most, the number of the
CPUs. Initially, the kernel creates only one worker for each work
pool. When there is a need for more workers or, in other words,
more works are committed to the work queue, the kernel will create
workers dynamically. Each worker is a kernel thread. As a result,
by adjusting the works committed to the kernel work queue, one
could control the activities of kernel thread spawning accordingly.

In addition to the method above, the second approach to spawn-
ing kernel threads is to invoke the usermode helper. Usermode
helper is a mechanism that allows the kernel to create a user-mode
process. One of the most straightforward applications of the user-
mode helper is loading kernel modules to kernel space. When load-
ing a kernel module, the kernel calls the usermode-helper API,
which further executes the userspace program – modprobe in high
privileged mode and thus creates a high privileged credential ob-
jects in the kernel. Part of modprobe functionality is to search
through the standard installed module directories to find the nec-
essary drivers. During the search, the kernel needs to continue its
execution. As a result, to avoid modprobe blocking kernel execu-
tion, when invoking a usermode-helper API, the kernel also spawns
a new kernel thread.

7 EVALUATION
In this section, we design two experiments to evaluate the ex-
ploitability of DirtyCred on real-world kernel vulnerabilities.

Memory Cache Structure Offset
kmalloc-16 vdpa_map_file 0★

kmalloc-32

binder_task_work_cb 16★
binder_txn_fd_fixup 16★

coda_file_info 8★
shm_file_data 16★

kmalloc-64
fuse_fs_context 8★
ovl_dir_file 24★ 32★

bpf_event_entry 8★

kmalloc-96

gntdev_dmabuf_priv 80★
nfs_access_entry 40 †
request_key_auth 32 †

watch 64 †
bpf_perf_link 64★

kmalloc-128 async 32 †
nfs_delegation 16 †

kmalloc-192

fs_context 88 †
sync_file 0★
vmci_ctx 144 †

coda_vm_ops 8★
nfs_open_context 80 †
nfs_unlinkdata 144 †
nfs_renamedata 152 †
nfs4_layoutreturn 144 †

ovl_fs 112 †

kmalloc-256

usb_dev_state 152 †
autofs_sb_info 8★
shmid_kernel 128★
bsd_acct_struct 144★

kmalloc-512

linux_binprm 48★, 64★
loop_device 96★
dma_buf 8★
nvmet_ns 24★
ksmbd_file 0★
rpc_clnt 440★

nfs4_state_owner 56 †
nfs4_ff_layout_mirror 96 †, 104 †

p9_trans_fd 0★, 8★

kmalloc-1k

sock 600 †
binder_proc 80 †

kfd_process_device 256★
send_ctx 0★
nlm_host 520 †

nfs4_layoutcommit_data 472 †

kmalloc-2k vsock_sock 864 †
io_ring_ctx 408 †

kmalloc-4k vduse_iova_domain 3824★
vm_area_cachep vm_area_struct 160★

ashmem_area_cache ashmem_area 288★
client_slab nfs4_client 736 †

nfsd_file_slab nfsd_file 48★, 56†
kioctx_cachep kioctx 512★

Table 1: Exploitable objects identified in the Linux kernel. Note that the
symbol★ indicates an object tied to “file” credential whereas the symbol †
represents an object associated with “cred” object. The column “Memory
Cache” specifies the caches storing kernel objects. The column “Structure”
represents the exploitable objects’ types. The column “Offset” describes
where the credential object’s reference is located in the exploitable object.
Note that some exploitable objects contain two credential-object references
(e.g., ovl_dir_file and linux_binprm).

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

CVE-ID Observed Capability DirtyCred
CVE-2022-27666 OOB ✔

CVE-2022-25636 Double Free ★ ✔

CVE-2022-24122 UAF ✗

CVE-2022-0995 OOB ✔

CVE-2022-0185 OOB ✔

CVE-2021-22600 Double Free ✔

CVE-2021-4154 UAF ✔

CVE-2021-43267 OOB ✔

CVE-2021-41073 Double Free ★ ✔

CVE-2021-34866 OOB † ✗

CVE-2021-33909 OOB † ✗

CVE-2021-42008 OOB ✔

CVE-2021-3492 Double Free ✔

CVE-2021-27365 OOB ✔

CVE-2021-26708 Double Free ★ ✔

CVE-2021-23134 Double Free ★ ✔

CVE-2021-22555 Double Free ✔

CVE-2021-3490 OOB † ✗

CVE-2020-14386 OOB ✔

CVE-2020-16119 Double Free ★ ✔

CVE-2020-27194 OOB † ✗

CVE-2020-8835 OOB † ✗

CVE-2019-2215 UAF ✗

CVE-2019-1566 UAF ✗

Table 2: Exploitability demonstrated on real-world vulnerabilities. Note
that some CVEs provide both use-after-free and double-free capabilities.
Here, we categorize such vulnerabilities into double-free and mark them
with a★ symbol. Note that the symbol † indicates the vulnerabilities that
could corrupt only data in virtual memory area.

7.1 Experiment Design & Setup
As is mentioned above, DirtyCred utilizes exploitable objects (i.e.,
the ones that enclose credential objects) to perform memory ma-
nipulation particularly for vulnerabilities like out-of-bound access
and use-after-free. This manipulation is one of the critical steps for
DirtyCred to fulfill privilege escalation. When performing mem-
ory manipulation, DirtyCred allocates the exploitable object to the
cache where the vulnerability locates. For different vulnerabilities,
they demonstrate memory corruption capability on different caches.
Therefore, the success of DirtyCred highly depends on whether it
could successfully identify exploitable objects that could fit into
the corresponding cache. With this in mind, we first identify the
unique exploitable objects available for each cache.

In order to point out the objects, one instinct reaction is to seek
through the Linux kernel code manually, pinpoint those exploitable
objects, and figure out the input that could trigger the correspond-
ing allocation. However, Linux kernel code space is large and so-
phisticated, making code examination impractical. Therefore, to
address this problem, we introduce an automated method to track
down exploitable objects and the corresponding input to trigger
their allocation. In our evaluation, we apply the automated method
to the latest stable kernel (i.e., version 5.16.15 at the time of this
paper writing). We consider an object as an exploitable object only
if the automated method can find an object that encloses the cre-
dential object and can demonstrate an input to allocate that object

on the kernel heap. Due to the space limit, we detail the design and
implementation of our automated method in the Appendix A.

In addition to identifying exploitable kernel objects, our exper-
iment also explores DirtyCred’s exploitability against real-world
vulnerabilities. Recall that DirtyCred needs to pivot a vulnerability
capability if the vulnerability does not provide DirtyCred with the
ability to swap credential objects directly. As is discussed in Sec-
tion 4.1, when performing vulnerability pivoting, DirtyCred might
need to overwrite some critical data in the exploitable object. For
different vulnerabilities, their overwriting capability could vary
significantly, further impacting the success of privilege escalation.
As a result, we evaluate DirtyCred’s effectiveness by using it to
exploit many real-world vulnerabilities and studying how well it
could perform exploitation against these vulnerabilities.

We assume a Linux kernel is armed with state-of-the-art exploit
mitigation techniques available in kernel when performing the ex-
ploitation. As a result, we need to select vulnerabilities identified in
the kernel developed in recent years. In our evaluation, we selected
only Linux kernel CVEs reported after 2019. In our CVE selection
process, we filtered out those vulnerabilities that do not corrupt data
on the kernel heap. Besides, we ruled out those vulnerabilities for
which we cannot reproduce the corresponding kernel panic. Last
but not least, we also eliminated those vulnerabilities, the trigger
of which requires the installation of specific hardware. Following
these CVE selection criteria, we obtained a data set with 24 unique
CVEs. In Table 2, we listed these CVEs’ IDs and the corresponding
vulnerability types. As we can observe, our selected test cases cover
nearly all types of vulnerabilities on the kernel heap.

7.2 Experiment Result

Exploitable objects. Table 1 shows the exploitable objects identi-
fied in each kernel cache. As we can observe, the exploitable objects
cover nearly all the general caches except for kmalloc-8, which is
rarely used in the Linux kernel. For most of memory caches, there
are more than one exploitable object potentially useful for Dirty-
Cred’s privilege escalation. In each exploitable object, the offset of
the field referencing a credential object is also present in Table 1.
As we can observe, the offsets for different exploitable objects vary.
It indicates that DirtyCred has a higher chance of finding a suitable
object to match a vulnerability’s capability and perform successful
exploitation. For example, if a vulnerability demonstrates the ca-
pability of overwriting 8 bytes to an adjacent object at its offset of
the 8-th byte, an exploitable object with the critical data at the 8-th
byte would greatly facilitate DirtyCred’s privilege escalation.

From Table 1, we also discover 5 objects in 5 general caches. They
enclose the reference to the credential object at the beginning of
the objects. It implies that even if the attackers only obtain a very
limited memory corruption capability (e.g., overwriting two bytes
of zero at the beginning of a victim object), they are still capable of
leveraging the identified exploitable object to launch a DirtyCred
attack. It should be noted that Table 1 also distinguishes exploitable
objects referencing cred and file using different symbols. As we will
discuss in Section 10, a cred object could provide better support for

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

container escape. Therefore, adequate exploitable objects with cred
object linkage indicate more substantial support in docker escape.

Exploitability.Table 2 shows the exploitability of DirtyCred across
different vulnerabilities. As we can observe, DirtyCred successfully
demonstrates kernel defense bypassing and privilege escalation
on 16 out of 24 vulnerabilities when the underlying Linux kernel
enables all the exploit mitigation mechanisms discussed in Sec-
tion 2.3. This observation implies that DirtyCred could be used as
a powerful, general exploitation method for kernel vulnerability
exploitation tasks. Of the 16 exploitation-successful test cases, 8
are out-of-bound or use-after-free vulnerabilities, and the other 8
are double-free. DirtyCred succeeds on all double-free test cases
as a double-free capability could always be pivoted to freeing a
credential object invalidly.

The failure cases are primarily from out-of-bound and use-after-
free. For OOB vulnerabilities, the failure cases demonstrated mem-
ory corruption in the virtual memory area. To use DirtyCred, we
need to find kernel objects with credential information. These ob-
jects are usually allocated at the kmalloc’ed memory region but
not virtual memory. As a result, DirtyCred fails to find necessary
objects for a successful exploitation. We annotate these cases with
a † symbol in Table 2. As we will discuss in Section 10, the failure
of exploiting those cases does not mean DirtyCred cannot exploit
vulnerabilities on virtual memory. The memory corruption capabil-
ities on virtual memory could still be pivoted to capabilities useful
for DirtyCred if there are suitable exploitable objects or using other
capability pivoting techniques.

For the UAF failure case CVE-2022-24122, it does not demon-
strate the overwriting capability through the dangling pointer but
manifests merely an over-reading ability. As is discussed in Sec-
tion 4, DirtyCred relies on either invalid write capability or invalid
free capability. The over-reading capability of CVE-2022-24122 lim-
its DirtyCred to perform a successful capability pivoting, thus fails
the attack. For CVE-2019-2215 and CVE-2019-1566, they manifest
the overwriting capability. However, the overwriting ability does
not happen in the critical field of exploitable objects. Without such
a capability, DirtyCred cannot manipulate necessary fields in the
kernel objects to free a credential object, thus fails the attack.

8 DEFENSE AGAINST DIRTYCRED
Given the exploitability demonstrated in the section above, we
argue that DirtyCred is a severe threat to the existing Linux sys-
tem. While the technique of abusing lock mechanism could be
mitigated by reengineering the filesystem, it is still not enough
to block DirtyCred as it could be launched from another path –
swapping cred object. Therefore, an effective approach is to pre-
vent the swap of credentials with different privilege level. From one
perspective, userspace heap defenses are not adequate for Dirty-
Cred. The kernel wants the memory allocation/free/access to be as
fast as possible. Otherwise, it will slow down user space programs
and the entire system. Therefore, the memory allocator in the ker-
nel is much simpler than that in userspace (e.g., ptmalloc). This
fact makes userspace heap defenses not applicable to kernel space.
From another viewpoint, even if the Linux kernel has introduced
many defense mechanisms (e.g., CFI, SMEP, SMAP, and KASLR,

Benchmark Vanilla Hardened Overhead

Phoronix
Apache (Reqs/s) 28603.29 29216.48 -2.14%
Sys-RAM (MB/s) 10320.08 10181.91 1.34%

Sys-CPU (Events/s) 4778.41 4776.69 0.04%
FFmpeg(s) 7.456 7.499 0.58%

OpenSSL (Byte/s) 1149941360 1150926390 -0.09%
OpenSSL (Sign/s) 997.2 993.2 0.40%
PHPBench (Score) 571583 571037 0.09%
PyBench (ms) 1303 1311 0.61%

GIMP (s) 12.357 12.347 -0.08%
PostMark (TPS) 5034 5034 0%

LMBench
Context Switch (ms) 2.60 2.57 -1.15%

UDP (ms) 9.2 9.26 0.65%
TCP (ms) 12.75 12.73 -0.16%

10k File Create (ms) 13.8 14.79 7.17%
10k File Delete (ms) 6.35 6.62 4.25%

Mmap (ms) 80.23 81.91 2.09%
Pipe (MB/s) 4125.3 4028.9 2.34%

AF Unix (MB/s) 8423.5 8396.7 0.32%
TCP (MB/s) 6767.4 6693.3 1.09%

File Reread (MB/s) 8380.43 8380.65 0%
Mmap Reread (MB/s) 15.7K 15.69K 0.06%
Mem Read (MB/s) 10.9K 10.9K 0%
Mem Write (MB/s) 10.76K 10.77K -0.09%

Table 3: The performance evaluation results of the proposed defense on
two different benchmarks – Phoronix and LMBench.

etc.), none of the existing kernel defenses are effective to DirtyCred
for the following reasons.

First, DirtyCred does not violate any control-flow integrity, mak-
ing the effort of safeguarding kernel control flow futile. Second,
DirtyCred does not rely on a single exploitation component for ex-
ploitation. As is shown in Section 7, valuable objects for exploitation
are spread across nearly all general caches. Therefore, defending
against DirtyCred by eliminating exploitable objects is nearly infea-
sible. Third, DirtyCred fulfills its exploitation goal by placing a legit
credential object to an illegitimate memory spot but not tampering
with a credential object’s content. This exploitation practice makes
existing credential integrity protection techniques (e.g., Samsung
Knox’s Real-time Kernel Protection [43]) less likely to be effective.
Last but not least, DirtyCred performs privilege escalation by swap-
ping high and low privileged credential objects between each other.
This exploitation method fails many kernel object isolation schemes
(e.g., AUTOSLAB [34] and xMP [44]) because they separate critical
kernel objects in their own memory regions based on the type of
the objects but not their privilege.

To this end, we argue that one effective defense solution against
DirtyCred would be to isolate high privileged and low privileged
objects, forcing them not to share the same memory space. In this
way, DirtyCred will no longer be able to overlap objects with dif-
ferent privileges for privilege escalation. To achieve the goal above,
a straightforward reaction is to create two different caches. One is

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

used for high privileged object storage. The other is used to hold low
privileged objects. Since caches are naturally isolated, this design
could ensure that objects with different privileges have no overlap.
However, as we discussed in Section 4.2, once a memory cache
is destroyed, the Linux’s buddy allocator recycles the underlying
memory page. Therefore, DirtyCred could still launch its attack by
abusing this memory-page recycle feature.

Design.With the analysis above in mind, we propose a practical
defense solution that creates a cache for high privileged objects in
the virtual memory region and leaves the low privileged objects in
the normal memory area (i.e. direct-mapped memory region). The
virtual memory region refers to dynamic allocations of virtually
contiguous memory within the kernel. It resides in the memory area
defined by VMALLOC_START through to VMALLOC_END. Since it is separated
from the direct-mapped memory region, the regions designated
to high privileged and low privileged objects would never overlap
even after the caches are destroyed and the underlying memory
pages are recycled.

Implementation. In this work, we implemented our proposed
defense against DirtyCred on the Linux kernel v5.16.15. In our im-
plementation, we manually modified the ways of allocating cred

objects and file object in kernel. If the allocation is for privileged
ones, we allocate them using virtual memory. To be specific, when
allocating cred objects, we examine the privilege based on the UID of
the object. If the UID matches GLOBAL_ROOT_UID, which means the alloca-
tion is for privileged cred objects, we use vmalloc as the allocator to
allocate virtual memory for the object. For file objects, we examines
the file’s mode. If the file is opened with write permission, we will
allocate the file object with vmalloc accordingly. Our implementation
is available at [2].

Technical discussion. Our proposed defense protects the Linux
kernel by enforcing memory isolation for credential objects. As is
mentioned above, our implementation determines the privilege at
the time of object allocation. However, the privilege could be altered
by changing the UID during runtime (e.g., changing a low privileged
credential object to a high privileged one through ’setuid’ syscall).
When this occurs, our proposed defense above will encounter secu-
rity issues because we perform object isolation only at the time of
allocation. To address this problem, we manually modify the way
of altering kernel credential objects in our implementation. Specifi-
cally, if the kernel changes UID of a credential object to GLOBAL_ROOT_UID,
we will copy the high privileged credential object to the ‘vmalloc’
region rather than altering the original one. However, we think
some issues might be raised if the future kernel development does
not follow the same pattern. As a result, we leave the exploration
of alternative solutions as part of our future work.

Performance Evaluation. To evaluate our defense mechanism’s
performance, we ran two benchmarks against the vanilla Linux
kernel and our defense-enabled kernel on a bare-mental machine
(with an Intel 4-Core CPU, 16GB RAM, and 1000GB HHD). Our
benchmarks include a micro-benchmark from LMbench v3.0 [41]
and a macro-benchmark from Phoronix Test Suite [42]. The LM-
bench evaluates the latency and bandwidth of syscalls and system
I/O, whereas the Phoronix Test Suite examines the performance of
real-world applications on two Linux kernels. For LMbench, We ran

the benchmark 10 times to avoid randomness and took the average
as the observed performance. For Phoronix Test Suite, we ran the
test with batch mode, which will run the test 50 times and output
the average values.

Table 3 shows our evaluation results. First, we can observe that
our proposed method mostly introduces negligible performance
overhead, indicating that our defense is lightweight. Second, we
can observe that there is some moderate performance decrease for
the test cases – “10k File Create” and “10k File Delete” – in the LM-
Bench. As is shown in Table 3, our proposed defense introduces an
overhead of over 4%. The reason behind this performance decrease
is that file objects were allocated to virtual memory region through
vmalloc rather than the normal memory region through kmalloc. In
comparison with kmalloc, vmalloc is relatively slow because virtual
memory have to re-map the buffer space into a virtually contiguous
range, whereas ‘kmalloc’ never re-maps.

It should be noted that the file deletion involves a lower perfor-
mance downgrade than file creation (4.25% vs. 7.17%). The reason
behind the difference is that the free of file object is done through
RCU, which is executed asynchronously to the file deletion pro-
cess. While the moderate overhead may raise the concern of some
production systems, it dramatically improves the kernel protection
against DirtyCred. In this work, our primary objective is to raise the
Linux community’s awareness but not to build a secure, efficient
defense solution.We leave the exploration of the alternative defense
solution as our future research effort. Last, it should also be noted
that some cases demonstrated slight performance improvement
after we introduced defense to the Linux kernel. This is mainly
due to the noise of our experiment although we tried to minimize
the noise as much as we could by running the benchmark multiple
times, and disabling CPU boost on a bare-metal machine.

9 RELATEDWORK
This work introduces a new kernel exploitation method and the
corresponding defense to mitigate the threat. As a result, the works
most relevant to ours include kernel exploitation and kernel ex-
ploitation mitigation. In the following, we summarize the works
on these two topics and discuss how they differ from our proposed
techniques.
Kernel exploitation. The kernel exploitation techniques evolved
with the development of kernel defense. Prior to the introduction
of Supervisor Mode Execution Prevention (SMEP) [29], the tech-
nique – ret2usr [32] – exploits the Linux kernel by pivoting kernel
execution to the userland. After the broad deployment of SMEP in
Linux, this technique no longer works because SMEP prevents ker-
nel execution in the userspace. Following SMEP, Supervisor Mode
Access Prevention (SMAP) [7] was further proposed to block direct
userspace access, which further enhances the separation of the
kernel and userspace’s access. To bypass the protection enforced
by SMEP/SMAP, researchers proposed a series of new exploita-
tion methods. For example, Kemerlis et al. proposed the ret2dir
technique [31] that enables an adversary to mirror userspace data
within the kernel address space. Wu et al. introduce KEPLER [48]
that utilizes a particular kernel code gadget to transform the PC
control to stack overflow and thus enables a long ROP chain.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

To prevent ROP attacks against the Linux kernel, Linux intro-
duces KASLR, which increases exploitation difficulty by random-
izing the kernel memory address layout. However, following the
adoption of this kernel defense, security experts then proposed
many practical methods [5, 16, 23, 28] to circumvent KASLR. For
example, using elastic objects in the kernel. Chen et al. proposed
ELOISE [5] that could disclose sensitive kernel information after
overwriting the length field of elastic objects. Gruss et al. proposed
a hardware side-channel attack that leverages pre-fetch instructions
to bypass KASLR. Recently, some security experts even proposed
to utilize vulnerabilities in processors to launch Meltdown [39] and
Spectre [33] attacks and thus bypass KASLR’s protection on Linux.

In addition to memory address space randomization, security re-
searchers also proposed techniques to randomize the heap memory
layout in the Linux kernel [17, 47]. With the heap randomization
enabled, the heap layout is no longer linear, which increases the
difficulty for adversaries in performing heap layout manipulation.
However, following the success of heap layout randomization, Xu
et al. proposed a memory collision technique [49]. This technique
uses the memory reuse mechanism to exploit kernel use-after-free
vulnerabilities without being hindered by heap randomization.

Unlike the above exploitation techniques, aiming to the circum-
vention of some specific kernel protection and exploit mitigation
but not an ultimate exploitation goal (e.g., privilege escalation), our
work focuses on end-to-end exploitation without the headache of
bypassing broadly deployed kernel defenses. As such, our exploita-
tion method is more general and consequential. As we will discuss
in Section 10, DirtyCred can even facilitate the ability to escape
containers and root Android devices.
Kernel defense. In addition to the kernel defenses introduced to-
gether with the existing exploitation methods above, there are also
many other kernel protection and exploit mitigation mechanisms.
These defenses are proposed by academia and industry, receiving
significant attention from the security community. Here, we briefly
introduced some recently proposed or mostly adopted in practice.

To thwart side-channel attacks against the Linux kernel, Gruss
et al. proposed a strict kernel and userspace isolation mechanism –
KAISER [22]. This mechanism could ensure that the hardware does
not hold any information about kernel addresses while running in
user mode. To improve KASLR, Linux kernel developers introduce
Function Granular Kernel Address Space Layout Randomization
(FGKASLR [1]). By randomizing the layout down to a code function
level, FGKASLR makes the code-reuse attack more challenging. To
hinder control-flow hijacking, researchers also proposed a variety
of defense mechanisms to enforce control-flow integrity in the
Linux kernel [11, 15, 18, 50]. For example, Yoo et al. proposed to
implement an in-kernel, control-flow integrity protection by using
ARM’s Pointer Authentication [50].

In addition to kernel control-flow protection above, there are also
a series of defense techniques that focus on providing protection for
critical kernel data [4, 13, 27, 40, 46]. For example, AUTOSLAB [34]
and xMP [44] are such kernel defenses. As we discussed in Section 8,
AUTOSLAB isolates different types of objects into different memory
caches, which reduces the objects useful for kernel heap memory
manipulation. xMP employs virtualization techniques to isolate
sensitive data and thus prevents them from being tampered with
by unlawful actors.

From the defense philosophy viewpoint, our defense mechanism
is different from the works safeguarding kernel control-flow in-
tegrity. It is similar to the works that isolate critical kernel data.
However, our defense is entirely different from these works from
the technical perspective. Rather than isolating objects based on
the types and sensitivity, our defense performs memory isolation
based on the privilege of kernel objects. As such, it is more effective
in defending against the threat of DirtyCred.

10 DISCUSSION & FUTUREWORK
In this section, we discuss some other issues we have not yet discuss
and present our future effort.

Escaping container. Going beyond privilege escalation on Linux,
DirtyCred can facilitate container escape passively and actively. As
mentioned earlier, DirtyCred performs exploitation by swapping
either file objects or cred objects. Using file objects for exploitation,
DirtyCred could overwrite a high privileged file. However, no file
in a container provides the privilege to switch the namespace. In
order to address this problem, a recent work [12] shows that an
attacker could passively wait for the runC process and thus execute
root commands on the host by overwriting the process. Motivated
by this idea, DirtyCred could use the file object swap mechanism
to overwrite the runC process and thus fulfill container escape.

Unlike the method above, using cred objects to perform con-
tainer escape does not need passive wait. To do so, DirtyCred could
first trigger a Linux kernel vulnerability, swap cred objects, and
thus escalate the attacker’s privilege to SYS_ADMIN. With this SYS_ADMIN

↩→ privilege in hand, the attacker could then follow a previously
proposed docker escape method [3] that mounts a cgroup and then
utilizes the notify_no_release mechanism to execute the root command
on the host system. To demonstrate DirtyCred’s ability to escape
the container, we provide a working exploit at [2]. Reviewers could
download the exploit and see more docker escape details.

Rooting Android. In addition to container escape, DirtyCred is
also capable of rooting Android. The Android kernel is developed
based on the generic Linux kernel. In practice, the Android kernel
is more difficult to exploit compared to the generic kernel because
of the more strict access control and newly shipped defenses [19].
DirtyCred can root Android with two paths of attacks discussed
in this paper. On the one hand, DirtyCred could swap the task
credentials directly, which grants attackers privileged task creden-
tials, thus root privilege. On the other hand, DirtyCred could first
utilize its file manipulation capability to overwrite shared system
library, which allows a privilege escalation from the restrict sand-
box. Then, it could overwrite kernel modules with malicious code,
fulfilling arbitrary read and write, and eventually disable SELinux
on Android. We demonstrated DirtyCred’s capability of rooting
Android with zero-day vulnerabilities. By the time of writing this
paper, we reported the vulnerabilities to Google and received their
acknowledgement.

Cross version / architecture exploitation.When crafting an ex-
ploit under the guidance of DirtyCred, one could expect the same
exploit code could work across different kernel versions or archi-
tectures without any modification for the following reasons. First,
unlike other exploitation methods that need the leakage of kernel

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

base address to bypass KASLR, DirtyCred does not need to handle
KASLR. As a result, the exploitation code does not include any data
specific for kernel versions or underlying architectures. Second,
many previous kernel exploitation methods (e.g., KEPLER [48])
heavily rely on ROP to escalate privilege. When migrating such
exploits to a different architecture, one needs to modify the ROP
chain and thus preserve its exploitability. DirtyCred does not use
any architecture-specific data as discussed throughout the paper.
Therefore, once a piece of exploit code is developed for a vulnerabil-
ity, the exploit could work on other vulnerable kernels, regardless
of their versions and the underlying architectures.

Other ways to pivot capability. In Section 4, we proposed some
techniques to pivot a memory corruption capability to the capa-
bility useful for DirtyCred. In our evaluation, we found vulnera-
bilities happened on virtual memory are harder to exploit with
DirtyCred. The reason is that there are less exploitable objects on
virtual memory, which limits pivoting capability from the original
memory corruption to ones that are useful for DirtyCred. We argue
that this does not mean vulnerabilities on virtual memory cannot
be exploited with DirtyCred. For example, CVE-2021-34866 pro-
vides an out-of-bound capability that demonstrates an overwrite
on vmalloc’ed memory. Using our pivoting approach, we cannot
pivot this capability to deallocate a credential object. However, a
recent writeup [24] shows a sophisticated method that could con-
vert this overwrite capability on vmalloc into an arbitrary read and
write and thus enable a double-free capability. As is discussed and
shown in Section 4.2, using a double-free capability, DirtyCred has
a high chance of fulfilling its privilege escalation. In addition to
pivoting vulnerability capability, a recent work [35] demonstrates
an approach to exploring the vulnerability’s different capability.
We argue that these methods are complementary to the DirtyCred
attack, as is shown in Section 3.1, DirtyCred could still be launched
without pivoting capability. In this work, we leave the exploration
of other pivoting methods as part of our future research.

Stability. DirtyCred’s exploitation stability could be impacted by
two critical factors like all kernel exploitation methods. First, when
pivoting vulnerability capability, DirtyCred has to manipulate the
memory layout, taking over the target memory spot. At this mo-
ment, the exploitation stability might vary if the memory layout
manipulation is affected by system activities. Second, when ex-
ploiting a kernel vulnerability, the way to trigger the vulnerability
could also greatly influence the stability of the exploitation. To
improve exploitation stability, a recent work [51] proposes a series
of methods to stabilize kernel exploitation. In this work, our goal
is to assess the exploitability of DirtyCred in a real-world setting.
We conclude DirtyCred could exploit a vulnerability successfully
as long as it demonstrates exploitability. In the future, we will ex-
plore how to utilize existing exploitation stabilization techniques
to improve DirtyCred’s exploitation success rate.

TOCTOU. As discussed above, DirtyCred swaps credential objects
in a critical time window. Intuition suggests that the existing TOC-
TOU defense mechanisms may hinder our proposed exploitation
method. According to a recent research article [45], TOCTOU de-
fense could be divided into source code detection, postmortem
detection, system call interposition, intra/inter-process memory

consistency, transactional system calls, and sandbox filesystem.
Source code detection analyzes the source code of the target pro-
gram. It is obvious that this kind of defense method could not be
applied to defending against our exploitation because there is no
identified source code pattern in DirtyCred. Postmortem detection
detects TOCTOU vulnerabilities after the attack is actually carried
out. This kind of method needs happens-before analysis, which does
not affect our exploitation. The reason is that we use unexpected
free operations, which could not be seen in the analysis process.
System call interposition monitors the system call sequence and
thus determines attacks. Our exploitation method does not use a
malicious system call sequence. As a result, system call interposition
would not block us either. Intra/inter-process memory consistency
protects the shared variables in multiple threads by recording the
operations on the variables. Our exploitation applies unexpected
operations which could not be recorded. Transactional system calls
and sandbox filesystem target the race condition between file read
and write. Our method does not require that condition.

11 CONCLUSION
The Linux kernel has been armed with various protection and
exploitation mitigation schemes, making kernel exploitation chal-
lenging to succeed. To bypass kernel defenses, a bad actor has
to leverage a vulnerability with a solid capability to disable pro-
tection and mitigation. In this work, we show a new exploitation
method – DirtyCred. It can enable exploitation and defense cir-
cumvention without a vital requirement for kernel vulnerability.
Using DirtyCred, we demonstrate that a bad actor could employ
nearly arbitrary heap-based kernel vulnerability to swap creden-
tial objects. The credential swap could confuse the Linux kernel
into believing a high privileged file or task is in a low privileged
mode. Thus, an unprivileged user could escalate his or her privi-
lege for malicious purposes. With this discovery, we conclude that
DirtyCred sabotages the existing Linux defense architecture. If our
security community does not take immediate action in response
to this new exploitation method, the Linux-driven systems will
soon be in danger. Their users will suffer from significant personal
loss. Following this conclusion, this work also proposed a privilege-
object isolation mechanism as a defense suggestion. In this work,
we implemented this defense mechanism as a Linux kernel proto-
type and found it could secure Linux at a negligible and sometimes
moderate cost. With this new discovery, we further conclude that
isolating memory based on object privilege might be necessary for
defending against the threat of DirtyCred. We have reported part of
our research findings to software and hardware vendors that could
potentially be affected by DirtyCred and are actively working with
them to help them understand and mitigate the threat.

12 ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful feedback.
Thisworkwas supported byONRN00014-20-1-2008 andNSF 1954466.
Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the funding agency.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Zhenpeng Lin, Yuhang Wu, and Xinyu Xing

REFERENCES
[1] Kristen Carlson Accardi. 2020. Function Granular KASLR. (2020). https://lwn.

net/Articles/824307/
[2] Anonymous. 2022. DirtyCred Exploit. (2022). https://hackmd.io/

giRE2P2oQHektZzOG053IQ
[3] Alex Chapman. 2020. Privileged Container Escape Control Groups re-

lease_agent. (2020). https://ajxchapman.github.io/containers/2020/11/19/
privileged-container-escape.html

[4] Quan Chen, Ahmed M Azab, Guruprasad Ganesh, and Peng Ning. 2017.
Privwatcher: Non-bypassable monitoring and protection of process credentials
from memory corruption attacks. In Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Security.

[5] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. 2020. A systematic study of elastic
objects in Kernel exploitation. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security.

[6] Yueqi Chen and Xinyu Xing. 2019. Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security.

[7] Jonathan Corbet. 2012. Supervisor mode access prevention. (2012). https:
//lwn.net/Articles/517475/

[8] Jonathan Corbet. 2017. The current state of kernel page-table isolation. (2017).
https://lwn.net/Articles/741878/

[9] The MITRE Corporation. 2021. CVE-2021-4154. (2021). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2021-4154

[10] The MITRE Corporation. 2022. CVE-2022-0847. (2022). https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2022-0847

[11] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
control-flow integrity for commodity operating system kernels. In Proceedings of
the 2014 IEEE Symposium on Security and Privacy.

[12] Datadog. 2022. Using the Dirty Pipe Vulnerability to Break Out
from Containers. (2022). https://www.datadoghq.com/blog/engineering/
dirty-pipe-container-escape-poc/

[13] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017.
PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables.. In
Proceedings of the 2017 Network and Distributed Systems Security Symposium.

[14] Jake Edge. 2013. Kernel address space layout randomization. (2013). https:
//lwn.net/Articles/569635/

[15] Jake Edge. 2020. Control-flow integrity for the kernel. (2020). https://lwn.net/
Articles/569635/

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture.

[17] Thomas Garnier. 2016. mm: SLAB freelist randomization. (2016). https://lwn.
net/Articles/685047/

[18] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
grained control-flow integrity for kernel software. In Proceedings of the 2016 IEEE
European Symposium on Security and Privacy.

[19] google. 2022. Kernel Control Flow Integrity. (2022). https://source.android.com/
devices/tech/debug/kcfi

[20] Google. 2022. Roses are red, Violets are blue, Giving leets more
sweets. All of 2022! (2022). https://security.googleblog.com/2022/02/
roses-are-red-violets-are-blue-giving.html

[21] Google. 2022. syzkaller kernel fuzzer. (2022). https://github.com/google/syzkaller
[22] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-

rice, and Stefan Mangard. 2017. Kaslr is dead: long live kaslr. In International
Symposium on Engineering Secure Software and Systems. 161–176.

[23] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch side-channel attacks: Bypassing SMAP and kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security.

[24] HexRabbit. 2021. CVE-2021-34866 Writeup. (2021). https://github.com/
HexRabbit/CVE-writeup/tree/master/CVE-2021-34866

[25] Jann Horn. 2022. Linux: UAF via double-fdput. (2022). https://bugs.chromium.
org/p/project-zero/issues/detail?id=808

[26] David Howells. 2022. CREDENTIALS IN LINUX. (2022). https://www.kernel.
org/doc/Documentation/security/credentials.txt

[27] Kaiming Huang, Yongzhe Huang, Mathias Payer, Zhiyun Qian, Jack Sampson,
Gang Tan, and Trent Jaeger. 2022. The Taming of the Stack: Isolating Stack Data
from Memory Errors. In Proceedings of the 2022 Network and Distributed Systems
Security Symposium.

[28] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side chan-
nel attacks against kernel space ASLR. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy.

[29] Mateusz Jurczyk. 2011. SMEP: What is it, and how to beat
it on Windows. (2011). https://j00ru.vexillium.org/2011/06/
smep-what-is-it-and-how-to-beat-it-on-windows/

[30] Max Kellermann. 2022. The Dirty Pipe Vulnerability. (2022). https://dirtypipe.
cm4all.com/

[31] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.
ret2dir: Rethinking kernel isolation. In Proceedings of the 23rd USENIX Conference
on Security Symposium.

[32] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. 2012.
{kGuard}: Lightweight Kernel Protection against {Return-to-User} Attacks. In
Proceedings of the 21st USENIX Conference on Security Symposium.

[33] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In Proceedings of the 2019 IEEE
Symposium on Security and Privacy.

[34] Zhenpeng Lin. 2021. How AUTOSLAB Changes the Memory Unsafety Game.
(2021). https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_
game/

[35] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Chensheng Yu, Dongliang Mu, Xinyu
Xing, and Kang Li. 2022. GREBE: Unveiling Exploitation Potential for Linux
Kernel Bugs. In Proceedings of the 2022 IEEE Symposium on Security and Privacy.

[36] Linux. 2022. File management in the Linux kernel. (2022). https://www.kernel.
org/doc/Documentation/security/credentials.txt

[37] Linux. 2022. FUSE’s introduction in the Linux kernel user’s and administrator’s
guide. (2022). https://www.kernel.org/doc/html/latest/filesystems/fuse.html

[38] Linux. 2022. Userfaultfd’s introduction in the Linux kernel user’s and adminis-
trator’s guide. (2022). https://www.kernel.org/doc/html/latest/admin-guide/mm/
userfaultfd.html

[39] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In Proceedings of the 27th
USENIX Conference on Security Symposium.

[40] DerrickMcKee, Yianni Giannaris, Carolina Ortega Perez, Howard Shrobe,Mathias
Payer, Hamed Okhravi, and Nathan Burow. Preventing Kernel Hacks with HAKC.
In Proceedings 2022 Network and Distributed System Security Symposium.

[41] Larry McVoy and Carl Staelin. 2022. LMbench - Tools for Performance Analysis.
(2022). http://lmbench.sourceforge.net/

[42] Phoronix Media. 2022. Open-Source, Automated Benchmarking. (2022). https:
//www.phoronix-test-suite.com/

[43] Samsung Knox News. 2016. Real-time Kernel Protection (RKP). (2016). https:
//www.samsungknox.com/en/blog/real-time-kernel-protection-rkp

[44] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P Kemerlis,
and Michalis Polychronakis. 2020. xmp: Selective memory protection for kernel
and user space. In Proceedings of the 2020 IEEE Symposium on Security and Privacy.

[45] Razvan Raducu, Ricardo J. Rodríguez, and Pedro Álvarez. 2022. Defense and
Attack Techniques Against File-Based TOCTOU Vulnerabilities: A Systematic
Review. IEEE Access 10 (2022), 21742–21758.

[46] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William Harris, Taesoo Kim, and
Wenke Lee. 2016. Enforcing Kernel Security Invariants with Data Flow Integrity..
In Proceedings 2016 Network and Distributed System Security Symposium.

[47] Dan Williams. 2018. Randomize free memory. (2018). https://lwn.net/Articles/
767614/

[48] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. {KEPLER}: Facilitating
control-flow hijacking primitive evaluation for Linux kernel vulnerabilities. In
Proceedings of the 28th USENIX Conference on Security Symposium.

[49] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. 2015. From collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security.

[50] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2021. In-
Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Authen-
tication. arXiv preprint arXiv:2112.07213 (2021).

[51] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam Doupé, Yan Shoshi-
taishvili, and Tiffany Bao. 2022. Playing for K(H)eaps: Understanding and Improv-
ing Linux Kernel Exploit Reliability. In Proceedings of the 31st USENIX Conference
on Security Symposium.

A APPENDIX
As is mentioned in Section 7.1, we designed and implemented an
automated tool to facilitate the identification of those exploitable
objects (i.e., the objects enclosing a reference to credential objects).
Here, we discuss how we design this automated tool step-by-step
and then describe our implementation in detail.

https://lwn.net/Articles/824307/
https://lwn.net/Articles/824307/
https://hackmd.io/giRE2P2oQHektZzOG053IQ
https://hackmd.io/giRE2P2oQHektZzOG053IQ
https://ajxchapman.github.io/containers/2020/11/19/privileged-container-escape.html
https://ajxchapman.github.io/containers/2020/11/19/privileged-container-escape.html
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/741878/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0847
https://www.datadoghq.com/blog/engineering/dirty-pipe-container-escape-poc/
https://www.datadoghq.com/blog/engineering/dirty-pipe-container-escape-poc/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/685047/
https://lwn.net/Articles/685047/
https://source.android.com/devices/tech/debug/kcfi
https://source.android.com/devices/tech/debug/kcfi
https://security.googleblog.com/2022/02/roses-are-red-violets-are-blue-giving.html
https://security.googleblog.com/2022/02/roses-are-red-violets-are-blue-giving.html
https://github.com/google/syzkaller
https://github.com/HexRabbit/CVE-writeup/tree/master/CVE-2021-34866
https://github.com/HexRabbit/CVE-writeup/tree/master/CVE-2021-34866
https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://bugs.chromium.org/p/project-zero/issues/detail?id=808
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://j00ru.vexillium.org/2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/
https://dirtypipe.cm4all.com/
https://dirtypipe.cm4all.com/
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game/
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game/
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/Documentation/security/credentials.txt
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
http://lmbench.sourceforge.net/
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://lwn.net/Articles/767614/
https://lwn.net/Articles/767614/

DirtyCred: Escalating Privilege in Linux Kernel CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1 struct key *request_key_auth_new(...)
2 {
3 struct request_key_auth *rka;
4
5 ...
6
7 /* allocate a auth record */
8 rka = kzalloc(sizeof(*rka), GFP_KERNEL);
9
10 ...
11 rka->cred = get_cred(irka->cred);
12 ...
13 }
14
15 static void free_request_key_auth(struct request_key_auth *rka)
16 {
17 ...
18 if (rka->cred)
19 put_cred(rka->cred);
20 ...
21 kfree(rka);
22 }

Listing 5: The allocation and deallocation sites for the object in the type
of “struct request_key_auth”.

A.1 Design

Step 1: analyzing structure definition. Recall that an exploitable
object should include a pointer referencing a credential object.
Therefore, the first step in identifying an exploitable object is to
analyze the definition of kernel data structures. This analysis could
bound our consecutive analysis in a scope, avoiding unnecessary
analysis of irrelevant data structures in the following steps.

Given a data structure, we go through each field based on the
definition. If a field is a nested structure or union type, we also
extract its fields and examine them accordingly. In this work, we
follow this procedure recursively until all the structure fields are
thoroughly analyzed. Along with this analysis, we also examine
the type information of pointers. If a field pointer references a
credential structure type (e.g., file or cred), we record the field’s
offset in the enclosed structure and mark the structure type as a
candidate.

Step 2: identifying allocation sites. As is described in the main
text, DirtyCred performs privilege escalation by exploiting heap-
based memory corruption vulnerabilities. Therefore, we need to
ensure that the objects in the identified structure type can be allo-
cated on the kernel heap. To do it, we first pinpoint each code site
that allocates an object on the kernel heap (see the object allocation
example code snippet in List 5). Second, we examine the return
value of the heap (de)allocation function. Following the data flow
of the allocated object, we extract the object’s type information and
check if it matches the structure candidates identified in the first
step. We record the allocation site for the corresponding object if a
match exists.

Step 3: pinpointing free sites. Recall that DirtyCred needs to
deallocate credential objects. As a result, we also need to guarantee
that when deallocating an exploitable object candidate, the kernel
could also free the corresponding credential object along the way.
In the Linux kernel, credential objects have their unique proper-
ties. Their deallocation is carried out through dedicated, standard
kernel API functions [26, 36]. In this work, we summarize these
deallocation functions manually and then use these functions as the

starting point to perform our analysis. Specifically, for each code
site where the credential-object deallocation function is invoked,
we taint corresponding arguments and then perform a backward
data-flow analysis. Our backward analysis terminates until it identi-
fies a site where the credential object is initialized. We examine the
initialization site and extract the type information of the initialized
object. If the object type matches our structure candidate, we record
the deallocation site and conclude that the object candidate has the
potential to facilitate DirtyCred’s privilege escalation.

Step 4: tracking down reachable objects. Note that the objects
identified above may not be the ones under the user’s control. For
example, the objects might be capable of allocation only at the boot-
ing phase of the Linux. In this sense, DirtyCred cannot use these
objects for memory manipulation and thus pivot a vulnerability’s
capability. Therefore, the last step is to examine whether the can-
didate objects can be allocated and freed through user-permitted
system calls. To do it, we leverage a kernel fuzzer to explore the
reachability of candidate objects’ (de)allocation sites. Given a can-
didate object identified in the first three steps, if the fuzzer could
trigger its allocation and deallocation sites using permitted system
calls, we mark it as a valuable object for DirtyCred. For those that
kernel fuzzer cannot reach out to the (de)allocation sites, we rely
on our manual effort to analyze their reachability.

A.2 Implementation
To enable the first three analysis steps, we implemented a static
analysis tool on top of LLVM. The analysis tool takes as input
the kernel bitcode. To prevent the bitcode from being optimized,
which might lose type information and make the data flow complex,
we used a customized clang to generate bitcode before any code
optimization is invoked. The tool contains 3,382 lines of C++ code
in total. Our implementation is available at [2].

To complete the last step of the analysis, we utilized the state-
of-the-art kernel fuzzer – Syzkaller [21]. To enable Syzkaller to
report (de)allocation sites’ reachability, we inserted a panic func-
tion at each site where a candidate object is (de)allocated. Once
the Syzkaller generates an input that reaches the site, the kernel
will experience panic, informing Syzkaller that the site has been
reached. Benefited from the advance of kernel fuzzing, Syzkaller
will also output a minimized input reachable to the corresponding
(de)allocation sites if it triggers the corresponding panic functions.
It should be noted that Syzkaller relies on syscall templates to gener-
ate the input and thus dynamically test the kernel. For some kernel
modules, the templates have not yet been supported by Syzkaller. In
this situation, we confirm the existence of (de)allocation manually.

	Abstract
	1 Introduction
	2 Background & Threat Model
	2.1 Credentials in Linux kernel
	2.2 Kernel Heap Memory Management
	2.3 Threat Model

	3 Technical Overview & Challenges
	3.1 Overview
	3.2 Technical Challenges

	4 Pivoting Vulnerability Capability
	4.1 Pivoting OOB & UAF Write
	4.2 Pivoting DF

	5 Extending Time Window
	5.1 Exploitation of Userfaultfd & FUSE
	5.2 Alternative Exploitation of Userfaultfd & FUSE
	5.3 Exploitation of Lock in Filesystem

	6 Allocating Privileged Object
	6.1 Allocation from Userspace
	6.2 Allocation from Kernel Space

	7 Evaluation
	7.1 Experiment Design & Setup
	7.2 Experiment Result

	8 Defense Against DirtyCred
	9 Related Work
	10 Discussion & Future Work
	11 Conclusion
	12 Acknowledgement
	References
	A Appendix
	A.1 Design
	A.2 Implementation

