蜥脚下目
蜥脚下目 | |
---|---|
路氏迷惑龙骨架模型,位于卡内基自然史博物馆 | |
科学分类 | |
界: | 动物界 Animalia |
门: | 脊索动物门 Chordata |
纲: | 蜥形纲 Sauropsida |
总目: | 恐龙总目 Dinosauria |
目: | 蜥臀目 Saurischia |
亚目: | †蜥脚形亚目 Sauropodomorpha |
演化支: | †悍龙类 Bagualosauria |
演化支: | †板龙类 Plateosauria |
演化支: | †大脚类 Massopoda |
演化支: | †蜥脚型类 Sauropodiformes |
演化支: | †近蜥龙类 Anchisauria |
下目: | †蜥脚下目 Sauropoda Marsh,1878 |
演化支[1] | |
异名 | |
|
蜥脚下目(学名:Sauropoda)又称蜥脚亚目、龙脚下目、真蜥脚亚目,在希腊文里意为“有蜥蜴般的脚”,是蜥臀目的一个下目,是由奥塞内尔·查利斯·马什在1878年建立[2]。
蜥脚类恐龙具有小型头部、长颈部、长尾巴、以及粗壮的四肢。牠们是目前已知陆地上出现过的最巨大动物,包括许多知名的属,如迷惑龙(原名为雷龙)、腕龙、梁龙等。蜥脚类恐龙首次出现于三叠纪晚期(2亿1000万年前),牠们当时的外表类似基础蜥脚形亚目恐龙。到了侏罗纪晚期(1亿5000万年前),蜥脚类恐龙的分布广泛,尤其是梁龙科与腕龙科。只有泰坦巨龙类存活到白垩纪晚期,但牠们几乎分布于全球。然而,泰坦巨龙类与其他非鸟类的恐龙在白垩纪-第三纪灭绝事件中灭绝了。蜥脚下目的化石在各大陆都有发现,包含南极洲。
但是,很少发现完整的蜥脚类化石。许多物种,尤其是最大型的物种,仅发现相关联或是非天然状态的骨头。许多接近完整的标本都缺乏头部、尾巴末端、以及四肢。蜥脚下目和原蜥脚亚目都属于蜥脚形亚目,他们和绝大多数恐龙都属于蜥臀目。
体征
[编辑]蜥脚类恐龙是植食性四足动物,通常拥有长颈部与匙状牙齿。牠们拥有小型头部、巨大身体、通常拥有长尾巴。牠们的后肢粗壮、笔直,后脚掌有五个脚趾,只有内侧三、四趾具有趾爪。与后肢相比,前肢较为修长,前脚掌只有拇指有大型指爪。大部分科普书籍的想像图,在这些无趾爪的位置加上蹄状趾爪。在蜥脚类恐龙之中,近侧尾椎有高度可鉴定性[3]。
蜥脚类恐龙的部分背椎移到颈部的位置,导致颈部至少有12节脊椎,延长了颈部长度。脊椎的神经棘形状可容纳韧带,以协助抬高颈部与支撑头部重量。尾椎至少有44节。柱状四肢演化成可支撑庞大身体重量,踝部有软骨可缓冲、避震。前肢有五根指头,但指头骨头数量减少。牠们以脚趾行走,脚掌离地且有肉垫支撑重量。大型鼻开孔位于头颅骨的后段。而耻骨或许可能支撑大型肠道[4]。
体型
[编辑]蜥脚下目的最明显特征是牠们的体型。即使是侏儒型的蜥脚类恐龙,例如欧罗巴龙的身长可能达5到6米,也是牠们所处生态系统中最大的动物之一。唯一可以在体型上与牠们匹敌的是须鲸科动物,例如蓝鲸。但与鲸鱼不同的是,蜥脚类恐龙全都生存在陆地上。有些蜥脚类恐龙的头部维持在低高度,例如梁龙科;而其他蜥脚类恐龙则维持在很高的高度,例如圆顶龙。
蜥脚类恐龙的身体外形并没有其他恐龙多样化,原因可能是体型限制,但牠们仍拥有许多种类。有些蜥脚类恐龙拥有极长的尾巴,例如梁龙科,牠们可能将尾巴当作鞭子般挥打,末端可产生音爆[5],或是造成掠食动物的伤害[6]。在化石较为完整的蜥脚类恐龙中,超龙可能是最长的恐龙,身长可达33到34米[7],但其他如地震龙、旧纪录保持者梁龙也拥有极长的身长。易碎极巨龙(旧称易碎双腔龙Amphicoelias fragillimus)只发现一个脊椎骨,但身长可能达到55到60米[8],比蓝鲸还长,但易碎极巨龙的唯一化石却在叙述不久后遗失了。而目前最长的陆地脊椎动物是网纹蟒,身长只有8.7米[9]。
其他蜥脚类恐龙,例如腕龙科,拥有高肩膀与极长颈部,使牠们的身高非常高。波塞东龙可能是最高的恐龙,身高可达18米。而原本的颈部最长恐龙为马门溪龙,身长有22到26米。而目前最高的动物是长颈鹿,身高只有4.8到5.5米。
其他体型特别大的蜥脚类恐龙包含:阿根廷龙的体重为80到100公吨之间,可能是最重的恐龙;富塔隆柯龙、潮汐龙、安第斯龙、南极龙、银龙等大型恐龙的体型接近阿根廷龙。有些泰坦巨龙类可能更重,如巨体龙的体重可能为175到220公吨之间,但证据很少。而目前最大的陆地动物为非洲象,体重不超过10公吨。
最小型的蜥脚类恐龙包含:欧姆殿龙(4米)、侏儒种泰坦巨龙类马扎尔龙(5.3米)、以及侏儒种腕龙科的欧罗巴龙(6.2米)[10]。发现于德国的欧罗巴龙,其小型体型可能是因为岛屿环境隔离而造成的。梁龙科的短颈潘龙拥有非常短的颈部,是梁龙科中最短的物种。其他蜥脚类恐龙的颈部可生长到背长的四倍,但短颈潘龙的颈部比牠们的身体还短。
四肢与脚掌
[编辑]蜥脚类恐龙是群体型巨大的四足动物,因此四肢能够承受相当大的重量。蜥脚类恐龙与现代大型四足动物(例如大象)的前脚结构不同。牠们的前脚掌骨头以垂直方式排列、接触地面;而大象的前脚掌骨头往两侧称开,形成宽广的脚掌,手指骨头缩短。原始蜥脚类恐龙(例如火山齿龙、巨脚龙)的手部骨头仍往两侧称开,具有脚指[11]。真蜥脚类的前脚掌只有蹄状指爪,无法看到脚指。蜥脚类恐龙的后脚掌宽广,大部分物种只有三个脚趾[12]。
蜥脚类恐龙的掌骨以半圆形、垂直地面方式排列,所以牠们的前脚足迹呈马蹄状。根据足迹化石,蜥脚类的前脚掌没有肉垫,与大象不同[11]。大部分蜥脚类只有拇指具有明显的指爪,功能仍未知。梁龙科的拇指指爪最大;而腕龙科的拇指指爪最小,某些足迹化石甚至无法辨认出拇指指爪[13]。
除了早期物种(如詹尼斯龙),泰坦巨龙类没有拇指指爪。泰坦巨龙类是最特殊的蜥脚类恐龙,除了没有指爪,前脚掌的指骨都已退化、消失。泰坦巨龙类的前脚掌只有柱状的掌骨[14]。
根据葡萄牙发现的足迹化石,至少某些蜥脚类恐龙(可能属于腕龙科)的前脚掌的底部、侧边,覆盖者小型的长刺状鳞片[15]。泰坦巨龙类的掌骨底部(接触地面端)的形状宽广、呈方形,某些标本的前脚掌保存了软组织,显示泰坦巨龙类的前脚掌可能具有肉垫[14]。
Matthew Bonnan提出蜥脚类恐龙的四肢骨头,在成长的过程中会保持大致的形状,长宽高以相等的程度增加。业余科学家Jim Schmidt认为四肢以柱状方式直立的动物,四肢骨头会采取这种生长方式。大部分脊椎动物的四肢骨头在成长过程中,长宽高的成长幅度不一致,造成形状上的改变,以与增加的体重相符[16][17]。
气囊
[编辑]如同兽脚亚目与鸟类,蜥脚类恐龙的脊椎内部具有复杂的凹处、洞孔、空室,生前可能包含气囊,类似鸟类的呼吸系统。早期蜥脚类恐龙只有颈椎具有气腔,新蜥脚类的荐椎也出现气腔。梁龙超科与泰坦巨龙类也个别发展出前段尾椎的气腔[18]。
在蜥脚下目的研究历史早期,古生物学家就已辨认出这些动物具有气腔。在19世纪晚期命名的鸟面龙(Ornithopsis),曾经因为脊椎的空腔,而被认为是种翼龙类[19]。
身体装甲
[编辑]有些蜥脚类恐龙拥有由皮内成骨形成的装甲(例:萨尔塔龙、葡萄园龙)。有些属的背上拥有尖刺(如奥古斯丁龙),而其中几属拥有尾槌(蜀龙)。
古生物学
[编辑]生态位
[编辑]最初发现蜥脚类恐龙的化石时,许多科学家将牠们与现代鲸鱼互相比较、参照。19世纪到20世纪早期的大部分相关研究,认为这些史前大型爬行动物的体型过大,无法在陆地上行动,因此认为牠们应该是水生动物。在1970年代以前,大部分古生物想像图,将蜥脚类恐龙描绘成完全水生或半水生动物[20]。在1950年代,开始有古生物学家质疑蜥脚类恐龙是否是水生动物,如果牠们的身体沉浸于水面下,极大压力将造成肺脏与心脏的伤害[21]。此外,大部分早期研究只注意到蜥脚类恐龙的巨大体型,而忽略牠们骨骼内部的气囊空间。在1878年,古生物学家爱德华·德林克·科普曾提到蜥脚类恐龙的骨骼结构类似浮筒。
在1970年代,开始有古生物学家研究蜥脚类恐龙的多气囊骨骼、水生生活方式之间的关系。罗伯特·巴克等人根据蜥脚类恐龙的多气囊骨骼、沉积学与生物力学的证据,而提出蜥脚类恐龙其实是主要生存于陆地的动物。在2004年,D.M. Henderson提出蜥脚类恐龙的骨骼具有非常多气囊空间,如果牠们进入水体时,浮力会让牠们浮在水面、无法完全沉浸于水面之下。另一方面,由于牠们的身体不会完全位于水面下方,巨大压力不会压迫牠们的内脏器官[20]。
过去曾发现数个蜥脚类恐龙的足迹化石,只有前肢的足迹,被认为是蜥脚类恐龙在水中游泳的证据。D.M. Henderson提出,这可能是长前肢的蜥脚类恐龙(例如大鼻龙类)在浅水前进时,用长前肢在水底移动,而较短后肢不接触水底[20]。但由于蜥脚类恐龙的身体外形,牠们在水面浮动时会很摇晃、不稳定。D.M. Henderson认为,当蜥脚类恐龙在水中以长前肢移动时,牠们将难以控制方向、身体不稳定,类似喝醉的船夫[20]。
目前蜥脚类恐龙不再被认为是水生或半水生动物,近年证据显示牠们生存于潮湿或水岸环境。蜥脚类的足迹化石常被发现于水岸环境或泛滥平原的沉积层,而蜥脚类的骨骼化石常被发现于潮湿沉积层、或是带有水生生物的化石[20]。
群体行动与亲代养育
[编辑]根据许多尸骨层与足迹化石,显示蜥脚类恐龙是群居动物。但是不同种类的蜥脚类恐龙,构成群体的规模不一。以一个发现于阿根廷侏罗纪中期地层的尸骨层为例,当中的化石由成年个体、幼年个体所构成,来自于不同年龄层。而根据其他尸骨层、足迹化石,许多蜥脚类恐龙的群体依年龄层而构成,成年个体与幼年个体分别独自行动。目前已知会以不同年龄层而个别群体行动的物种,包含:阿拉莫龙、巧龙、以及某些梁龙科[22]。
在2009年,一群科学家试图研究蜥脚类恐龙为何会以不同年龄层来群体行动。根据牙齿的磨损程度显示,成年、幼年蜥脚类恐龙会以不同植物为食。研究人员推测,成年、幼年蜥脚类恐龙分别以群体行动,是寻求不同种类的食物来源。而成年与幼年个体的巨大差距,也可能影响牠们摄取植物的方式,并使牠们采取分别群体行动的方式[22]。
由于刚孵化的幼体,可能会与成年个体共同相处一段时间,而且蜥脚类恐龙可能是早熟性动物。研究人员推测,那些会采取不同年龄层分开行动的物种,不会有亲代养育的行为[22]。而会采取成年、幼年个体群体行动的物种,可能会有亲代养育的行为,以照顾刚孵化的幼体直到成年[23]。
目前古动物学家还不清楚哪些物种会采成年、幼年个体集体行动,哪些物种会采取不同年龄层分开行动。需要更多的群体行动证据,才能清楚研究出蜥脚类恐龙的群居行为模式[22]。
步态
[编辑]在非常早期的时候,亨利·费尔费尔德·奥斯本与其他人便已假设蜥脚类恐龙能以后肢站立,使用牠们的尾巴充当三脚架的第三只脚(有点类似袋鼠)[24]。美国自然历史博物馆的一个重龙著名骨架模型,便是采用这个假设而重建。一个2005年的研究假设,如果蜥脚类恐龙已适应偶尔以二足方式站立,那牠们的前肢脚掌应该会有因为压力性骨折(Stress fracture)。然而,在检验过众多的蜥脚类骨骸后,没有发现相关的证据[25]。
如果蜥脚类恐龙以三角架方式站立,应该会有巨大的重量施加在尾巴的脉棘(Haemal spine)上。随者蜥脚类恐龙的成长,牠们的体重也随之增加,当牠们以后脚站立时,这些脉棘会承受越来越多的重量,直到某些脉棘发生压力性骨折,这将让蜥脚类恐龙以后脚站立时感到痛苦,而因此必须改采四足方式。当蜥脚类恐龙过重而无法后脚站立时,牠们可能发展出较为安全的方式以避免用后脚站立。在蜥脚类恐龙的尾椎上曾发现骨折的脉棘。
在2009年,Heinrich Mallison研究不同蜥脚类恐龙以三脚架方式站立的可能性。他发现某些被认为是以后肢站立的特征,例如泰坦巨龙类的左右脚间距宽,其实并不代表牠们能够用后肢站立。Mallison分别指出,泰坦巨龙类的脊柱关节灵活,如果以三脚架方式站立,脊柱的灵活关节会使牠们无法稳定站立,除非背部有大量肌肉辅助。而腕龙科的身体重心位在身体前半段,也使牠们无法以三脚架方式站立[26]。梁龙科似乎较有可能以三脚架方式站立。梁龙科的颈部关节灵活、身体重心位在臀部、骨盆结构稳固、以及尾椎的形状,可能允许尾巴负担部分的重量。Mallison推测,梁龙科比大象更适合偶尔以后脚站立。Mallison更主张,当牠们偶尔以后肢站立时,四肢骨头并不会发生压力性骨折[26]。
头部与颈部姿势
[编辑]长期以来,蜥脚类是否能够高举头部、颈部,或是颈部维持在水平的姿势,是最常提起的争论之一。某些科学家们提出质疑,如果蜥脚类恐龙能够高举颈部,以高层的树叶为食,牠们的心脏是否能够维持足够的血压,供应血液至脑部。一项2009年的研究显示,如果蜥脚类的颈部高举,将血液输送到头部,会消耗大量的能量,占去牠们日常摄取能量的一半以上[27]。此外,心脏若将血液输送至高举的头部,血压将高达700毫米汞柱,牠们的心脏大小必须是鲸鱼的15倍[28]。有学者主张,梁龙、迷惑龙等蜥脚类恐龙进食时,身体的位置保持不动,借由长颈部的左右移动,以大范围的低矮植被为食[29]。
抱持反对意见的学者,认为蜥脚类能够以S状方式高举颈部。在2009年,一个研究提出所有四足类都能够将头颈部高举,以警戒四周的环境。研究人员也发现,梁龙的颈部可以下垂至45度[30][31]。
足迹化石与移动方式
[编辑]目前已在许多大陆发现蜥脚类的足迹化石。古动物学家借由这些足迹化石,可以研究蜥脚类的前肢、后肢功能。蜥脚类的前肢足迹小于后肢足迹,前肢足迹的形状常为新月状[32]。
根据左右足迹的间距,蜥脚类恐龙的足迹化石可分为三种型态,分别为:狭窄间距、中等间距、宽间距,可推论出不同的移动方式[32]。一个2004年的研究,发现进阶型蜥脚类恐龙的足迹间距可归纳出不同型态,与演化上的分类相符合。大部分蜥脚类恐龙的足迹间距狭窄,前肢拇指的指爪痕迹明显。腕龙科、原始巨龙形类的足迹间距、拇指指爪痕迹中等,显示出牠们的演化趋势。原始泰坦巨龙类的左右足迹间距更宽,仍保有拇指指爪。进阶型泰坦巨龙类的左右足迹间距最宽,前肢的拇指指爪已消失[33]。
科学家们过去一度认为蜥脚龙类必须栖息在湖泊或沼泽中藉水漂浮。不过在找到化石足迹后,就推翻了这个说法。蜥脚类的足迹宽度间隔狭窄,证明牠们的四肢位于身体正下方,而非像蜥蜴与乌龟般向两侧张开[4]。
体型的演化
[编辑]为何蜥脚类恐龙会演化出巨大的体型,目前已有数个相关理论。在蜥脚类恐龙的早期演化阶段,就有演化出巨大体型的趋势,最早可追溯至三叠纪晚期。肯尼思·卡彭特(Kenneth Carpenter)推测,蜥脚类恐龙的祖先有体型巨大化的演化压力[8]。
根据体型巨大的现代植食性哺乳动物(例如象及犀牛),显示巨大的植食性动物会有较高的消化效率。由于大型的动物有较长的消化系统,食物会留在身体较长时间,容许牠们在低营养价值的食物来源下生存。牠们的小肠会有大量的发酵室,容许微生物积聚及发酵植物,协助消化。在蜥脚类的演化历史中,化石主要发现于半干燥及季节性干焊的环境,而在旱季有着季节性的食物营养价值下降。以大部分晚侏罗纪的蜥脚类恐龙为例,牠们的生存环境是疏林草原,而现代巨大植食性动物生存在类似的干燥环境,支持上述的说法。其他巨大体型的优势则被认为是次要的,例如对掠食动物的相对抵抗力、低能量消耗、或较长的寿命等[8]。
发现历史
[编辑]已知最早的蜥脚类化石,是在英格兰发现。这些零散的化石,最初被鉴定为其他动物。当时并不清楚这些动物的外表,以及与其他恐龙的演化关系。
第一个被科学方式研究的蜥脚类化石,是一颗牙齿。在1699年,Edward Lhuyd在英格兰牛津市近郊发现一颗牙齿化石,命名为Rutellum implicatum[34]。在2002年,科学家发现这颗牙齿属于蜥脚下目恐龙。但是,这个学名的建立早于林奈氏分类系统的建立,而且已经超过50年不曾被任何科学期刊使用,而且是个根据牙齿而被建立的学名,因此本身也是个无效的遗失名[35]。
在1841年,理查·欧文根据稍早发现的大型零散骨头,认为是种未知的大型海生爬行动物,是现代鳄鱼的近亲,于是命名为鲸龙(Cetiosaurus),意为“鲸鱼蜥蜴”。同时,他将两颗心脏形状的牙齿,判断是种未知的大型爬行动物,并命名为央齿龙(Cardiodon)。鲸龙与央齿龙成为最早被科学方式叙述、命名的蜥脚类恐龙。但在1842年,理查·欧文建立恐龙(Dinosauria)一词,并当时没有包含鲸龙与央齿龙[36]。
在1850年,吉迪恩·曼特尔重新研究数个被归类于鲸龙的骨头,他发现其腿部骨头具有髓腔,这是种陆地动物的特征。曼特尔将这些骨头建立为畸形龙(Pelorosaurus),属于恐龙。但是曼特尔并没有发现畸形龙与鲸龙的相似处[19]。
在1870年,哈利·丝莱(Harry Seeley)鉴定一些脊椎骨,他发现这些脊椎属于一种大型动物,内部具有气囊。由于当时只有鸟类与翼龙目的骨头具有气囊,哈利·丝莱将这些脊椎命名为鸟面龙(Ornithopsis),意为“鸟的面孔”,并归类于翼龙目[19]。
随者更完整的鲸龙化石的出土,约翰·菲力普斯(John Phillips)在1871年提出鲸龙是畸形龙的近亲,也属于恐龙[37]。自从1870年代开始,美国发现更多、更完整的蜥脚类化石(尤其是迷惑龙、圆顶龙),古生物学界才拼凑出这些大型爬行动物的外形。在1877年,John A. Ryder绘制圆顶龙的重建图,这是第一个蜥脚类恐龙的重建图[38]。同样在1877年,理查德·莱德克根据在印度发现的零散脊椎,命名为泰坦巨龙(Titanosaurus),这是首次在南方大陆发现的蜥脚类恐龙[19]。
在1878年,奥塞内尔·查利斯·马什发现了当时最完整的蜥脚类化石,并命名为梁龙。马什同时建立蜥脚亚目(Sauropoda),意为“蜥蜴的脚”,包含鲸龙、梁龙、以及牠们的近亲,以有别于其他已知的恐龙分类单元[19]。
分类学
[编辑]在近十年,蜥脚下目的分类大致上是固定的,但还是有一些科或属的位置未确定,例如:盘足龙、简棘龙、约巴龙、以及纳摩盖吐龙科。在某些版本分类法里,并不包含火山齿龙科、鲸龙科、峨嵋龙科,因为牠们被认为是并系群,或复系群;某些版本也认为圆顶龙科是复系群,而不包含圆顶龙科。
蜥脚下目 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
以下演化树来自于迪亚戈·玻尔(Diego Pol)等人的2011年研究[40]:
蜥脚下目 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
参考资料
[编辑]- ^ Holtz, Thomas R. Jr. Dinosaurs: The Most Complete, Up-to-Date Encyclopedia for Dinosaur Lovers of All Ages (PDF). Random House. 2012 [2016-01-08]. (原始内容存档 (PDF)于2017-08-12).
- ^ Marsh, O.C. (1878). "Principal characters of American Jurassic dinosaurs. Part I". American Journal of Science and Arts 16: 411-416
- ^ Tidwell, V., Carpenter, K. & Meyer, S. 2001. New Titanosauriform (Sauropoda) from the Poison Strip Member of the Cedar Mountain Formation (Lower Cretaceous), Utah. In: Mesozoic Vertebrate Life. D. H. Tanke & K. Carpenter (eds.). Indiana University Press, Eds. D.H. Tanke & K. Carpenter. Indiana University Press. 139-165.
- ^ 4.0 4.1 David Lambert, Darren Naish, Elizabeth Wyse. Encyclopedia of Dinosaurs and Prehistoric Life. Dorling Kindersley Publishers Ltd. 2002.
- ^ Peterson, Ivars. Whips and Dinosaur Tails. Science News. March 2000 [2007-07-07]. (原始内容存档于2007-07-14).
- ^ Bakker, Robert (1994). "The Bite of the Bronto" Earth 3:(6):26–33.
- ^ Lovelace, David M.; Hartman, Scott A.; and Wahl, William R. Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional. 2007, 65 (4): 527–544.
- ^ 8.0 8.1 8.2 Carpenter, K. (2006). "Biggest of the big: a critical re-evaluation of the mega-sauropod Amphicoelias fragillimus." In Foster, J.R. and Lucas, S.G., eds., 2006, Paleontology and Geology of the Upper Jurassic Morrison Formation. New Mexico Museum of Natural History and Science Bulletin 36: 131-138.存档副本 (PDF). [2008-01-08]. (原始内容 (PDF)存档于2007-12-02).
- ^ Murphy JC, Henderson RW. 1997. Tales of Giant Snakes: A Historical Natural History of Anacondas and Pythons. Krieger Pub. Co. 221 pp. ISBN 978-0-89464-995-0.
- ^ Martin Sander, P.; Mateus, Octávio; Laven, Thomas; Knötschke, Nils. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature. 2006, 441 (7094): 739–41. PMID 16760975. doi:10.1038/nature04633.
- ^ 11.0 11.1 Bonnan, M.F. (2003). "The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny." Journal of Vertebrate Paleontology, 23: 595-613.
- ^ Paul, G.S. (1987). "The science and art of restoring the life appearance of dinosaurs and their relatives - a rigorous how-to guide." Pp. 4-49 in Czerkas, S.J. and Olson, E.C. (eds.), Dinosaurs Past and Present Vol. II. Seattle: University of Washington Press.
- ^ Upchurch, P. Manus claw function in sauropod dinosaurs. Gaia. 1994, 10: 161–171.
- ^ 14.0 14.1 Apesteguía, S. (2005). "Evolution of the titanosaur metacarpus." Pp. 321-345 in Tidwell, V. and Carpenter, K. (eds.) Thunder-Lizards: The Sauropodomorph Dinosaurs. Indianapolis: Indiana University Press.
- ^ Milàn, J.; Christiansen, P.; Mateus, O. A three-dimensionally preserved sauropod manus impression from the Upper Jurassic of Portugal: implications for sauropod manus shape and locomotor mechanics. Kaupia. 2005, 14: 47–52.
- ^ Bonnan, M. F. Morphometric Analysis of Humerus and Femur Shape in Morrison Sauropods: Implications for Functional Morphology and Paleobiology. Paleobiology. 2004, 30 (3): 444–470. JSTOR 4096900.
- ^ Bonnan, Matthew F. Linear and Geometric Morphometric Analysis of Long Bone Scaling Patterns in Jurassic Neosauropod Dinosaurs: Their Functional and Paleobiological Implications. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology. 2007, 290 (9): 1089. doi:10.1002/ar.20578.
- ^ Wedel, M.J. (2009). "Evidence for bird-like air sacs in Saurischian dinosaurs." Journal of Experimental Zoology, 311A: 18pp.
- ^ 19.0 19.1 19.2 19.3 19.4 Taylor, M.P. (In press). "Sauropod dinosaur research: a historical review." In Richard Moody, Eric Buffetaut, David M. Martill and Darren Naish (eds.), Dinosaurs (and other extinct saurians): a historical perspective. HTML abstract (页面存档备份,存于互联网档案馆).
- ^ 20.0 20.1 20.2 20.3 20.4 Henderson, D.M. (2004). "Tipsy punters: sauropod dinosaur pneumaticity, buoyancy and aquatic habits." Proceedings of the Royal Society of London B, 71: S180–S183. doi:10.1098/rsbl.2003.0136
- ^ Kermack, K.A. A note on the habits of sauropods. Ann. Mag. Nat. Hist. 1951, 4: 830–832.
- ^ 22.0 22.1 22.2 22.3 Myers, T.S.; Fiorillo, A.R. Evidence for gregarious behavior and age segregation in sauropod dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology. 2009, 274: 96–104.
- ^ Coria, R.A. On a monospecific assemblage of sauropod dinosaurs from Patagonia: implications for gregarious behavior. GAIA. 1994, 10: 209–213.
- ^ Osborn, H. F. A Skeleton of Diplodocus, Recently Mounted in the American Museum. Science. 1899, 10 (259): 870–4. PMID 17788971. doi:10.1126/science.10.259.870.
- ^ Rothschild BM, Molnar RE. Sauropod Stress Fractures as Clues to Activity. Carpenter, Kenneth and Tidswell, Virginia (ed.) (编). Thunder Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. 2005: 381–391. ISBN 978-0-253-34542-4.
- ^ 26.0 26.1 Mallison, H. (2009). "Rearing for food? Kinetic/dynamic modeling of bipedal/tripodal poses in sauropod dinosaurs." P. 63 in Godefroit, P. and Lambert, O. (eds), Tribute to Charles Darwin and Bernissart Iguanodons: New Perspectives on Vertebrate Evolution and Early Cretaceous Ecosystems. Brussels.
- ^ Raising the sauropod neck: it costs more to get less. Biol. Lett. June 2009, 5 (3): 317–9. PMC 2679936 . PMID 19364714. doi:10.1098/rsbl.2009.0096.
- ^ Hearts, neck posture and metabolic intensity of sauropod dinosaurs. Proc. Biol. Sci. September 2000, 267 (1455): 1883–7. PMC 1690760 . PMID 11052540. doi:10.1098/rspb.2000.1225.
- ^ Stevens, K.A.; Parrish, J.M. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science. 1999, 284 (5415): 798–800. PMID 10221910. doi:10.1126/science.284.5415.798.
- ^ Taylor, M.P., Wedel, M.J., and Naish, D. (2009). "Head and neck posture in sauropod dinosaurs inferred from extant animals (页面存档备份,存于互联网档案馆)". Acta Palaeontologica Polonica 54 (2), 2009: 213-220abstract (页面存档备份,存于互联网档案馆)
- ^ Museums and TV have dinosaurs' posture all wrong, claim scientists (页面存档备份,存于互联网档案馆). Guardian, 27 May 2009
- ^ 32.0 32.1 Riga, B.J.G. and Calvo, J.O. (2009). "A new wide-gauge sauropod track site from the Late Cretaceous of Mendoza, Neuquen Basin, Argentina." Paleontology, 52(3): 631-640.
- ^ Day, J.J.; Norman, D.B.; Gale, A.S.; Upchurch, P.; Powell, H.P. A Middle Jurassic dinosaur trackway site from Oxfordshire, UK. Palaeontology. 2004, 47: 319–348.
- ^ Lhuyd, E. (1699). Lithophylacii Britannici Ichnographia, sive lapidium aliorumque fossilium Britannicorum singulari figura insignium. Gleditsch and Weidmann: London.
- ^ Delair, J.B.; Sarjeant, W.A.S. The earliest discoveries of dinosaurs: the records re-examined. Proceedings of the Geologists' Association. 2002, 113: 185–197. doi:10.1016/S0016-7878(02)80022-0.
- ^ Owen, R. (1842). "Report on British Fossil Reptiles." Part II. Report of the British Association for the Advancement of Science, Plymouth, England.
- ^ Phillips, J. (1871). Geology of Oxford and the Valley of the Thames. Oxford: Clarendon Press, 523 pp.
- ^ Osborn, H.F., and Mook, C.C. (1921). "Camarasaurus, Amphicoelias and other sauropods of Cope." Memoirs of the American Museum of Natural History, n.s. 3:247-387 and plates LX-LXXXV.
- ^ Wilson, J. A. (2002). "Sauropod dinosaur phylogeny: critique and cladistic analysis." Zoological Journal of the Linnean Society, 136: 217-276.
- ^ Cecilia Apaldetti, Ricardo N. Martinez, Oscar A. Alcober and Diego Pol. A New Basal Sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), Northwestern Argentina. PLoS ONE. 2011, 6 (11): e26964 [2012-08-28]. doi:10.1371/journal.pone.0026964. (原始内容存档于2011-11-12).
延伸阅读
[编辑]- Bob Strauss, 2008, Sauropods: The Biggest Dinosaurs that Ever Lived (页面存档备份,存于互联网档案馆), The New York Times
- Kristina Curry Rogers and Jeffrey A. Wilson, 2005, The Sauropods: Evolution and Paleobiology, University of California Press, Berkeley, ISBN 978-0-520-24623-2
- Upchurch, P., Barrett, P.M. and Dodson, P. 2004. Sauropoda. In The Dinosauria, 2nd edition. D. Weishampel, P. Dodson, and H. Osmólska (eds.). University of California Press, Berkeley. pp. 259–322.
外部链接
[编辑]- (英文)蜥脚下目的详述 - DinoData
- (英文)蜥脚下目的特征 - Palaeos
- (英文)蜥脚下目的分类系统 - Thescelosaurus!
- (英文)(德文)[https://web.archive.org/web/20091205215252/http://www.sauropod-dinosaurs.uni-bonn.de/deutsch/index_dt.htm 蜥脚下目的生理与演化