Facilitating Creative Exploratory Search with Multiple
Networked Audio Devices Using HappyBrackets

Oliver Bown
Interactive Media Lab
UNSW Art & Design

Sydney

NSW, Australia

o.bown@unsw.edu.au

Angelo Fraietta
Interactive Media Lab
UNSW Art & Design

Sydney
NSW, Australia
a.fraietta@unsw.edu.au

ABSTRACT

We present HappyBrackets, an audio-focused creative coding
toolkit for deploying music programs to remote networked de-
vices. It is designed to support efficient creative exploratory
search in the context of the Internet of Things (IoT), where
one or more devices must be configured, programmed and
interact over a network, with applications in digital musical
instruments, networked music performance and other dig-
ital experiences. Users can easily monitor and hack what
multiple devices are doing on the fly, enhancing their abil-
ity to perform “exploratory search” in a creative workflow.
We present two creative case studies using the system: the
creation of a dance performance and the creation of a dis-
tributed musical installation. Analysing different activities
within the production process, with a particular focus on the
trade-off between more creative exploratory tasks and more
standard configuring and problem-solving tasks, we show
how the system supports creative exploratory search for
multiple networked devices, and consider design principles
that could advance this support.

Author Keywords

Internet of Musical Things, Creative Coding, Digital Musical
Instruments, Multiplicitous Media, Networked Music

CCS Concepts

eHuman-centered computing — Ubiquitous comput-
ing; User studies; e Applied computing — Sound and
music computing;

1. INTRODUCTION

The focus of this paper is on how the design of toolkits can
best support rapid and creatively fruitful coding practices,
in the spirit of environments such as Processing, MaxMSP
and Scratch, but specifically targeted at the context where

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).
NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Sam Ferguson
Creativity & Cognition Studios
University of Technology
Sydney
NSW, Australia
samuel.ferguson@uts.edu.au

286

Liam Bray
Design Lab
University of Sydney
Sydney
NSW, Australia
liam.bray@sydney.edu.au

Lian Loke
Design Lab
University of Sydney
Sydney
NSW, Australia
lian.loke@sydney.edu.au

Figure 1:
workshop with dancers exploring minute move-
ments.

A scene from the dance development

multiple remote media devices are being programmed. We
aim to enable the designers of digital instruments, inter-
active experiences and performance systems to be able to
quickly and easily realise, explore, modify, reconfigure and
extend their creative designs. In outlining an approach to
designing creativity support tools, Shneiderman et al [14]
call for “improved software and user interfaces that empower
[designers] to be not only more productive but also more
innovative” [14] (p. 62). They observe that well-designed
creative productivity tools do “more than merely speed per-
formance of standard tasks, enabling freer exploration of
alternatives and a willingness to probe past limits imposed
by existing tools” [14] (p. 69). With its greater complexity,
the world of multi-device creative Internet of Things (IoT)
presents clear challenges to obtaining this goal.

Helping outline a conceptual framework that supports solv-
ing these problems, Blackwell, with various collaborators
(we refer here to [5]), have developed cognitive dimensions
that describe how software design can support or hinder pro-
ductivity, particularly in creative work. Using an approach
inspired by such concepts, this paper presents practice-led
creative research into the use of multiple-device Raspberry
Pi systems using the HappyBrackets toolkit. We consider
how the design of the toolkit and the affordances of the
system influence the creative workflow, with reference to
Blackwell’s framework. In particular, in our case studies, we
identify a series of different tasks performed by the creative
team, and the factors that influence what task is being per-

formed at any one time. We then examine how the design
of the toolkit can support increased time spent engaging in
creative exploratory search in a team-working environment.

We explore these themes through the creative development
by the HappyBrackets team of two new pieces, one for
interaction with dancers and the other for a multi-element
musical art installation. We consider what enhances and
what blocks creative exploratory search, and how it is steered
by the design of the system and the hardware, as well as by
the affordances of the medium.

2. BACKGROUND
2.1 Creative exploratory search

Research into creative coding looks at the language, libraries
and tools that support the creative production of digital
experiences and products using code. Of particular interest
is the design of development environments that best support
the creative process, the core of which is the ability to explore,
reflect and reconfigure creative designs. For example, cre-
ativity researchers have examined the concept of exploratory
search in different ways. Simonton [15] grounds a theory of
exploratory search in the concept of ‘blind variation’;, which
provides the basis for a non-reductive comparison between
human creativity and natural evolution. He argues that
creative tasks necessitate blind search, since “not knowing
the path to the solution” is what makes them creative tasks
in the first place, but that blind search does not entail a
random unstructured process, but can be entirely systematic
and structured to maximise results. This idea that creative
tasks require structured trial and error, has been central to
the creative coding literature [14, 13], where the more rapidly
you can see and understand the effects of your actions and
design ideas, the more fertile your creative search will be.
The most critical feature of any creative tool, therefore, is
rapid access to richly informative results from any creative
experimentation.

Church et al. ([5], based on earlier work by Blackwell, e.g.,
[2]) discuss this in terms of support for progressive evaluation,
and consider other factors that describe how easily a person
can manipulate the system at hand in response to such trials:
viscosity (the effort required to effect change); abstraction
(how elements are represented with respect to the ability
to meta control or batch-control them); and premature
commitment (i.e., how locked-in you are to a design direction
once you've started on it); and predicting task complexity
and risk, and making decisions about switching tasks [5].

Even in the best of creative systems, creative search is
constrained by the natural limits to these factors. For exam-
ple, there is no best abstraction to suit a range of tasks, and
any system that has a complex structure requires some de-
gree of lock-in once you start building it, for example which
tools or design pattens you use. Therefore all practitioners
are used to working within constraints, and some theorists
have proposed that constraints are even actively employed
to define sparse and therefore manageable creative search
spaces [6, 10].

2.2 Creative coding toolkits for networked, tan-

gible devices

Creative coding for networked, tangible devices is gaining
interest with the rise and proliferation of physical computing
devices. In this paper we are concerned with creative projects
that employ multiple standalone small-format computers
or microprocessors. The key affordances that distinguish
this context from regular computing contexts are: (i) the
devices can be made portable and embedded into small
interactive objects; (ii) due to the low cost as well as the

287

small form-factor of these devices, multi-device systems can
easily be assembled, with multiples in the 100s and 1,000s not
being prohibitively unaffordable [3]. In both cases, wireless
network communication, primarily over WiFi on a local
area network (LAN), provides the basis for easily configured
and programmed communication between devices. WiFi
networking can be limited in network latency, reliability
and data capacity, but suffices for many applications and is
very convenient to work with. More generally, in the music
domain, this work is part of a field entitled Networked Music
Performance [9]. The concept of the Internet of Musical
Things [16] has also recently risen to prominence.

In related work, two of the authors have worked extensively
with the media arts organisation Squidsoup to produce cre-
ative content for large-scale volumetric LED installations [7,
8]. The most recent instance of this work, Bloom premiered
at the Christmas at Kew light festival at Kew Gardens,
London, in 2016, and involved 1,000 WiFi enabled Arduino-
based devices with, GPS, IMU sensor, LEDs and small piezo
speakers, creating a large distributed audio-visual artwork.
Due to its scale the work could not be tested in advance,
with limited time on-site to test ideas out. These conditions
are a strong motivator for the current research into the ease
with which creative exploration can be conducted.

Many programmable embedded audio systems, and other
types of programmable IoT systems, now exist. For exam-
ple the Teensy audio library and boards similarly use the
Arduino architecture and provide a high quality, low-latency
audio programming toolkit. An advantage of Arduino-based
systems like Teensy and the custom Bloom system are that
they are generally lower power compared to Linux-based
systems (as used by HappyBrackets). However, when higher-
power built-in audio rendering is being used, the power
requirement of the audio might balance out this difference.
Bela [12] is another system for audio performance for small
form-factor Linux-based devices, and the Bela team have
developed a number of convenience tools for monitoring and
controlling the device. Bela works with BeagleBoard devices
and is compatible with a number of audio programming
tools, as long as they are adapted to communicate with the
Bela’s low latency 10 system. Bela researchers have explored
how environments such as Bela support divergent creative
outcomes through their open-ended design potential [1].

A vast number of tools exist to speed up creative search
in interactive music contexts. For example, tools such as
libmapper [11] and Osculator (https://osculator.net/) make
connectivity and mapping between sensor streams and out-
puts easy across different software environments. Yet rela-
tively little research has been conducted into how creative
efficiency can be maximised in dynamic, networked, multi-
device contexts, which is the target of this research.

3. HAPPYBRACKETS

HappyBrackets is a coding toolkit that targets Raspberry Pi
computers to make networks of distributed interactive audio
device’s (DIADs, described in [4]); portable sensor-enabled
sonic devices. A typical DIAD unit consists of a Raspberry
Pi computer, sensor HAT, mini-speaker and battery. Re-
cently we have started working with the Raspberry Pi Zero
and HiFiBerry MiniAmp board, and now our own board
which combines power regulator, 3W amplifier, LED, IMU
sensor and Grove expansion ports. DIADs can be housed in
different device housing designs, but we have been mainly
focused on making standalone sonic balls that can be used
as instruments, toys, elements in interactive sonic games,
and props for performance and dance. Currently the Happy-
Brackets system is the only system we know of which allows

immediate push deployment over WiFi to multiple running
Raspberry Pi (or other Linux) devices. This capability has
been key to enabling rapid creative exploration with multiple
devices. The current key design features of HappyBrackets
include the following capabilities:

e General purpose language and widely supported

IDE

— Uses the general purpose and widely supported pro-
gramming language Java;

— Incorporated into and makes full use of IntelliJ] IDEA
development environment, with advanced IDE features;

e Interface design, Communication and Debugging

— Tools to set up GUI controls to remote control multiple
devices, including shared variables across devices;

— Tools to manage, monitor and debug devices remotely
over a network;

— Convenient libraries for network communication be-
tween the controller and devices;

e Inputs and Outputs — Convenient sensor library
and creative audio toolchain

— Convenient sensor library allowing rapid access to sen-
sors via the Raspberry Pi’'s GPIO and the PI4J library;

— Access to the Grove library of arbitrary sensors through
the GrovePi add-on board and associated java library;

— Key synthesis, sample and granular sample playback
tools, alongside a suite of audio effects;

— Generative music libraries for musical control of synthe-
sis;

e Device Interaction — Inter-device communication
and time synchronisation

— Convenient libraries for network communication be-
tween devices, including shared variables across devices;

— Tight synchronisation of clocks between devices using
NTP over a local network;

e Live Coding — on-the-fly iteration and updates

— Simplified setup process for configuring and working
with multiple devices, getting up and running with live
coding quickly;

— Enables live coding audio programs to run on remote
networked devices, live compile and send software com-
positions to devices, run multiple compositions simulta-
neously, and live update compositions on the fly;

4. TASK ANALYSIS FRAMEWORK

“Multiplicitous media” systems [3] are digital systems consist-
ing of multiple hardware devices connected over a network.
Unlike other digital creative contexts, we find that such
systems impose a greater demand for the production of code
in specific situations where hardware is set up in context
(i.e., it cannot always be performed in advance because the
ideas must be tested in the final context). For example,
when experimenting with dancers using our interactive au-
dio devices, it was necessary to be able to rapidly experiment
with different system designs whilst the dancers were on site,
performing with the devices. In this context, it is common
for the dancers to be waiting around whilst the coders solve
problems, but preferable that the coders are making tangi-
ble and ongoing contributions to the creative development
of the work. When working with multiple devices, it can
be slow to deploy code updates to the devices, and deal
with hardware connectivity and configuration issues, causing
large, creatively debilitating delays.

We therefore identify in our practice a series of different
activities that coders may be engaged in during such a
creative session (Table 1), and analyse how the design of
a creative coding toolkit can help coders focus on those
activities that are most productive in time-critical creative

288

Table 1: Tasks in a collaborative creative process.

Task Context Participants
(i) setting up devices hardware setup coder

(11) connecting to de- computer coder

vices

(iii) in-depth coding computer coder

(iv) debugging and

troubleshooting computer coder

.(v) rapid creative cod- creative time- codertartists
ing sensitive session

.(v1) .explorlr.lg and test- crea.tl.ve tlme— codertartists
ing interaction sensitive session

(vii) remote-

controlling o and crea.‘m.\ze tupe— coder+artists
remote-monitoring sensitive session

devices

(viii) discussing and creative time- codertartists

planning sensitive session

phases. The activities we identify are: (i) setting up devices,
(ii) connecting to devices, (iii) in-depth coding (developing
software code), (iv) debugging and troubleshooting, (v) rapid
creative coding (exploring software code), (vi) exploring
and testing interaction (e.g., physically interacting with
devices), (vii) remote-controlling and remote-monitoring
devices via program and state variables, (viii) discussing
and planning. We identify items (v) through (viii) as the
tasks that we want to focus on in a creative time-sensitive
session, minimising time spent on tasks (i) through (iv). The
distinction between tasks (iii) and (v) is significant and will
be elucidated in the following discussion. As a rule of thumb,
task (iii) relates to more involved heads-down coding work
that requires planning and concentration, whereas task (v) is
rapid and can be done without much thought and planning.
Following the discussion of case studies we offer insights into
the relation between tasks (iii) and (v) in creative strategies.

S. STUDIES

The workflow of creating works with HappyBrackets was
studied in two creative development contexts involving the
authors. These sessions were documented and analysed to
examine the progression through different coder activities
during the creative sessions, and the associated factors in-
volved in the distribution of these activities. In each of
these cases, the context is given, the creative process and
outcomes are discussed, and the task analysis is presented
in an associated diagram.

5.1 Development of a Dance Performance

A creative study undertaken by the authors (the Happy-
Brackets developers and Lian Loke acting in the role of
dancer and interaction designer) and another dancer, Kirsten
Packham, resulted in a performance, So Predictable!?, at
the NOW now Festival in Sydney in January 2018 and the
NIME’18 conference in Virginia in June 2018. For this dance
performance, two DIADs were made, housed in soft spherical
enclosures, designed by industrial designers Vert .

The soft spherical designs afforded the possibility to roll
and spin the devices, and leave them to rock or wobble on
their own, producing specific sensor data patterns that were
not present when interacting only through hand-contact with

1Video documentation of sections of this creative develop-
ment session can be found at https://tinyurl.com/ycg2bhcr.

the devices. Given that the potential impact of these physical
affordances on the interactive audio design were unknown,
the creative development of the piece was grounded in being
able to support exploratory search on-site during rehearsal.

A small handful of basic sketches were developed prior to
the creative session to explore core interaction paradigms.
These were divided into a basic suite of direct mappings from
sensor data: linear and non-linear scaling; threshold-based
triggers; and discrete state detectors (e.g., is the device
pointing up, down, left, right, rolling, spinning, in free-fall,
etc.). Other basic mapping functions such as smoothing and
trigonometric operations were also prepared for convenience.
At the beginning of the session, the coder deployed the initial
code sketches to two separate devices simultaneously. The
dancers played with the devices, taking some time to become
familiar with the interactive sonic behaviour in each case.

After a period of exploration of the pre-prepared composi-
tions the team agreed that threshold-based and orientation-
based triggers were of limited interest because they lacked
sensitivity, involving only occasional events. Sketches imple-
menting immediate mappings from sensor values to sonic
outputs became the focus, and in turn, the dancers be-
came interested in small movements of the device as the
motion-to-sound mappings enabled a sensitivity to micro-
movement and an interest in improvising on the edge of
silence/sound and stillness/motion. A period of more in-
tense co-creative exploration took place around this theme,
where the coder manipulated data parameters on-the-fly
via wireless data communication to the device, for example,
manually changing numbers in the code to alter specific
frequencies and amplitudes, and explicitly reconfiguring the
system behaviour and synthesis architecture.

In response to the coder’s live manipulations, the dancers
gave feedback in three forms: a) mark this as interesting,
but maintain flow; b) stop, mark as interesting, discuss
directions this could go; and c¢) bored/don’t like, request
something new. For each of these alternative paths, the
coder responded in different ways: a) note good settings,
but continue to manipulate parameters in such a way as to
be able to go back, either through comments in the code,
or where necessary making a copy of the sketch file; b)
either engage in a more detailed refactor on the fly (while
the dancers take a break), or make notes in code for later
refactoring (to be prepared for the next session); and c¢) pull
up another pre-coded sketch or make more radical changes
to the current sketch code.

Through this exploration the team rapidly identified rel-
evant thresholds and parameter settings that suited the
micro movements being explored by the dancer. In addition,
mappings that involved delayed responses and longer-term
interaction effects were explored and found to be highly
impactful, by allowing a more dialogical interaction between
dancer and device. A new composition was coded on the fly,
that included a simple hidden state variable that tracked the
absolute magnitude of the gyroscope’s 3-axis output, with
smoothing. This variable was designed to increase rapidly
towards the gyro magnitude, but to drop back down slowly,
similar to how different attack and release values of an audio
compressor can create interesting dynamic effects.

Variations of this delayed variable were used to control
LFO modulation depth and rate of a simple synth, as well
as the overall volume. Sustained activity by the dancer
would work the device gradually into frenzied sound. After
ceasing activity, the sound would linger for several seconds
before dying down again, with unpredictable pathways back
to silence. This stood out as being immediately engaging
for the dancers, especially when they interacted with the
devices with minuscule movements. In addition, an initially

289

Development —— M
prep—» workshop —p

(i) setting up devices

(if) connecting to devices

(iii) in-depth coding

(iv) debugging and troubleshooting
(v) rapid creative coding

(vi) exploring and testing interaction
(vii) remote-controlling and
remote-monitoring devices

(viii) discussing and planning

Figure 2: A schematic view of switching between
tasks, during the creative development of a dance
performance.

unidentified divide-by-zero bug caused the synthesis values
to explode after the device was left completely still, resulting
in bizarre bursts of noise that only arose after a period
of inactivity. This provided a new unexpected basis for
interaction and became part of the performance.

To assist with describing the creative development process,
a schematic view of switching between the various tasks in
this process is provided in Figure 2. In summary, in-depth
development took place before the session (tasks (iii) and
(iv)). After some setup (tasks (i) and (ii)), the creative
session began by the coders and dancers exploring and testing
existing candidates (tasks (vi) and (vii)), after which the
coders rapidly developed a new program sketch based on
time-delayed variables, within the session. This was an
involved coding task (iii) and required some debugging (iv),
but the program design was kept simple, and rapidly the
activity progressed to more creative search again (v, vi
and vii). A bug was discovered, but importantly in the
context of this creative exploratory task, no debugging was
undertaken; instead the bug became part of the creative
design. From the coder’s perspective, the transition from the
(iii) task to the (v) and (vii) tasks was primarily achieved
by identifying numeric variables that could be manually
explored. This could be done directly in code (v) or using
a feature that allowed the coder to rapidly set up remote-
controllable variables (vii) manipulated by GUI sliders that
could then be further explored in interaction. The latter
feature was predicted to be valuable for rapid exploration,
but in reality the potential to directly manipulate numbers
in the code was more commonly used, as the latter feature
took time to set up, added more clutter to code and could
complicate the interaction.

5.2 A Distributed Musical Installation

The second case study describes the creative development of
a non-interactive, networked musical installation, Spiral, at
the Powerhouse Museum in 2019. There were no performers,
hence the creative development is focused on the work of the
creative coders, although a composer, Adrian Lim-Klumpes,
was also involved in the creative development, giving feed-
back to the coders. In this installation, 25 self-contained
DIADs were built and hung from the ceiling, communicating
with four other elements in the musical work: a Disklavier
piano, mechanically actuated drums, a series of cello samples,
and an audio-based augmented reality (AR) experience. The
Disklavier, drums and cello samples were run directly from
a computer running Ableton Live. A Max for Live device
within the Ableton Live set sent network broadcast messages
to the DIADs and the AR devices. The audio program ran
continually at a fixed tempo of 140BPM.

The DIADs were programmed so as to maintain their own

time-synchronised clocks, maintaining time with the Ableton
Live session via a local network time protocol (NTP) server,
which in our experience kept time to within 20ms. The
Ableton Live session then broadcast regular AALJ/beataAl
messages with a beat number and Unix timestamp attached
to each message. A segment of the DIAD code responded
to those messages in order to keep the clock in synch, using
the known fixed tempo in order to plan the time of the next
beat. It was noted that all of the computers’ system clocks
were prone to drift, so this synchronisation was essential.

The DIADs were then set up with the 25 devices arranged
in a spiral, and assigned numbers based on their positions.
This made use of a feature in the IDE plugin that allowed a
list of known devices to be stored by the controller computer
and assigned IDs upon connection. Thus the same code could
then be sent to all devices, but with branch points or different
actions determined based on the device’s ID through switch
statements and numeric expressions. In a similar way to the
dance scenario, the install hardware, involving Disklavier,
mechanical drums and various speakers, was only available
at install time, and it was essential to be able to make
adjustments to the code of all devices rapidly at this time.
However, unlike the dance development, where code was
developed on the fly, the code composition was a much more
advanced system with complex programmed behaviour. Here
the tweaking phase was focused on getting a good sound
and making minor adjustments to the composition.

Of particular value in this process was the implementa-
tion in HappyBrackets of a simple OSC message broadcast
interface, built into the IntelliJ plugin, where the composer
could enter and send custom messages and try out different
states across all devices. This feature, we found, encour-
aged us to parameterise elements of the code more early
on, knowing that we could then rapidly play with variable
values before locking them in, but with the added advantage
that our code remained neater and more modular. This
included debugging features like turning on a back click on
the devices to ensure they were playing in time. In other
words, the environment was able to encourage tasks (v) and
(vii) (there was no physical interaction in this system, but
here task (vi) refers to listening to the system playing in
context). In addition to the custom OSC message interface,
the remote GUI controls enabled by the HappyBrackets
toolkit were used to the same effect, allowing us to vary
values across multiple devices from a laptop computer. As
well as debugging features, such as turning on and off a click
to check timing, we used these features to experiment with
tunings, rates, levels of randomness, delays between devices,
filter frequency values and other features, before settling on
something that was satisfying and suited to the space. For
example, the graphical interface was used to tweak a notch
filter across individual devices within the acoustic space of
the install, for fine acoustic tuning.

A schematic view of switching between tasks is provided in
Figure 3. In summary, the pattern followed the same process
of moving between cycles of rapid creative development
(tasks (v) and (vii)), testing (task (vi)), reflection (task
(viii)) and more sustained in-depth development (tasks (iii)
and (iv)), in which relevant parameterisations were made
that would be useful to speed up the next round of rapid
development.

6. DISCUSSION
6.1 Task switching

From the two task diagrams (Figures 2 and 3) we see a similar
pattern that is familiar from an iterative design perspective
(Figure 4): a pair of nested iterations, one inner iteration

290

Development
prep—— » onsite —

(i) setting up devices

(if) connecting to devices

(iii) in-depth coding

(iv) debugging and troubleshooting
(v) rapid creative coding

(vi) exploring and testing interaction

ing devices

(vii)

trolling and remote-|

(viii) discussing and planning

Figure 3: A schematic view of switching between
tasks, during the Spiral installation development.

between rapid coding, parameter tweaking and experimenta-
tion, and an outer iteration between this inner iteration and
more involved coding stages (sometimes happening on-site,
but more often happening at a seperate time to the test
sessions). We note two factors in the transitions between
the elements in the outer iteration that are of interest from
the design of creativity support tools.

Firstly, during in-depth development sessions it is possi-
ble for the developer to set up a series of parameters and
controls that facilitate more rapid exploration on-site, when
transitioning to the rapid prototyping and testing phase. In
HappyBrackets we introduced features to manage this pro-
cess: the ability to easily respond to custom OSC messages
sent from a command prompt on the controller computer,
and the ability to open up a GUI panel on the controller com-
puter, with GUI elements bound to the devices (both global
and device specific). Adding these controls involves some
additional overhead and planning during the development
session, and importantly, introduces additional code clutter,
so although it can be very useful to speed up the creative de-
velopment sessions there are also reasons not to set up these
elements in advance. In comparison, given that sending live
changes to the code to multiple devices is extremely easy
in HappyBrackets, the need to add such parameters can be
alleviated altogether, simply by sending over a new block of
code, and we observed that in certain cases it was preferable
simply to edit the code and re-send it. The latter is more
amenable to open-ended exploration because it does not
pre-empt in any way what kinds of parameters are needed.
Conditions which may affect how well the code is set up
in advance with control parameters include: how refined
the design is; and whether the parameters are things that
really need to be explored in a rapid interactive manner (an
example of which is when performing a filter sweep to find
a resonant frequency in a space, as in Spiral).

Secondly, during the rapid prototyping and test phase, it
can be hard to decide when to commit time to refactoring
code (either to generalise it to allow for more variation,
or simply to try out a different configuration), given that
this demands a shift back into more in-depth coding. The
tendency is to make incremental, minor changes (which over
time might evolve towards something very different, possibly
messy). This impacts how one might then go and engage in
more in-depth refactoring later, and also creates situations
in which good solutions might get lost and possible branch
points missed.

In both cases, whilst HappyBrackets features helped speed
up prototyping and enhance exploration, better guidelines
are still needed that outline exactly how and when the de-
veloper commits to specific coding decisions and designs. In
future iterations we will consider additional features in re-
sponse to this ongoing challenge: making in-code parameters
automatically exposed to a control surface without having

A | g
v |
rapid prototype (v)
in-depth coding (jii) & parameter testing (vi)
tweaks (vii)
[}

Figure 4: Iterative cycles in the creative process.

to edit the code, which would include being able to store
successful parameter values as defaults back into the code;
advancing the API to provide objects that are positioned at
the correct level to maximise breadth of exploration (e.g.,
modular synthesisers do this relatively well, many program-
ming libraries are too low level, MIDI instruments are too
high level); and providing rapid interfaces for exploratory
reconfigurations, such as a simple matrix mapping interface.

6.2 Minimising device configuration tasks

Working with multiple remote devices increases the overhead
of tasks that are distracting to productive creative develop-
ment: setting up devices (task (i)) and connecting to devices
(task (ii)), which includes monitoring connections and track-
ing which device is which in a collection. One of the most
productive things a toolkit can do then is minimise the time
cost of these tasks. Although we did not take detailed mea-
surements of the time overhead of these tasks in the current
case studies, we estimate that anywhere between 10-30%
of time was devoted to issues with setup and connectivity.
Features of HappyBrackets designed to ease these tasks in-
clude having a pre-established network that devices already
know to connect to, autodiscovery of devices, being able to
ping devices from the controller computer (make a bleep on
the device), being able to query devices for hostname and
assigned ID, and sensor data streams. It is also possible
to directly configure devices substantially via code, such as
setting hostnames and boot options. A recent development
includes being able to directly flash audio files and code
libraries to devices via the IntelliJ coding interface. The
difficulty of sending audio files to devices previously slowed
exploration of different sample options considerably. From
our experience in these practice-based studies we consider
this set of features to constitute an essential baseline for
functionally working with multiplicities.

7. CONCLUSION

In this paper we have examined how creators working with
the HappyBrackets toolkit for programming audio on multi-
ple remote devices switch between tasks and manage creative
exploration in an iterative design cycle. We have considered
how the features of HappyBrackets support different tasks
and the progression between tasks, and how these could be
improved, through revised design guidelines to improve this
process further.

8. ACKNOWLEDGEMENTS

We acknowledge additional programming contributions by
Sam Gillespie and Oliver Coleman, financial support by
internal grants (from the University of Sydney, with Phil
Poronnik, and a Faculty Research Grant from UNSW), dance
development by Kirsten Packham, industrial design by Vert
Designs, Spiral artwork commission by MAAS, and compo-
sition by Adrian Lim-Klumpes and Tangents.

291

9. REFERENCES

[1] J. Armitage and A. McPherson. Crafting digital
musical instruments: An exploratory workshop study.
In Proc. NIME’18, Blacksburg, Virginia, June 2018.
A. Blackwell and T. Green. Notational systems—the
cognitive dimensions of notations framework. HCI
Models, Theories, and Frameworks: Toward an
Interdisciplinary Science. Morgan Kaufmann, 2003.
O. Bown and S. Ferguson. Creative media+ the
internet of things= media multiplicities. Leonardo,
(Early Access):53-54, 2017.

O. Bown, L. Loke, S. Ferguson, and D. Reinhardt.
Distributed interactive audio devices: Creative
strategies and audience responses to novel musical
interaction scenarios. In Proceedings of the 2015
International Symposium on Electronic Art, Vancouver,
Canada, 2015.

L. Church, M. Marasoiu, and A. Blackwell. Sintr:
Experimenting with liveness at scale. In Proceedings of
ECOOP 2016, 2016.

P. Dalsgaard and K. Halskov. Designing urban media
fagades: cases and challenges. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 2277-2286. ACM, 2010.

S. Ferguson, A. Rowe, O. Bown, L. Birtles, and

C. Bennewith. Networked pixels: Strategies for
building visual and auditory images with distributed
independent devices. In Proceedings of the 2017 ACM
SIGCHI Conference on Creativity and Cognition, pages
299-308. ACM, 2017.

S. Ferguson, A. Rowe, O. Bown, L. Birtles, and

C. Bennewith. Sound design for a system of 1000
distributed independent audio-visual devices. In In
proceedings of NIME 2017, Aalborg University
Copenhagen, Denmark., 2017.

L. Gabrielli and S. Squartini. Wireless networked
music performance. In Wireless Networked Music
Performance, pages 53-92. Springer, 2016.

T. Magnusson. Designing constraints: Composing and
performing with digital musical systems. Computer
Music Journal, 34(4):62-73, 2010.

J. Malloch, S. Sinclair, and M. M. Wanderley.
Libmapper:(a library for connecting things). In CHI’13
Extended Abstracts on Human Factors in Computing
Systems, pages 3087-3090. ACM, 2013.

A. P. McPherson, A. Chamberlain, A. Hazzard,

S. McGrath, and S. Benford. Designing for exploratory
play with a hackable digital musical instrument. In
Proceedings of the 2016 ACM Conference on Designing
Interactive Systems, pages 1233—-1245. ACM, 2016.

M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman,
R. Pausch, T. Selker, and M. Eisenberg. Design
principles for tools to support creative thinking. 2005.
B. Shneiderman, G. Fischer, M. Czerwinski,

M. Resnick, B. Myers, L. Candy, E. Edmonds,

M. Eisenberg, E. Giaccardi, T. Hewett, et al.
Creativity support tools: Report from a US national
science foundation sponsored workshop. Int Journal of
Human-Computer Interaction, 20(2):61-77, 2006.

D. K. Simonton. Creativity and discovery as blind
variation: Campbell’s (1960) BVSR model after the
half-century mark. Review of General Psychology,
15(2):158, 2011.

L. Turchet, C. Fischione, G. Essl, D. Keller, and

M. Barthet. Internet of musical things: Vision and
challenges. IEEE Access, 6:61994-62017, 2018.

2l

3]

(4]

(5]

(6]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

