
Introduction
This is the artifact for the OOPSLA 2024 paper "Taypsi: Static Enforcement of Privacy Policies for Policy-
Agnostic Oblivious Computation". The artifact includes the source code of the lifting algorithm (Section 5) and
the Taypsi language, a Coq formalization of Taypsi core calculus (Section 3), and all of the benchmarks from
the our evaluation (Section 6).

This artifact supports the following claims made in the paper:

When applied to algorithms involving intermediate values of structured data types, Taypsi lifting
algorithm produces programs that perform considerably better than the baseline established in prior
work.
When applied to algorithms that only construct primitive values, Taypsi's lifting procedure produces
programs that perform on par with the baseline approach.
The compilation overhead introduced by Taypsi's lifting algorithm is reasonable.
The core calculus and proofs of soundness and obliviousness have been mechanized in Coq.

Reproducing the experimental results explains how to reproduce the experiments that support the first three
claims, and Coq formalization of the core calculus gives instructions on how to navigate the Coq
mechanization.

Hardware Dependencies
The artifact is packaged as docker images for amd64 (x86-64) and arm64 architectures. Thus, any hardware
using these two architectures should work, as long as the installed operating system is supported by docker.
However, fully reproducing our experimental results requires at least 8 GB of memory. The docker image also
requires roughly 14 GB of storage space.

We have tested this artifact on a x86-64 Linux box and an Apple Silicon (M1) Mac.

Getting Started Guide
This artifact is a docker image, which contains:

This README file, located at ~/README.md . A rendered version is also available online.
The docker file used to generate the docker images, located at ~/Dockerfile .
The implementation of the Taypsi type checker and compiler, based on Taype (PLDI23), located at
~/taypsi . (Github repository)

The implementation of the baseline Taype type checker and compiler used in our evaluation, located
at ~/taype-pldi . This includes the additional benchmarks used in our comparison. (Github
repository)
An extended version of Taype that includes Taypsi's smart array optimization, located at ~/taype-
sa . This version of Taype is used to provide a fairer comparison with Taypsi. (Github repository)
All examples and experiments from the paper, located at ~/taypsi/examples  (correspondingly
~/taype-pldi/examples  and ~/taype-sa/examples ).

The Coq formalization of the Taypsi core calculus, based on Oblivious Algebraic Data Types (POPL22),
located at ~/taypsi-theories . (Github repository)
The source code of drivers implementing the cryptographic primitives and oblivious array, located at
~/taype-drivers . This implementation includes the smart array optimization, and is used by
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Taypsi ( ~/taypsi ) and the version of Taype extended with the smart array optimization ( ~/taype-
sa ). (Github repository)
The source code of the drivers from Taype (PLDI23), located at ~/taype-drivers-legacy . This
implementation is used by the baseline Taype ( ~/taype-pldi ). (Github repository)
A code-server (VS Code in the browser), so that users can more easily browse the source code (this is
not required, of course). We have include the following VS Code extensions:

Taype: for reading Taypsi source code. This extension provides basic syntax highlighting for
Taypsi and its intermediate language OIL. (The name of this extension reflects that Taypsi is
based on and is an extension of Taype)
Haskell: for reading source code of the Taypsi type checker and compiler, which is
implemented in Haskell.
OCaml: for reading source code of the generated OCaml programs, test cases and part of the
source code of Taypsi. Since Taypsi programs are compiled to OCaml libraries, our test cases
are also written in OCaml, which handle I/O and invoke these libraries. The constraint solver
presented in the paper is also implemented in OCaml.
VsCoq: for reading Coq formalization.
Python: for reading the script that interprets the evaluation results and generates LaTeX
tables.

All the implementations in the docker image have been pre-compiled. The clean version of the source code,
this README file and the docker file are also available on Zenodo.

To evaluate this artifact, first install docker, and then download one of our docker images from Zenodo,
depending on your machine's architecture. We provide images for amd64 (i.e. x86-64) and arm64 (e.g., for
Apple Silicon Mac). You need around 14 GB of storage space to load these images, and 8 GB of RAM for the
container to run the experiments.

Before executing any docker commands, make sure that the docker daemon is running: if you see Cannot
connect to the Docker daemon  in the output of command docker version , then you need to start the
daemon first. Check the docker official documentation for instructions according to your operating system
and docker version.

Now you can load and run the downloaded docker image. The following commands create an image called
taypsi-image , and start a container called taypsi . We expose the port 8080  for accessing the code-

server.

# <arch> is amd64 or arm64
mv taypsi-image-<arch>.tar.xz taypsi-image.tar.xz
# This command will take a minute or two
docker load -i taypsi-image.tar.xz
docker run -dt -p 8080:8080 -m 8g --name taypsi taypsi-image

The docker container is allocated 8 GB of memory which is the memory cap used in the evaluation section.
You could allocate a smaller amount of memory if 8 GB is not possible, but you would not be able to
completely reproduce the experimental results (some benchmarks may fail). You need around 2 GB to compile
the Coq formalization.

To launch the code-server, run:

docker exec -d taypsi code-server
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Now you can open the URL localhost:8080 (or 127.0.0.1:8080) in a browser to access VS Code. Note that some
functionality may not work if you are using private mode or incognito mode. We did not pre-install the Haskell
language server or the OCaml language server in the docker image; the next section includes instructions on
how to do so.

To access the container shell, run

docker exec -it taypsi bash --login

Your user name is reviewer  (without password) and the current directory is ~  (i.e. /home/reviewer ). In
the rest of this document, we assume commands are run inside the container.

To quickly test this artifact, compile the tutorial example and run its test cases. The Taypsi source file of this
example taypsi/examples/tutorial/tutorial.tp  includes comments on how to write Taypsi programs
and oblivious types.

cd taypsi
cabal run shake -- run/tutorial

We will explain what exactly this command is doing in the next section, but you should see the output of the
tests, which contains headers like:

== Test case 1 (round 1) ==

and then a few numbers for the performance statistics.

Step-by-Step Instructions
This section provides details on how the figures (claims) in the paper correspond to the implementation, how
to reproduce the experimental results, how to use our tools, and some minor discrepancies between the
implementation and the paper's description.

How to read code
As mentioned in the previous section, you can read the source code in the browser with code-server. The
docker image also comes with vim, if you prefer reading source code in the console, but we do not have a
syntax highlighting extension for vim yet.

You may want to install Haskell and OCaml language servers for richer IDE features such as jump to definition.
You can install them by running:

# Install Haskell language server
# This step may not be needed, as the Haskell VS Code extension may ask and do this 
for you
ghcup install hls

# Install OCaml language server
opam install ocaml-lsp-server

http://localhost:8080/
http://127.0.0.1:8080/


Correspondence between paper and artifact
The following table describes how various definitions in the paper correspond to definitions in the artifact.

Note that we still use the name Taype (e.g., in file names and module names) in the Taypsi compiler source
code, as Taypsi is an extension of Taype.

In paper In artifact Comment

Fig. 1
list and filter in
taypsi/examples/tutorial/tutorial.tp

See Note 1

Fig. 2
~list and ~list_eq in
taypsi/examples/tutorial/tutorial.tp

Fig. 4
~list#s, ~list#r, ~list#view, ~list#Nil, ~list#Cons,
~list#match, ~list#join and ~list#reshape in
taypsi/examples/tutorial/tutorial.tp

Figures and
theorems in
Section 3

See Coq formalization of the core calculus

Fig. 14 liftDefs in taypsi/src/Taype/Lift.hs See Note 2

Fig. 15
Ppx in taypsi/src/Taype/Syntax.hs and elabPpx in
taypsi/src/Taype/TypeChecker.hs

Typed macros are
called preprocessors
(ppx) in source code

Fig. 16 Constraint in taypsi/src/Taype/Lift.hs

Fig. 17 liftExpr in taypsi/src/Taype/Lift.hs

Compilation and
optimizations in
Section 6

Source code in taypsi and taype-drivers See Note 3

Figures in Section
6

See Reproducing the experimental results

Notes:

1. The Implementation distinguishes between oblivious product (whose components must be oblivious)
and normal product (whose components can be any types), similar to Ye and Delaware (PLDI23). The
style in the Taypsi paper is closer to Ye and Delaware (POPL22), which includes only one product
former that can connect any types, for presentation purposes.

2. While the entry point of the lifting algorithm is liftDefs  in taypsi/src/Taype/Lift.hs , some
subroutines are implemented in other files: the source of our constraint solver can be found in
taypsi/solver/bin/solver.ml  and taypsi/solver/lib/solver.ml , and the elaborator of

typed macros is the elabPpx  function in taypsi/src/Taype/TypeChecker.hs .
3. The source code of the bidirectional type checker is in taypsi/src/Taype/TypeChecker.hs , the

lifting procedure is in taypsi/src/Taype/Lift.hs , and the translation to OIL is in
taypsi/src/Oil/Translation.hs . The smart array optimization is defined in taype-
drivers/lib/smart.ml . The reshape guard optimization is defined at guardReshape  in



taypsi/src/Oil/Optimization.hs . The memoization optimization is memo  in
taypsi/src/Oil/Optimization.hs . The driver used in our evaluation is taype-
drivers/emp/taype_driver_emp.ml . See also The compilation pipeline.

As the Taypsi syntax presented in the paper uses several typographic conventions (e.g., hat, math symbols,
etc.), which cannot be easily reproduced in source code, the definitions in the artifact adopt a slightly different
concrete syntax. The following table summarizes the syntactic and naming discrepancies between the Taypsi
source code and the listings in the paper.

In paper In artifact Comment

𝟙 unit Unit type

𝔹 bool Boolean type

ℤ int Integer type

ℕ uint Unsigned integer (natural number) type

× * or ~* Product type former and oblivious product type former

unsafe fn fn' Keyword for defining unsafe functions, i.e. retractions

Name with hat Prefixed by ~ e.g., ~list for list with hat

Primitive sections
and retractions

~bool#s, ~bool#r,
~int#s and ~int#r

Ψ # Ψ-type, e.g., #~list for Ψlist with hat

⟨_,_⟩ #(_,_) Ψ-type pair

𝜆 \ Lambda abstraction, e.g., \x => ... for 𝜆x => ...

match _ with _
match _ with _

end
Pattern matching

mux ~if

Oblivious conditional; mux in the paper is more consistent
with the literatures, but ~if is more consistent with other
oblivious operations in Taypsi

Coq formalization of the core calculus
We have formalized the Taypsi core calculus described in Section 3 in Coq ( ~/taypsi-theories ), including
proofs of the soundness and obliviousness theorems.

To validate the formalization, run:

cd taypsi-theories
make clean
make

These commands should output two lines stating Closed under the global context . These are
generated from the file taypsi-theories/theories/lang_taypsi/metatheories.v , indicating that both
of the key theorems have been proved without any axioms.



The Coq formalization is also available online; this online version includes a nicely rendered documentation.

The following table summarizes the correspondence between the paper and the Coq formalization:

In paper In artifact Notations

Fig. 5
expr, gdef, otval, oval and val in taypsi-
theories/theories/lang_taypsi/syntax.v

Defined in the
expr_notations module in
the same file

Fig. 6
step and ectx in taypsi-
theories/theories/lang_taypsi/semantics.v

e -->! e' (or Σ ⊨ e -->!
e') for step

Fig. 7
typing and kinding in taypsi-
theories/theories/lang_taypsi/typing.v

Γ ⊢ e : τ (or Σ; Γ ⊢ e : τ)
for typing and Γ ⊢ τ :: κ
(or Σ; Γ ⊢ τ :: κ) for
kinding

Fig. 8
gdef_typing in taypsi-
theories/theories/lang_taypsi/typing.v

Σ ⊢₁ D

Theorem 3.1
(Obliviousness)

obliviousness in taypsi-
theories/theories/lang_taypsi/metatheories.v

The soundness  theorem is also available in taypsi-
theories/theories/lang_taypsi/metatheories.v .

For simplicity, our mechanization of the core calculus differs slightly from the one presented in the paper:

The mechanization includes fold  and unfold  operations for recursive ADTs ( EFold  and
EUnfold  at syntax.v ), similar to Ye and Delaware (POPL22), instead of the ML-style ADTs in the

paper. The equivalence between these two styles is well-known (cf. Chapter 20 of "Types and
Programming Languages").
Similar to the implementation, the mechanization includes oblivious product and normal product
( EProd  at syntax.v , with an olabel  argument to distinguish them), while the paper has only
one product type former for presentation purposes.
The mechanization uses distinct projections for product and Ψ-type ( EProj  and EPsiProj  at
syntax.v ), while the paper abuses the notation for presentation.

The mechanization uses locally nameless representation for binders.
There are some notational differences which should be easy to disambiguate: we use case .. of
..  instead of match .. with .. , for example.

Reproducing the experimental results
To reproduce Figs. 18, 19 and 20 in the paper, you can simply invoke the script that runs all our benchmarks.

# At home directory '~'
./bench.sh

This script runs each test case 5 times, takes the average of the results, and writes them to the directories
taypsi/examples/output-* . Finally, this script will execute taypsi/examples/figs.py  to generate

LaTeX tables to taypsi/examples/figs  for the figures in Section 6 and appendix.

https://ccyip.github.io/oadt/taypsi


Be warned that this script takes a long time to run: potentially up to 2 hours depending on your machine. You
can choose to execute each test for fewer rounds via a command line argument. This would of course produce
less accurate results, and it can still take up to 1 hour to run.

# Run each test case once
./bench.sh 1

You can inspect this script and the scripts it invokes ( bench.sh  in taypsi , taype-pldi  and taype-sa )
to understand what benchmark suites are tested with what options.

The following table summarizes the correspondence between the generated LaTeX tables and the figures in
Section 6. There are also other LaTeX tables generated for the appendix.

In paper In artifact

First half (list) of Fig. 18 taypsi/examples/figs/list-bench-full.tex

Second half (tree) of Fig. 18 taypsi/examples/figs/tree-bench-full.tex

First half (list) of Fig. 19 taypsi/examples/figs/list-opt-full.tex

Second half (tree) of Fig. 19 taypsi/examples/figs/tree-opt-full.tex

Fig. 20 taypsi/examples/figs/compile-stats-full.tex

The performance of our benchmarks can vary due to a number of factors, e.g., the specs of the underlying
hardware, the cryptographic instructions supported by the CPU, and the overhead of running them in a
docker container, so you will most likely not see the exact numbers reported in the paper. Nevertheless, you
should observe similar comparative results: Taypsi performs significantly better than Taype on many
benchmarks, while doing roughly as well on the remainder.

If you are interested in how the tests are implemented, see The implementation of test cases.

The following tables provide links to the source code of benchmark suites.

List microbenchmark In taypsi/examples/list/list.tp

elem_1000 ~elem

hamming_1000 ~hamming_distance

euclidean_1000 ~min_euclidean_distance

dot_prod_1000 ~dot_prod

nth_1000 ~nth

map_1000 ~test_map

filter_200 ~test_filter

insert_200 ~insert

insert_list_100 ~insert_list

append_100 ~append



take_200 ~take

flat_map_200 ~test_concat_map

span_200 ~test_span

partition_200 ~test_partition

Tree microbenchmark In taypsi/examples/tree/tree.tp

elem_16 ~elem

prob_16 ~prob

map_16 ~test_map

filter_16 ~test_filter

swap_16 ~swap

path_16 ~path

insert_16 ~insert

bind_8 ~bind

collect_8 ~test_collect

Suite in Fig. 20 In artifact

List taypsi/examples/list

Tree taypsi/examples/tree

List (stress) taypsi/examples/stress-solver

Dating taypsi/examples/dating

Medical Records taypsi/examples/record

Secure Calculator taypsi/examples/calculator

Decision Tree taypsi/examples/dtree

K-means taypsi/examples/kmeans

Miscellaneous taypsi/examples/misc

The compilation pipeline
This section discusses how to inspect the different stages of the compilation pipeline.

We use the tutorial taypsi/examples/tutorial.tp  as a running example, which includes a lot of
comments on how to write Taypsi programs. We compile this file by invoking the Taypsi compiler:



cd taypsi
# The compiler name is still called taype
cabal run taype -- examples/tutorial/tutorial.tp

This command will generate a few files in the examples/tutorial  directory:

tutorial.stage0.tpc : Taypsi programs in administrative normal form (ANF), with type
annotations fully elaborated. However, the typed macros have not been expanded, and the lifting
procedure has not been invoked yet.
tutorial.lifted.tpc : lifted programs generated by the lifting algorithm. These programs still

contain typed macros and type variables, corresponding to the "lifted functions with macros & type
var." block in Fig. 14.
tutorial.constraints.sexp : constraints (Fig. 16) generated by the lifting algorithm, in S-

expression format.
tutorial.solver.input.sexp : input to the constraint solver. The constraints generated in the

previous step have been lowered to formulas in qualifier-free finite domain theory.
tutorial.solver.log : constraint solver log. It prints out the formulas fed to Z3, statistics

information collected by Z3, and each step that the constraint solver algorithm has done.
tutorial.solver.output.sexp : output of the constraint solver. It consists of the type variable

assignments for each lifted function.
tutorial.stage1.tpc : lifted programs with type variables instantiated. These programs still

contain typed macros, corresponding to the "lifted functions with macros" block in Fig. 14.
tutorial.stage2.tpc : final Taypsi programs. All typed macros are fully elaborated, corresponding

to the "well-typed and correct lifted functions" block in Fig. 14.
tutorial.oil : translated OIL programs.
tutorial.ml : translated OCaml programs.

If you want to inspect tutorial.*.tpc  and tutorial.oil  to better understand each step in the pipeline,
it may be helpful to disable optimizations and print out the programs in a more readable form (as opposed to
ANF).

cabal run taype -- --fno-opt --readable examples/tutorial/tutorial.tp

You can learn about other options by running cabal run taype -- --help .

The Taypsi compiler only generates OCaml code as libraries. To make a runnable application, we also have to
write the "frontends" which handle I/O and other non-oblivious business. For example,
examples/tutorial/test_elem.ml , which includes a lot of comments, showcases how we construct a test

case as a runnable executable.

We use the Shake build system to streamline the process of building and testing our examples. For instance,

# Clean the tutorial example
cabal run shake -- clean/tutorial
# Compile the tutorial example, and its test cases
# --verbose tells shake to print out the commands being run
cabal run shake -- --verbose build/tutorial
# Run all tutorial test cases
cabal run shake -- run/tutorial
# Run an individual test case

https://shakebuild.com/


cabal run shake -- run/tutorial/test_elem
# Run a test case with a specific driver (supported drivers are emp and plaintext)
cabal run shake -- run/tutorial/test_elem/plaintext
# See the supported options and targets
cabal run shake -- --help

The implementation of test cases
Each of our test cases is implemented as a test_<name>.ml  file, e.g.,
examples/tutorial/test_elem.ml , which is compiled to an executable. These executables take two

arguments (driver and the participating party), and read inputs from stdin . Sample input is available for the
tutorial example, and we can run these executables through the dune  build system for OCaml.

cd taypsi
# Compile the tutorial example first
cabal run shake -- build/tutorial
cd examples/tutorial
# Run the test case with the plaintext driver.
# This driver only supports one party "trusted".
dune exec ./test_elem.exe plaintext trusted < test_elem.input
# Run the test case with the emp driver (based on EMP toolkit).
# It is a two-party computation with alice and bob.
dune exec ./test_elem.exe emp alice < test_elem.alice.input &
dune exec ./test_elem.exe emp bob < test_elem.bob.input

The output of these executables is the collected performance statistics. For the plaintext driver, the output is
the number of MUXes performed. For the EMP driver, the output is the running time in microseconds.

As we are testing the oblivious ~elem  function, the input specifies the public view, the private list from Alice,
the private integer from Bob, and also the expected result. For example, the file test_elem.alice.input
is:

public: 10
alice: (3 4 7)
bob:
expected: false

See the comments in test_elem.ml  for more details. Note that the value of bob  is absent (which is 6 in
test_elem.bob.input ), since this is the input to the party Alice.

The actual inputs for the test cases are organized in a CSV file, e.g.,
examples/tutorial/test_elem.input.csv . The first line is the header, specifying which party the data

comes from, and then each line specifies a test input. For example, the header of test_elem.input.csv  is
public,alice,bob,expected , while one of the test line is 10,(3 4 7),6,false . The test runner will

launch the test programs for each party and feed them the corresponding input. The output is then collected
into another CSV file, e.g., examples/output/tutorial/test_elem.emp.output.csv . We can invoke the
test runner by:

cabal run shake -- run/tutorial



Installing dependencies and building the source code from scratch
If you want to install the dependencies and build this project on your own machine, you can check out the
README.md  files under taypsi  and taype-drivers  directories. Alternatively, the docker file used to

build this docker image is also available ( ~/Dockerfile  in the docker container or on Zenodo).

Reusability Guide
The Taypsi type checker and compiler ( ~/taypsi ) and the Coq formalization of the Taypsi core calculus
( ~/taypsi-theories ) should be evaluated for reusability.

The tutorial example ( ~/taypsi/examples/tutorial ) contains extensive comments on how to write Taypsi
programs and oblivious types ( ~/taypsi/examples/tutorial/tutorial.tp ), and on how to use the
generated OCaml libraries ( ~/taypsi/examples/tutorial/test_elem.ml ). You can play with this
example by adding new functions, lifting functions against different policies, and implementing test cases for
the generated private functions. You can also follow the larger examples (e.g., dating  and record ) and
implement a new case study.

The Coq formalization has inline documentation ( coqdoc ); you can also generate rendered documentation
by running:

cd taypsi-theories
make html

A pre-rendered, online version of this documentation is also available.

https://ccyip.github.io/oadt/taypsi

