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A Generation of the Transition System to Model-Check

This appendix is not meant to be read as part of the TACAS review process. It
is not required to follow the results presented in the main part of the paper, and
is considered supplementary material. It is made accessible via DOI link over
Zenodo:

https://doi.org/10.5281/zenodo.10004424

This appendix describes details about the generation of the transition system
SEtP , from a C++ behavior planner (BP) and an SMV environment model (EM),
with the intention to facilitate reproducibility of the results. The artifact pub-
lished with the paper (cf. the material on Zenodo) can be used out of the box
to reconstruct the exact outcome presented in the paper, as well as to inspect
the effects of some minor changes to the BP. However, actually deploying the
proposed workflow for further investigation, and, e. g., model-checking a com-
pletely different piece of C++ code, or conducting in-depth changes to the EM
requires more background knowledge, which we present below. We trust that
these explanations, together with the full executable toolchain, and the example
BP code to play around with, can provide an adequate understanding of the
process.

A.1 Datatypes and General Interface Between EM and BP

We assume that the BP is an individual software component implemented in
C++ with an interface to the surrounding software stack, i. e., perception inputs
on one side and output towards actuation on the other. The EM is an additional
component given in SMV, which is part of the MC toolchain only. It simulates
the behavior of the surrounding environment, i. e., road topology, non-ego traffic
participants etc., and incorporates ego behavior in a closed-loop manner, by
providing input signals for the BP, and reacting on its output signals. Thus,
it replaces and mocks the surrounding software stack including sensing of and
reacting to the environment (cf. Fig. 2 in the paper).

We call BP variables used in a C++ sense signals to distinguish them from
variables within a transition system. Signals, as opposed to variables, can have
composite or array types. (nuXmv does support arrays, but only of primitive
types, therefore, we do not use this feature.) Let N be a (semi-formal) set of
all allowed member, type or variable names in C++ (i. e., alpha-numeric strings
which do not start with a number; possibly including :: to fully qualify enum
class definitions or denote namespaces). The set T of (supported) types for
signals in a C++ program is defined by:

– {void, int, f loat, bool} ⊆ T (primitive built-in types);
– ∀i ∈ N, e1, . . . , ei ∈ N : enum[e1, . . . , ei] ∈ T (primitive enum types);
– ∀i ∈ N, t1, . . . , ti ∈ T, n1, . . . , ni ∈ N : ((t1, n1), . . . , (ti, ni)) ∈ T (composite

types given by struct or class definition);
– ∀i ∈ N, t ∈ T : ti ∈ T (arrays of fixed size i).

https://doi.org/10.5281/zenodo.10004424
https://doi.org/10.5281/zenodo.10001764
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Each type t ∈ T is identified by a name from N in C++. When translat-
ing the code towards a transition system for nuXmv, all signals need to be
mapped to variables of one of the available primitive types. We map the prim-
itive C++ types directly to their respective counterparts in nuXmv: bool ⇒
boolean, enum[...]⇒ enum[...], int⇒ int, float⇒ real7. Composite types
are unfolded such that all contained primitive sub-signals are given an ex-
plicit variable in nuXmv. For example, struct X { int i; float f; }; ...;
X x; ... defines a type X=̂((int, i), (float, f)) ∈ T and uses it for some sig-
nal x. In the transition system, this would yield two variables x.i and x.f of
types int and real, respectively. Arrays are unrolled into explicit signals for
each element; these signals are in turn mapped to primitive variables as above.
For example, std::array<X, 3> xarr; would be unrolled into three signals
X xarr___609___; X xarr___619___; X xarr___629___;.

This process yields the set of variables XP of the BP transition system SP .
They can either be internal (i. e., used only for storage of internal state of the
BP) or input variables XI

P ⊆ XP or output variables XO
P ⊆ XP which are “fed”

or “read” by the EM (note that a single composite signal of the BP may induce
internal, input and output variables at once at transition system level). EM
variables (XE) can, in principle, all be used as input or output for the BP. They,
therefore, provide a generic interface which a BP can link to as desired. This
allows to use a single EM for each occurring BP during development, as long as
no fundamentally new interface requirements arise (i. e., as long as the EM is
“suitable” for the BP, see below).

The specific interface between SE and SP is defined as follows. For variable
x ∈ XI

P (x ∈ XO
P ) we denote by IP,E(x) ⊆ XE (OP,E(x) ⊆ XE) the set of

EM variables that can provide the input for x (expect the output given by x
from the BP). IP,E(x) and OP,E(x) should usually either be empty or contain a
single variable, otherwise different variables would be storing the same data. SE

is called suitable for SP iff ∀x ∈ XI
P : IP,E(x) 6= ∅ and ∀x ∈ XO

P : OP,E(x) 6= ∅.
Given SE , SP suitable for each other, the single element contained in IP,E(x)
(OP,E(x)) on EM side is then to be connected to x on BP side for all input and
output variables x. Populating IP,E(x) andOP,E(x) requires semantic knowledge
and needs to be done by a human expert; doing this with preferably little effort
on developers’ side is a central problem to solve. We do this by tagging signals
in the BP with the name of their respective counterpart in the EM. These tags
are given as comments in the C++ code, written behind the definition or usage
of a signal, cf. Tab. 2 and Sec. A.4.

A.2 Interface from the Presented BPs Towards the Presented EM

The interface from a given BP towards the EM is generally defined by how it
is “cut out” of the surrounding software stack. For the actual

〈
1
〉
and the mock

BP
〈
2
〉
discussed in this paper, this is the interface required to be served:

7 Note that this is already an abstraction, because, e. g., int in C++ is not a mathe-
matical integer, and float is not a rational number.
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Table 2: Most important tags used to control the translation of the
BP. There are more tags which can be played around with in the artifact (cf.
vfm-options-planner.txt and planner.cpp in the artifact), but their usage
in the presented setup may not be fully supported.

Tag Effect

(1)
// #vfm-begin
<code>
// #vfm-end

<code> is included into MC.

(2)
// #vfm-cutout-begin
<code>
// #vfm-cutout-end

<code> is excluded from MC, even if within (1).

(3)
// #vfm-gencode-begin
<code>
// #vfm-gencode-end

<code> is entrance point for execution w. r. t. MC.

(4) ...x // #vfm-aka[[ literal(y) ]] Set y ∈ IP,E(x) if x ∈ XI
P or y ∈ OP,E(x) if x ∈ XO

P . If x’s
type is composite, unroll to primitive types and perform
the process to all arising sub-signals. Effectively, the EM
is told to use y to either feed the BP’s input x or to collect
the BP’s output x, respectively. (For composite x, y, all
primitive sub-variables need to exist on EM side; both
inputs and outputs can be contained within one signal,
then; cf. agent.v and agent.a in the mock BP.)

(5) ...x // #vfm-tal[[ a..b ]] Force the target type of an integer BP variable x to be the
nuXmv integer range type a..b instead of int. (Support in
the artifact is limited for this feature; in the mock planner
it is used only to guide the intermediate representation,
while nonetheless mapping to int in the end.) Note that
the AKA and the TAL tags can be used in a fairly lib-
eral syntax which is not completely described here. For
example, in addition to putting them directly behind the
variable name in question, it is allowed for readability to
have a semicolon or comma in between, possibly including
an initialization, e. g., int x = 3; // #vfm-tal.... Also, a,
b and y can be formulas whose syntax is fairly straightfor-
ward, e. g., m+4*n, but also not further detailed here.

(6) // #vfm-inject[[ <formula> ]] Inject (non-standard) code to be used at C++

parsing time, which is not part of MC and, there-
fore, is not itself derived from C++. For example,
// #vfm-inject[[ @f(++) {x} { x = get(x) + 1 } ]]
injects a function ++x for incrementing variable x;
// #vfm-inject[[ @f(ops::nop) {x} { 0 } ]] injects a
“nop” function doing nothing. Now, these functions are rec-
ognized by the parser when used in the C++ code and re-
placed by the respective logic. // #vfm-inject[[ @x = y ]]
can be used to set the value of some variable x to y. Note
that the injects are performed before parsing, not at the
position they occur. Use instead (9) to add a string to
some specific position in the code.

(7) // #vfm-option[[ general_mode <<
<option> ]]

Allows to control the verbosity of the output and the cre-
ation of additional files. Set <option> to either regular or
debug.

(8) // #vfm-option[[ optimization_mode
<< <option> ]]

Optimizes the parsed BP code using a set of simplifica-
tion rules, before converting it into a transition system.
<option> can be all or inner_only (default; optimizes only
code generated during parsing, not the C++ code). (The
third option none will not work in the published setup.)

(9) // #vfm:<code> Adds <code> at the specified position to the C++ code.
Can be used to sneak in code for MC that is ignored by
the actual C++ compiler.

https://doi.org/10.5281/zenodo.10001764
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– (Input) Current ego speed in m/s.
– (Input) “Gap” data, i. e., information about lead vehicles to the front and

rear on ego’s own lane and its (up to) two neighboring lanes, cf. Fig. 3:
(0) gaps[ActionDir::LEFT]: the fast lane next to ego (if present),
(1) gaps[ActionDir::CENTER]: ego’s own lane, and
(2) gaps[ActionDir::RIGHT]: the slow lane next to ego (if present).
Each gap provides the following information for the front and rear vehicle:
• i_agent_[front/rear]: Id of the closest car to the [front/rear] of ego.
• s_dist_[front/rear]: Distance from ego to this car.
• v_[front/rear]: Velocity of this car.
• a_[front/rear]: Acceleration of this car.
• turn_signals_[front/rear]: Direction of the turn signals of this car

(ActionDir::left, ActionDir::right or ActionDir::none).
– (Output) Long. control: desired acceleration a ∈ {−8, . . . , 2} m/s2 – only

〈
2
〉

– (Output) Lat. control:
• Change towards fast lane (Boolean).
• Change towards slow lane (Boolean) – only

〈
2
〉
.

• (Or else follow the current lane.)

A.3 Important Encodings in the EM

Lane Encoding. The EM uses three Boolean variables lane_b1, . . . , lane_b3
to store the lane association (either on a lane or between two lanes) of a car, e. g.,
veh[1].lane_b2 and veh[1].lane_b3 are set to true in Fig. 1 in the paper, but
not veh[1].lane_b1. We use DEFINEs to create helper variables veh[i].lane_1,
veh[i].lane_12, veh[i].lane_2 etc. which track for each possible lateral posi-
tion if a vehicle or ego is in that position or not. Note that this encoding replaced
an earlier version based on an int variable holding the number of a car’s lane,
since it proved to be significantly more efficient this way.

Gap encoding. The published EM contains two versions of tracking which cars
are in the three gaps around ego (cf. Sec. 3.2). One (the first one, chronologically)
uses ASSIGNs as basic structure for implementation in nuXmv. Here, we first find
the car closest to ego (in front or rear), and then fill in all the information of this
car into the respective position in the gap. This version was later replaced by an
INVAR-based version where the value of the closest distance to ego is calculated
first, and the respective car is found subsequently based on which car has this dis-
tance to ego. Being less intuitive, the second version proves more efficient at least
for two and more non-ego cars. It is currently the only one used, but the other
can be triggered by setting THRESHOLD_FOR_USING_ASSIGNS_IN_GAP_STRUCTURE
to a value larger than 0.
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A.4 Enriching the C++ Code with Tags

The BP is developed in C++ and needs to be parsed from plain source code,
largely in a “read-only” manner to minimize negative impact on development
speed. In the ADAS project context, we found it acceptable to enrich the code
with tags given as comments (cf. Tab. 2), as long as the “every-day” effort for
their maintenance is negligible (cf. Sec. 4.3 for a discussion on this topic). The
tags need to be provided with a background knowledge about the EM, but they
pose mostly a one-time effort, as argued in Sec. 3.1. Most importantly, the tags
specify

〈
1
〉
which parts of the code are supposed to be model-checked at all, using

the // #vfm-begin. . . // #vfm-end tags;
〈
2
〉
where the entry point is, using the

// #vfm-gencode-begin . . . // #vfm-gencode-end tags; and
〈
3
〉
how the C++

signals connect to EM variables, using the // #vfm-aka[[ literal(...) ]]
tag. For example,

int velocity // #vfm-aka[[ literal(ego.v) ]]

would connect the BP signal velocity to the EM variable ego.v. Formally,
this would result in ego.v ∈ IP,E(velocity) if velocity ∈ XI

P or ego.v ∈
OP,E(velocity) if velocity ∈ XO

P . Connecting a full composite signal, say of
type Agent=̂((int, v), (int, a)) ∈ T, with v being input and a output for the BP,
to respective ego... variables, can be accomplished by:

Agent agent // #vfm-aka[[ literal(ego) ]]

This would trigger unrolling the signal to primitive sub-signals and connect each
of them to variables of the respective names in the EM, assuming they exist,
i. e., ego.v ∈ IP,E(agent.v) and ego.a ∈ OP,E(agent.a).

A.5 Parsing the C++ Code

For C++ processing we do not use a full C++ compiler or abstract syntax tree
generator like clang, but a lightweight custom parser which can handle a sup-
ported subset of the C++ syntax.8 It can handle all the usual program structures

8 The main reasoning for this decision was the observation that MC can be applied
to specific sub-parts of a software stack only, and using a custom tool allows to

〈
1
〉

more freely specify these sub-parts,
〈
2
〉
react more specifically on errors such as

unsupported code blocks (which are probably unavoidable when model-checking a
language as rich as C++), and

〈
3
〉
provide a more profound analysis of how code is

involved in violations to the developers. There are also good reasons to use a full
official C++ parser, though, and discussions are ongoing whether or not to switch
in future. Particularly, encountering unforeseen unsupported syntax during devel-
opment is an incalculable risk which could require time-consuming amendments to
the parser. (Note that this could still happen, in different flavors, when using a full
parser.) Probably the most considerable limitation is that it is currently not possible
to follow calls to member functions (including constructors/destructors) relative to
an object, as well as using custom operators on composite types. Also, “hard-to-
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within functions, including calls to other free functions (in the published arti-
fact leaving out loops and recursion, for minor technical reasons), struct and
class definitions including inheritance, enum and enum class definitions, vari-
able and constant declarations and definitions, pointers etc. We do not check for
syntactical correctness, but assume this is done separately by a regular compiler.

The files containing the C++ code to check are listed in an additional text
file (vfm-includes-planner.txt, in the artifact) and need to be specified in
the order according to their usage (e. g., a struct definition needs to appear
before it being used). In future, this could be avoided by following the C++

“include”s. The thus specified parts of the BP code are pasted together and
build up the snippet to model-check. In the artifact, we additionally include
a file called vfm-options-planner.txt containing options for the parser, cf.
Tab. 2 in the appendix for an overview of what the options do.

A.6 Generation of SP and SEtP

For the generation of the intermediate representation, (4) in Fig. 1, the C++ BP
code is first parsed and enriched by the interface information from (2) and (3).
It is then further processed by inlining function calls, unfolding composite and
array types, and finally establishing the interface between EM and BP. The
details of this process can be observed in the published artifact.

A noteworthy peculiarity is the unfolding of arrays since it is fairly elaborate,
while a simpler solution does not seem to be at hand for now. Since we use
primitive variables to emulate arrays, it is not straight-forward to access an
array element by using a non-constant index. As mentioned above, the access to
an array arr at the constant position 0, arr[0], is emulated by introducing a
variable arr___609___ which holds the value from arr at position 0. However,
this approach is obviously not directly generalizable to a variable array access,
like arr[i], since the element to access depends on the value of i. Having to
deal, in practice, with fairly small arrays, we decided to introduce a variable
arr___6i9___ and some additional logic at the access position to emulate the
correct behavior. Assume a read access on an array with, say, three elements:

if (arr[i] > 4) {
// do something

}

We would then introduce the additional logic as follows:

parse” C++ stuff like macros, templates, “auto” type deduction, and probably many
more, are currently not supported. Pointers are supported in a “reference” way, i. e.,
there is no support for nullptr or pointer arithmetic. On the other hand, the lim-
ited syntax has proven sufficient for so far 5 use cases tried out in the scope of the
ADAS project (including the one presented here), with so far none of interest being
unparsable. In some cases minor reformulations of the BP code were necessary.
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if (i == 0) {
arr___6i9___ = arr___609___;

} else if (i == 1) {
arr___6i9___ = arr___619___;

} else if (i == 2) {
arr___6i9___ = arr___629___;

}

if (arr___6i9___ > 4) {
// do something

}

In the context of a write access, such as this:

arr[i] = 4;

We would introduce this logic, replacing the original line:

if (i == 0) {
arr___609___ = 4;

} else if (i == 1) {
arr___619___ = 4;

} else if (i == 2) {
arr___629___ = 4;

}

A nested array access with variables is resolved by first flattening the nested
access via usage of temporary variables, for example, this code:

var = x[y[z[i.var[m]]. var[j[k]]]. var].var;

Would (essentially) be translated into this code, where the ti are new temporary
variables, to which then the above process for flat array access can be applied:

t2 = i.var[m];
t3 = j[k];
t1 = z[t2].var[t3];
t0 = y[t1].var;
var = x[t0].var;

This approach is only suitable for “small” arrays; for “larger” ones, a better
solution might be to keep a dedicated variable for the specific access updated at
all time (though write access still needs to be handled separately). We did not
investigate where the threshold lies. The arrays we deal with in the real code
of the BP so far comprise no more than five elements, which we found to be
sufficiently covered by the suggested solution.

The completed intermediate representation of the BP is translated into K2
language (planner.k2 in Fig. 2; cf. also Alg. 3 for an example translation from
actual C++ code), and from there into SMV (planner.k2.smv). It is then com-
posed with the EM, by creating an additional integration file in SMV (5), which
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is depicted in Alg. 2. It constitutes the full transition system SEtP , and, thus,
the final model-checkable code which can be processed by nuXmv. Specifications
can be given in this file, too. The full workflow actually contains expressing
specifications at the C++ BP level using tags, and automatically inserting them
from there into the integration file (which has some benefits, such as more cus-
tomized error messages if the specifications do not match the code). However,
this functionality is not available in the artifact.
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Algorithm 1: Major part of the mock behavior planner. Preamble and
main function omitted for space reasons. static_casts removed to increase
readability. Lines tagged “K2” indicate the logic which is shown in the K2 ex-
ample in Alg. 3. Full compilable version available as supplementary material.

[...] // Includes etc.
// #vfm -begin
enum class ActionDir { LEFT = 0, CENTER = 1, RIGHT = 2, NONE = 3 };

struct Gap {
int i_agent_front {-1}; // #vfm -tal [[ -1..2]] // The type abstraction layer (TAL) collects information ...
int s_dist_front {256}; // #vfm -tal [[0..256]] // ... about the model checker types , initial values etc.
int a_front {0}; // #vfm -tal [[ -8..6]]
int i_agent_rear {-1}; // #vfm -tal [[ -1..2]]
int s_dist_rear {256}; // #vfm -tal [[0..256]]
int v_rear {0}; // #vfm -tal [[0..70]]
ActionDir turn_signals_front{ActionDir ::NONE}; // TAL types created automatically for enum , bool , etc.
static constexpr int i_FREE_LANE = -1; // Constants are replaced directly in the code.

};

struct Agent {
int v{}; // #vfm -tal [[0..34]]
int a{}; // #vfm -tal [[ -8..6]]
bool has_close_vehicle_on_left_left_lane {};
bool has_close_vehicle_on_right_right_lane {};
bool flCond_full {}; // Lane change towards the "fast lane" (fl), i.e., left lane in our case.
bool slCond_full {}; // Lane change towards the "slow lane" (sl), i.e., right lane in our case.
std::array <Gap , 3> gaps;

};

void plan( // Entrance function for Model Checking , indicated by the "vfm -gencode" tag below.
Agent& agent // #vfm -aka[[ literal(ego) ]] // Map variable name "agent" to "ego" in EnvModel
) {
// #vfm -gencode -begin[[ condition=false ]]
static constexpr int MIN_DIST = 15;
agent.flCond_full = false; // Fast lane condition. // K2
agent.slCond_full = false; // Slow lane condition. // K2

// K2
if (agent.gaps[ActionDir :: CENTER ]. s_dist_front < MIN_DIST // K2

&& agent.gaps[ActionDir ::LEFT]. s_dist_rear > MIN_DIST // K2
&& agent.gaps[ActionDir ::LEFT]. s_dist_front > MIN_DIST // K2
&& agent.v < agent.gaps[ActionDir ::LEFT]. v_front // K2
&& agent.v > agent.gaps[ActionDir :: CENTER ]. v_front) { // K2

agent.flCond_full = true; // K2
} else if (agent.gaps[ActionDir :: CENTER ]. s_dist_front < MIN_DIST // K2

&& agent.gaps[ActionDir ::RIGHT ]. s_dist_front > MIN_DIST // K2
&& agent.gaps[ActionDir ::RIGHT ]. s_dist_rear > MIN_DIST // K2
&& agent.v < agent.gaps[ActionDir :: RIGHT]. v_front) { // K2

agent.slCond_full = true; // K2
} // K2

bool ego_pressured_from_ahead_on_left_lane = agent.gaps[ActionDir ::LEFT]. turn_signals_front ==
ActionDir :: RIGHT;

bool ego_pressured_from_ahead_on_right_lane = agent.gaps[ActionDir :: RIGHT]. turn_signals_front ==
ActionDir ::LEFT;

int ego_following_dist = std::max(2 * agent.v, 5/*0*/); // #vfm -tal [[5..78]]
int allowed_ego_a_front_center = std::max(std::min(agent.gaps[ActionDir :: CENTER ]. s_dist_front +

agent.gaps[ActionDir :: CENTER ]. v_front + agent.gaps[ActionDir :: CENTER ]. a_front - agent.v -
ego_following_dist , 2), -8);

int allowed_ego_a_front_right = std::max(std::min(agent.gaps[ActionDir ::RIGHT ]. s_dist_front +
agent.gaps[ActionDir :: RIGHT]. v_front + agent.gaps[ActionDir :: RIGHT]. a_front - agent.v -
ego_following_dist , 2), -8);

int allowed_ego_a_front_left = std::max(std::min(agent.gaps[ActionDir ::LEFT]. s_dist_front +
agent.gaps[ActionDir ::LEFT]. v_front + agent.gaps[ActionDir ::LEFT]. a_front - agent.v -
ego_following_dist , 2), -8);

int acceleration = std::min(allowed_ego_a_front_center , 2);

if (agent.gaps[ActionDir :: CENTER ]. s_dist_front < 10
|| (agent.gaps[ActionDir ::LEFT]. s_dist_front < 10 && ego_pressured_from_ahead_on_left_lane)
|| (agent.gaps[ActionDir ::RIGHT]. s_dist_front < 10 && ego_pressured_from_ahead_on_right_lane)) {
acceleration = std::max(-agent.v, -8);

} else {
if (ego_pressured_from_ahead_on_right_lane) {

acceleration = std::min(acceleration , allowed_ego_a_front_right);
}
if (ego_pressured_from_ahead_on_left_lane) {

acceleration = std::min(acceleration , allowed_ego_a_front_left);
}

}

agent.a = acceleration;
// #vfm -gencode -end

}
// #vfm -end

https://doi.org/10.5281/zenodo.10004424
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Algorithm 2: Transition system in SMV. The SMV code indicates how the
BP can be integrated with an EM, both given in SMV (planner.k2.smv and
envmodel.smv). (Square-bracket array notation ...[i] used for readability, cf.
Sec. A.1.)
#include "planner.k2.smv" -- Include SMV version of BP, generated from C++.
#include "envmodel.smv" -- Include EM.

MODULE Globals
VAR
"loc" : boolean;

MODULE main
VAR

globals : Globals;
env : EnvModel;
planner : "plan"(globals , -- ’Call ’ to plan function of BP.

env.ego.gaps [0]. s_dist_front ,
env.ego.gaps [0]. s_dist_rear ,
env.ego.gaps [0]. v_front ,
env.ego.gaps [1]. s_dist_front ,
env.ego.gaps [1]. v_front ,
env.ego.gaps [2]. s_dist_front ,
env.ego.gaps [2]. s_dist_rear ,
env.ego.gaps [2]. v_front ,
env.ego.v);

INIT !env.ego.flCond_full; -- Fast lane condition , set initially to FALSE.
INIT !env.ego.slCond_full; -- Slow lane condition , set initially to FALSE.

TRANS env.ego.flCond_full = planner ." agent.flCond_full "; -- Take over BP output.
TRANS env.ego.slCond_full = planner ." agent.slCond_full "; -- Take over BP output.

INVARSPEC !env.blamable_crash; -- Example INVAR specification to check.
-- LTLSPEC G !env.blamable_crash; -- (Same specification expressed as LTL.)
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Algorithm 3: Program in K2. The K2 code corresponds to the logic excerpt
of the BP code tagged “K2” in Alg. 1. It is automatically derived from C++, and
further translated into SMV by our toolchain (planner.cpp ⇒ planner.k2 ⇒
planner.k2.smv). (Square-bracket array notation ...[i] used for readability,
cf. Sec. A.1.)

(entry plan) ;; Function ’plan ’ is the main function.
(globals (! (var loc bool) :location-var true))
(function plan ((! (var |agent.gaps [0]. s_dist_front| int) :input-var true)

(! (var |agent.gaps [0]. s_dist_rear| int) :input-var true)
(! (var |agent.gaps [0]. v_front| int) :input-var true)
(! (var |agent.gaps [1]. s_dist_front| int) :input-var true)
(! (var |agent.gaps [1]. v_front| int) :input-var true)
(! (var |agent.gaps [2]. s_dist_front| int) :input-var true)
(! (var |agent.gaps [2]. s_dist_rear| int) :input-var true)
(! (var |agent.gaps [2]. v_front| int) :input-var true)
(! (var |agent.v| int) :input-var true))

(return (var |agent.flCond_full| bool)
(var |agent.slCond_full| bool)) ;; Interface of ’plan ’ from C++.

(locals)

(seq ;; IF/ELSE logic from C++ expressed with K2 language elements.
(assign |agent.flCond_full| false)
(assign |agent.slCond_full| false)
(condjump (not (and (and (and (and (lt |agent.gaps [1]. s_dist_front| (const

15 int)) (gt |agent.gaps [0]. s_dist_rear| (const 15 int))) (gt
|agent.gaps [0]. s_dist_front| (const 15 int))) (lt |agent.v|
|agent.gaps [0]. v_front |)) (gt |agent.v| |agent.gaps [1]. v_front |)))
(label else3))

(assign |agent.flCond_full| true)
(jump (label endif3))
(label else3)
(condjump (not (and (and (and (lt |agent.gaps [1]. s_dist_front| (const 15

int)) (gt |agent.gaps [2]. s_dist_front| (const 15 int))) (gt
|agent.gaps [2]. s_dist_rear| (const 15 int))) (lt |agent.v|
|agent.gaps [2]. v_front |))) (label else4))

(assign |agent.slCond_full| true)
(jump (label endif4))
(label else4)
(label endif4)
(label endif3)))
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