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Which  is  the  Better  Entropy Expression for 
Speech  Processing: -S iog S’ or log S? 

RODNEY w. JOHNSON AND JOHN E. SHORE, SENIOR  MEMBER, IEEE 

Absstrucj-In maximum  entropy  spectral analysis (MESA), one maxi- 
mizes  the  integral of logS(f),  where S(f) is a  power  spectrum.  The re- 
sulting  spectral  estimate, which is equivalent to that  obtained by linear 
prediction  and  other  methods, is popular in speech  processing  appli- 
cations. An alternative  expression, -S(f)logS(f), is used  in  optical 
processing and elsewhere. This  paper  considers  whether  the  alternative 
expression  leads to spectral  estimates  useful in speech processing. We 
investigate the  question  both  theoretically  and empirically. The  theo- 
retical  investigation  is  based on generalizations of the two estimates-the 
generalizations  take  into  account  prior  estimates of the  unknown power 
spectrum. I t  is  shown  that  both  estimates  result  from  applying  a gener- 
alized  version of the  principle of maximum  entropy,  but  they  differ 
concerning  the  quantities  that  are  treated as random variables. The  em- 
pirical  investigation  isbased on speech  synthesized using the  different 
spectral  estimates.  Although  both  estimates  lead  to  intelligible  speech, 
speech baskd on  the MESA estimate is qualitatively  superior.‘ 

M 
I. INTRODUCTION 

ANY spectral  analysis  techniques  start  with  measured 
values of the autocorrelation  function R(t)  of  a signal 

at a  set  of  points.  One class of  techniques  proceeds  by  extrap- 
olating R(t)  to reasonable values at  the  unknown  points.  The 
extrapolated  autocorrelation  function is equivalent to a  power 
spectrum  estimate, since the power  spectrum S(f) of  a  band- 
limited  stationary  process  is  related to its  autocorrelation  func- 
tion  by a  Fourier  transform. 

Perhaps’  the best known  extrapolation  technique is  Burg’s 
maximum  entropy spectral  analysis (MESA) [ 11 , [2] , in which 
the  power  spectrum S(f) is estimated  by  maximizing 

subject to  the constraints 

R, = R(t,.) = 1: S(nexp(2nitrndf (2) 

where W is the  bandwidth  and  where R(t,), r = 1,   2 ,  . . , M ,  
are  known values of  the autocorrelation  function.  The MESA 
estimate of S(f) has  the well-known  all-pole,  autoregressive,  or 
linear  prediction  form,  which  can also be derived by  various 
equivalent formulations [3] -[6].  It  has become one  of  the 

Manuscript  received February  24,  1983; revised July  29,  1983. 
The  authors  are  with  the  Computer Science and  Systems  Branch, 

Information  Technology Division, Naval Research Laboratory, Washing- 
ton, DC 20375. 

most widely  used  spectral analysis techniques  in  geophysical 
data processing [7] -[9]  and  speech  processing  [4] , [ lo]  . 

“Maximum entropy spectral analysis” is also used  in image 
processing.  In that  field, howeve’r, the phrase  refers not  only 
to successful estimates  produced  by  maxfiizing( 1) [ 113 - [ 131 , 
but also to estimates  produced  by  maximizing [ 141 -[ 161 

- lW S(f)logS(f)df. (3) 

Spectral  estimates based on (3) have  also been  studied  for 
ARMA and  meteorological  time series [ 171 , [ 181 . Although 
there is controversy  in  the image  processing literature  about 
whether  (1)  or (3) yields better  estimates [ 161 , [ 191 , the 
success  of (3) in image processing raises the question  of  whether 
(3) might also be  useful in speech processing. We consider the 
question  in  this  paper,  and  we  attempt to answer  it. As part of 
our investigation, we also  derive a  generalization  of the esti- 
mate  produced  by  maximizing (3), one  that  takes  into  account 
a  prior  estimate  of  the  unknown  power  spectrum. 

Our’paper is organized as follows.  In  Section I1  we  review 
derivations of the  forms (1) and  (3), and we  discuss theoretical 
arguments for each  of them. We then  turn  to an  empirical 
comparison.  Our  approach is discussed in  Section I11 and  the 
results  are  summarized in  Section IV. A general  discussion 
then follows in  Section V. 

11. BACKGROUND 

In this  section we  give  brief derivations  of the  spectral esti- 
mators  that result from maximizing (1) and (3). We show that 
both  estimators ‘result from applying the principle of minimum 
cross-entropy [20] -[24] , a  generalized form  of  the principle 
of  maximum  entropy  [25]  -.[27].  However,  they  differ  con- 
cerning the  quantities  that are treated as random variables. In 
the case of (l), the  underlying  random variables are the coeffi- 
cients of a  Fourier series model  and  the  spectral powers S(f) 
are  expected values. In the case of (3), the spectral  power 
S(f)-suitably normalized-is treated as  a  probability  density 
and the underlying  random variable is the  frequency. 

Cross-entropy  minimization  estimates  an  unknown  proba- 
bility  density qt(x) from a  prior  estimate p ( x )  and  known  ex- 
pected values 

Jq t (x> dx = Fr (4) 
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(r = 0, . . , M). The  estimate is obtained by minimizing the 
cross-entropy 

subject to  the constraints  (4)  and 

s q(x)dx = 1. 

The resulting  estimate of q t  (x) has  the  form  [20] , [22] , [28] 

where  the p, and h are Lagrangian multipliers  determined  by 
(4) and (6).  Cross-entropy  minimization  reduces to entropy 
maximization  when the  prior p(x) is uniform. 

A.  The -log S Form 
In deriving  MESA,  Burg's approach was to extrapolate R(t)  

in a  manner  that maximizes the  entropy  of  the  underlying 
stochastic  process [I]  , [2] . This is an  application  of  the  prin- 
ciple of maximum  entropy  [24]  -[27] . The expression (1) is 
the  entropy gain in  a  stochastic  process  that is passed through 
a  linear  filter that  converts  white noise to a  process with 
power  spectral  density S ( f )  (see [9, pp.  412-4141,  [29,  pp. 
93-95],  [30, p.  2431 ). This suggests that  the process entropy 
can  be  maximized by maximizing  (1)  subject to  the constraints 
(2). The result is 

U' 

where z = exp(-2nif At). This is the familiar  MESA [2] or 
linear  prediction  coding (LPC) [4]  estimate.  Such  derivations 
of (8) have  several mathematical  and  logical  drawbacks  [31] . 
For  example,  entropy is mathematically  ill-behaved  for  con- 
tinuous densities [32,  pp.  31-32]. A derivation  of MESA 
without these  drawbacks arises as  a special  case of  minimum 
cross-entropy  spectral  analysis (MCESA) [31] , and also helps 
to expose  the difference  underlying the choice  of  maximizing 

Like MESA,  MCESA is an  information-theoretic  extrapolation 
of R(t),  but it  differs  from MESA in  that  it  accounts  for a 
prior  estimate  of S(f) [or R(t)] . In deriving  MCESA,  we lose 
no generality by considering  time-domain signals of  the  form 

(1) or (3). 

where ak and bk are  random variables and where the& are  fre- 
quencies [31],  [33, p.  361.  Since  the power at  frequencyfk 
is Xk  (a i  t b i ) ,  we describe the  random process by a joint 
probability  density qt  (x),  where x = x1 , x2, . . . , X N .  

The spectral  power at frequencyfk ofqt(x)  is the  expectation 

Let Pk be  a  prior  estimate of S ,  . Then it is  appropriate to assume 

N 1  
p(x)= -exp 

k = l  pk 

as form  for  the  prior  estimate  of  the  probability density q t  [3 11 . 
Suppose  that  one  obtains new information  about q t  in the 
form of M t 1 values of  the  autocorrelation  function R (t,), 

- N  

k = l  

where r = 0, . . * , M and to = 0. Using (10)  one  can  write  this 
in  the  form  of  expected value constraints (4) on q t  (x). Given 
the  prior (1 1) and these  constraints,  one  can  compute  a mini- 
mum  cross-entropy  posterior  estimate  q(x) of the  form (8). 
The  corresponding  posterior  estimate of the power  spectrum 
is just Sk = J dr Xkq(x),  which  becomes 

where  the & are  chosen so that  the Sk satisfy the  autocorre- 
lation  constraints  (12)  (with s k  in place of s,$) [31] . If one 
assumes  a  flat  prior  estimate  of the  prior  spectrum, Pk = P, and 
equal spacing  of the  autocorrelation lags, tr = rat, (13) can  be 
written  in  the  form (8) [31] . 

The  posterior  probability  density can be expressed  in  terms 
of  the  posterior spectral  power  estimates  (1  3) 

Computing  the normalized  differential entropy  of  the pos- 
terior  power  estimates (1 3) yields 

- Lj-q(x)log q(x)dx = 1 + - 1 N  
N logSk. 

k = l  

Except  for  the  constant,  which  has  no  effect  on  maximization, 
the right-hand side  of (1 5 )  is the discrete form  of (1). Maximi- 
zing (1 5 )  subject to  the autocorrelation  constraints  leads again 
to (8). 

B. The -S log S Form 
In this case  we treat  the  unknown power  spectrum variables 

S,$ as probabilities,  which is mathematically  reasonable  pro- 
vided that  the power  spectrum is normalized so that x,$,$ = 1. 
The  known  autocorrelations are then expressed as expec- 
tations  of  the  probability  distribution Ski, k = 1, . . . , N ,  as 
in  (1 2). 

In deriving the resulting  power  spectrum  estimate, we  again 
proceed  with  the general  case  involving a  prior  estimate  and 
cross-entropy  minimization.  Since we  assumed a  known  auto- 
correlation  for lag to = 0, &$ = k R o  is known.  Let pk be  a 
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prior  estimate  of Skf , and  let q t  = {sl, t t  4 2 ,  . . * , 4$ } and- 
p = (pl  , p z  , . . . , pN } be  probability  distributions  defined  by 
normalizing  the  power  spectra S2 and  Pk, i.e., q,$ = (2S,$)/R0 
and Pk = Pk/T,  where  T = &Pk. We rewrite  the  autocorrela- 
tion  constraints  (12) as expectations  of qP: 

and we obtain  a  posterior  estimate 4 of q t  by minimizing the 
cross-entropy H ( q ,  p )  subject to  the  constraints  (16)  (with 4k 
in  place  of 42). Note  that  the  constraint  for r = 0 reduces to 
the  normalization  constraint &4k = 1.  The result is 

- 

where  the p,. are chosen  to satisfy the constraints. We define 
the  posterior  power  spectrum  estimate as Sk = y.oqk,  which 
satisfies  (12). This yields 

1 

where  the g. are e  ual to  the pr in (17)  except  for cpo , which 
satisfies cpo = po t y10g(R0/2T). Since 9 

N 
s k  1%- sk - - 1  h R O H ( q , p )  %RO l o g z  

RO 
k = l  pk 

it  follows  that  minimizing H ( q ,  p )  is  equivalent to minimizing 

so that  minimizing  (19)  subject  to  the  constraints  (12)  yields 
(18). For  a  flat  prior  estimate Pk = P,  minimizing (19) is equi- 
valent to maximizing 

which  is  just  the discrete  form of (3). 

C. Discussion 
Both  estimates  of S,$ proceed  from  a  prior  estimate Pk and 

known  autocorrelations R,.. When the  coefficients  in  an  under- 
lying  Fourier series model  are  treated as random variables and 
the S i  are treated as expectations,  cross-entropy  minimization 
leads  to  the  estimate  (13).  For  the case of  a flat  prior  estimate 
P,  = P, (1 3) follows  from  maximizing  &log&. When the S$ 
are treated as probabilities rather  than  expectations, cross- 
entropy  minimization  leads  to  the  estimate (18), which also 
follows  from  maximizing  -XkSklogSk in the case of  a flat 
prior. Because the result  in this case arises from  performing 
maximum  entropy on a  probability  distribution  defined  by 
normalizing  a  power  spectrum,  we  refer to  it as maximum  en- 

tropy  normalized spectral analysis (MENSA).’ The Lagrangian 
multipliers P, in (1 3) and qr in (1 8) are chosen  in both cases so 
that  the  estimates agree with  the  known  autocorrelations 

N 
Rr = 2sk cos(2~t,fk) (r = 0, 1, ‘ * ’ , M ) .  (20) 

?€=1 

Given one  of  the spectral  estimates &,  k = 1 , .  . 1 , N ,  substitu- 
tion of an arbitrary lag t for tr in (20)  defines  the  corresponding 
extrapolation  of  the  known  autocorrelations. 

Which of  the  two  estimates  (13)  and (1 8)  is better?  In  our 
opinion, if one has a good  physical  model  for  some variable of 
interest,  and if the  model can be incorporated  into  the deriva- 
tion  of an estimate  for  that variable, it makes sense to  do so. 
Because such  estimates can exploit  more  information  than  esti- 
mates derived without  an  underlying  model,  estimates based 
on underlying  models  should be better. Since (13)  exploits 
an underlying  Fourier series model-well  known to  be  a  useful 
model  for  time series-this point  favors  (13). Also, since (13) 
yields  all-pole  models in the  important case of flat  priors, since 
all-pole  spectra  result from passing a broad-band signal through 
a  multilayered  transmission  medium,  and since the  human  vo- 
cal tract is a  multilayered  transmission  medium,  it  follows  that 
(13)  should  be  appropriate  for speech processing. 

On the  other  hand,  arguments  for  (18) also have merit.  For 
example, in arguing for  the  maximization  of - &&logsk rather 
than  &log&, Skilling [ 161 points  out  that  the  goal is to esti- 
mate  the  power  spectrum  itself,  not  the  Fourier  amplitudes in 
an  underlying  model like (9), so that  a  more direct and  better 
estimate  should  result  from  treating  the  unknown  power  spec- 
trum variables $ as probabilities.  Mathematically,  this is 
reasonable  provided  that  the  power  spectrum is normalized so 
that &!$ = 1. Furthermore,  speech  spectra are known to 
have occasional  zeros,  and  the  form  of  (18)  shows  that small 
values for s k  can arise from  moderate values of  the  trigono- 
metric  polynomial in the  exponent.  The MESA estimate is 
well known  to have difficulty  estimating  zeros. An additional 
reason to consider  (18) seriously is its success in other fields, 
which we have already  mentioned.  Furthermore, spectral  esti- 
mates based on  the  minimization of (19) have  been reported 
recently in [34]  and  a first-order approximation  of  the  estimate 
(18) appears  to be equivalent  to  the  PDFT  estimator  intro- 
duced  in [35],  [36]. 

These  arguments  do  not clearly favor  one  estimator or the 
other. While the success of  (13) in  speech processing is strong 
evidence,  it  seems clear that  the  potential  of (1 8) will continue 
to be raised, so that an empirical  evaluation is necessary.  This 
we attempt  to do  in the  remainder  of  this  paper. 

111. EXPERIMENTAL APPROACH 
This  section  contains basic definitions, a discussion  of  our 

experimental  approach,  and  a discussion of  various  computa- 
tional issues. Our general approach is to process various  speech 

This somewhat  contrived. acronym  has  the  additional  virtue of 
being the  Latin word for “table,” which is the source of the Spanish 
word for table (mesa). 
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signals in order to compare  measured  power  spectra and  auto- 
correlations  with MESA and MENSA estimates. We also syn- 
thesize  speech using both MESA and MENSA power  spectrum 
estimates  and  perform  qualitative  comparisons  of  the  results. 

A .  Definitions and Notation 
Let y = Cy1, y z  , . . . , yt } comprise L time-domain  samples, 

equispaced at intervals  of At,  from  one  “frame”  of speech data. 
From y , we compute  estimated  autocorrelations R E {Ro , R 1 , 
. . , RL - } by  means  of 

L - r  
R, =- C Y i Y i + r .  (2 1) 

L i =  1 

This is a biased estimate but it guarantees  positive-definite- 
ness. Let Q E {Q,  , Q 2 , .  . f , QN } be the power  spectrum 
defined  by  the discrete  Fourier  transform  of the measured 
autocorrelations, 

L - 1  

Qk =Ro + 2RrCOS(2ntrfk). (22) 
r =  1 

As the N discrete  frequencies we take fk  = (k  - +)/(2NAt). 
Let S {Si, S 2 ,  . . . , S, } be  the  power  spectrum  estimate 

obtained  from (13) using a  flat  prior  estimate  and  the  first 
M + 1  autocorrelations R, from  (2 1). S is the standard MESA 
or LPC estimate  of  the power  spectrum-its  usual, continuous- 
frequency  form is given by (8). Let S* = {ST:, Si, . . . , % } 
be.the MENSA power  spectrum  estimate  obtained  from  (18) 
using the same  flat  prior and  the same M t 1 autocorrelations. 
Finally,  let A and A* be the  extrapolated  autocorrelations  for 
all L lags t, = rAt, r = 0 , .  . . , L - 1,  obtained  from  (20) using 
S and S*, respectively. Note  that A, and&  match  the actual 
autocorrelations  (21)  for r = 0, . . * , M .  For r >M,  however, 
they are  in general different  from  each  other  and  from R,. 
For  convenience, we summarize the  notation as follows: 

y vector  of L time-domain samples from  one  speech frame 
R the measured  autocorrelations  for L lags computed 

Q “actual”  power  spectrum  defined  by  a  Fourier  trans- 

S MESA or LPC estimate  of  power  spectrum  from  first 

S* MENSA estimate of power  spectrum  from  first M + 1 

A MESA or LPC autocorrelation  extrapolation based on S 

from y 

form  of R 

M + 1 lags of R 

lags of R 

A* MENSA autocorrelation  extrapolation based on S*. 
For  the  work  reported  here, we used L = 180 and M =  8,10,25. 
When  we refer to more  than  one speech frame, we add a  sub- 
script to the foregoing  definitions. 

B. What and How to Compare 
In order to compare MESA and MENSA,  we did  three  things. 

1) For a  variety  of  representative  speech  frames, we plotted 
A , A * ,  and R and  compared  them.  2)  For  the same frames, we 
plotted S,   S* ,  and Q and  compared  them. 3) We compared 
speech  synthesized two different  ways: we  used identical  pitch 

and voicing decisions, and  either S or S* for  spectral shape. 
All of  these  comparisons  were  qualitative. 

What about  quantitative  comparisons?  For  some  distortion 
measure d, one  could  compare  d(Q, S) with d(Q,  S*),  but 
what should d be?  One distortion measure  could  yield d(Q, S) 
< d(Q,  S*) while another  could yield the reverse inequality. 
One  reasonable  choice  is the Itakura-Saito  distortion dIs [37] , 

which is known  to  be useful in  speech processing. But,  in  the 
notation  of Section 11, the Itakura-Saito distortion dIs (S, P) 
is  just  the  asymptotic  cross-entropy N ( q ,  p)-derivations of 
MESA spectra  by  cross-entropy  minimization  are  equivalent to 
derivations  by  minimization  of dIs [ lo]  , [31] , [38] . Not 
only  does S minimize dIs  (S, P) subject to  the constraints, but 
S is the spectrum  of  the  form (13) that minimizes dIs(Q, S )  
[37],  [39]. Use of dIs  might  therefore involve an  intrinsic 
bias in favor  of MESA. We therefore  consider  a  distortion  mea- 
sure that bears  a  relation to MENSA analogous to  that of d,, 
to MESA. Define the  “cross-entropy  distortion” dcE (Q, S )  to 
be  the cross entropy  of  the  probability  distributions  obtained 
by normalizing Q and S 

j =  1 j =  1 

Then S* minimizes dCE(S*, P) subject to constraints  just as 
S minimizes dIs(S, P) subject to constraints. Moreover, S* 
is one  of  the  spectra  of  the  form (2 1) that minimizes kE (Q, S*) 
[22] . We also use  a  third distortionmeasure,  the gain-optimized 
Itakura-Saito distortion  defined  by dGo (Q,S) = min, dIs  
(gQ, S ) ,  where g ranges  over  positive constant scale factors 
[39] . This is closely  related to dIs but, like dcE, is insensitive 
to changes in  the gains of the  two spectra.  It can be computed 
from  the  formula 

C. Numerical Issues and Procedures 
The MENSA estimate S* can  be  produced  by  an  algorithm 

that determines  minimum  cross-entropy  probability  distri- 
butions given arbitrary  priors  and  arbitrary  constraints [22], 
[40]. For  the  work  reported  here, we  used a Fortran version 
of the Newton-Raphson  based APL program  described  in [40] . 
The resulting  spectrum S* may  be thought of as a  discrete- 
frequency  approximation  to a continuous power spectrum. 
Clearly, the accuracy  of the discrete-frequency  approximation 
will depend on  the  number  of  frequency  points N .  

As for S, a variety  of methods are available. Standard MESA 
or LPC methods  can  produce  the a, used  in (8) or  any  of  the 
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equivalent  sets of parameters  such as reflection  coefficients. 
The result is a  continuous  representation of the  spectrum esti- 
mate  thai can then  be evaluated at  the frequenciesfk  in  order 
to yield S. This is more  accurate  than  methods  that  compute 
discrete-frequency  approximatidns, but  to use it might intro- 
duce  a  misleading  source of differences between S and S*. We 
therefore  chose to  compute  the S in  a  manner  analogous to 
the  computation of S*. In  particular, we used  a Fortran im- 
plementation  of  the MCESA [3 11 algorithm  described in [41] , 
which  uses the Newton-Raphson method  to  compute  (13) for 
arbitrary  priors  and  autocorrelation  constraints.  For  a  flat 
prior,  the result is just  a  discrete-frequency  approximation to 
a  continuous MESA or LPC spectrum. As checks on  the dis- 
crete-frequency  computations  of S* and S, we obtained  results 
for various values of the number  of  frequencies N ,  and we 
compared the results  for S with  continuous  frequency  results 
obtained using Levinson recursion. 

To  obtain  synthetic speech using the  two  different spectral 
shapes, we used  commonly-available, LPC-based programs. 
Our  procedure was as follows.  First we analyzed the  test sen- 
tence  for  pitch  and  voicing using a  modified  cepstral  technique 
described  in [42]  and implemented in Version 4.0 of  the  In- 
teractive  Laboratory  System  (ILS)  from Signal Technology, 
Inc.  The  results  were  used  for both syntheses. For  the  syn- 
thesis based on.S*, we used  a  29th-order  all-pole  approximation 
to  the power  spectrum S* in  each  frame.  This  approximation 
was computed by  taking the first  29 lags of the  autocorre- 
lation  extrapolation A* and using Levinson  recursion to yield 
a  set of  reflection  coefficients. As checks, we plotted  the re- 
sulting  approximate  power  spectrum  and  compared  it  with S*. 
For  the synthesis based on S, we followed the analogous  pro- 
cedure-we  ran  Levinson  recursion on  the first 29 lags of A .  
Had we been  dealing  with exact,  continuous  spectra,  the re- 
sulting  “approximate”  spectrum  would  be  exactly  equal to S, 
so it would  have  been  reasonable to bypass  this  step. We in- 
cluded it, however,  in  order to keep  the comparison as fair  as 
possible. As a  check, we also  synthesized  speech  using  spectra 
obtained  directly  from  Levinson  recursion on  the first M +  1 
lags of the measured  autocorrelations R .  Note that  the  29th- 
order  all-pole  synthesis  spectra  are  29th-order  approximations 
to S and S*, and  not  29th-order  approximations  to Q. 

IV. EXPERIMENTAL RESULTS 
We obtained  results  for  the  sentence  “The  meeting  begins  at 

four P.M .” The  sentence was spoken by  a male, passed through 
an antialiasing  filter,  digitized at 8000 samples/s, and divided 
into  100 frames of  180 samples  each. Using 256 discrete  fre- 
quencies ( N =  256), we computed Ri, Qi, y, A;, 9, and Ai, 

did computations  for some cases with N =  64 and N = 128. In 
general,  there were no essential  differences  between  results for .. 
N =  64  or  128  and N =  256. We also repeated  the  compu- 
tations using Hamming  windowing  alone, 90 percent  preem- 
phasis  alone, and  both  together  on  the digitized  speech.  In the 
following, we focus  attention  on  two frames-frame 56, which 
contains  a  portion of the  phoneme  /f/, and  frame 39, which 
contains  a  portion of the phoneme / I / .  We refer to these  frames 

j = 1 ,  ... , 100, as discussed  in the previous  section. We also 

97 autocorrelations.  Frame 56 IM = 10, HM = N, PR = 0, 258 freqs.) 
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Fig. 1. Autocorrelations  from speech samples and  from MESA and 
MENSA spectral  estimates  (/f/). 

97 autocorrelations.  Frame 39 IM = 10. HM = N, PR = 0. 256 fraqs.) 
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Fig. 2. Autocorrelations from speech samples and  from MESA and 
MENSA spectral estimates ( / I / ) .  

by  means of  the subscripts f and I ,  respectively. Unless win- 
dowing or preemphasis is explicitly mentioned,  the reference 
is to  the spectra computed  without preprocessing. 

A.  Comparison of Autocowelation Extrapolations 
In Fig. 1, we plot Rf, A?, and Af for N = 256. When  we 

plotted  the  continuous  autocorrelation  function  obtained by 
Levinson  recursion,  it was indistinguishable from Af, which 
implies that  the discrete  frequency  approximations are accu- 
rate.  Beyond the  constraint limit of lag 10, the  extrapolations 
A; and Af differ  from  each other as well as from R .  One  would 
be hard  pressed to argue that  either  one is a  “better”  extrap- 
olation.  The same conclusion  follows from Fig. 2, in  which 
we plot RI, A;, and AI. 

B. Comparison of Power  Spectra 
Turning to  the power  spectra, we plot s”f, Sf, Sf, and SI in 

Figs. 3-6  for M =  10. The  spectra S andsf  are  quite  similar: 
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Fig. 3. MENSA spectrum  and  29th-order  continuous MESA approxi- 
mation (/f/). 

Sf 5 order-29 LPC  approx.  Frame 56, (M = 10, HM = N. PR = 0. 256 freqs.) 
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Fig. 4. Discrete MESA spectrum  and  29th-order  continuous MESA 
approximation (/f/). 

SI  & order-29  LPC  approx.  Frame 39. (M = 10.  HM = N. PR = 0, 256 freqs.) 
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Fig. 5 .  MENSA spectrum  and  29th-order  continuous MESA approxi- 
mation ( / I / ) .  

SI & order-29 LPC approx.  Frame  39, (M = 10. HM = N, PR = 0, 256 freqs.) 
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Fig. 6 .  Discrete MESA spectrum  and 29th-order  continuous MESA 
approximation ( / I / ) .  
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Fig. 7. MENSA spectra-100  frames overlaid. 

$ and SI are quite  different.  In  particular, $ has  deep nulls 
that are characteristic  of the MENSA estimates  for  the whole 
test  sentence.  Indeed,  the  frequent  occurrence of five lobes is 
obvious  in Fig. 7, which  shows the superimposed  results of S* 
for all 100 frames ( N =  256), confirming  an earlier conjecture 
about spectral  zeros.  No  such structure  occurs  for S (Fig. 8). 
The  lobe  structure  appears to be  related to  the number  of  con- 
straints:  there  are five lobes in Fig. 7, which is one  half  the 
analysis order ( M =  10). We repeated  the  computation of A* 
using M = 25 and M =  8. The resulting  plots were  similar to 
Fig. 7 except  that  about 12 and 4 lobes  were  apparent,  respec- 
tively.  Neither  preemphasis nor windowing  was  entirely  effec- 
tive  in  eliminating the  deep minima from  the MENSA spectra. 
The superposed  plots  continued to show  a  lobed  structure, al- 
though  more  complex  and less regular than  the  consistent five- 
lobe  pattern  of Fig. 7. The results of using both Hamming 
windowing  and 90 percent  preemphasis  are  shown in Fig. 9. 

In Fig. 10, we compare the ‘‘actuaY power  spectrum Qf 
with S; and S;. Both  estimates  appear to  be  smoothed versions 
of Q,-. Fig. 11 shows the  analogous  comparison  for / I / .  Here 
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S spectra. 100 frames IM = 10, HM = N, PA = 0. 256 freqs.1 FT sp. E posteriors.  Frame 39 (M = 10, HM = N. PR = 0, 256 freqs.) 
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Fig. 8. MESA spectra-100  frames overlaid. 
Fig. 11. MESA and MENSA estimates  with Fourier transforms of mea- 

sured autocorrelations ( / I / ) .  
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Fig. 9. MENSA spectra from windowed,  preemphasized  speech-100 
frames overlaid. 
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Fig. 10. MESA and MENSA estimates  with Fourier tzansform of mea- 
sured autocorrelations (/f/). 

TABLE I 
DISTORTION RESULTS 

10 90% Ham. 0.502 3.3X IO” 0.502 11.025 0.292 0.429 
8 90% 0.589 6.1 X10” 0.569 12.340 0.343 0.507 

there is more of  a  difference,  and  it  appears  more  reasonable 
to  interpret SI than ,!$ as  a smoothed version of Q I .  

For  three values of M ,  we computed six distortion  measures 
between Q and  the  estimates S and S*: drs (Q, S), dIs (Q,  S*), 
d ~ o ( Q ,  S) ,  ~ G O ( Q ,  S*>, ~ c E ( Q ,  SI, and ~ c E ( Q ,  S*h The  re- 
sults, averaged over all 100 frames,  are  shown  in  Table I. In 
one case the  mean  distortion  for MENSA  is slightly less than 
that for MESA, the difference  being  in the  third decimal  place. 
In every other case the mean  distortion  for MESA  is less. This 
is true even for  the “cross-entropy”  distortions d c ~ ,  which 
might have been  expected to  favor MENSA. The ~ C E  results 
do  not favor MESA  as overwhelmingly  as  those from  the  other 
two  distortion measures-especially dIs .  The enormous values 
of d I s  for  the MENSA spectra are the result  of  the  deep  min- 
ima.  The other  two  distortion measures  contain the  term 
QJS: only  logarithmically.  Thus, dIs penalizes  underesti- 
mates  more  severely than do d ~ o  and d C E .  

.Two  columns of  the table  are  identical: it appears that drs 
(Q, 5‘) = d~~ (Q ,  S). This is no coincidence, but  a  property  of 
dIs and dGo. The  equality  can  be  shown  to-  hold  provided 
tha t ’ s  is a MESA spectrum  and  that Q is a  spectrum  that satis- 
fies  the  same  autocorrelation  constraints that  determine S. A 
proof  can be based on  the  “correlation  matching”  property 
[22], [39]  of MESA spectra. 

C Comparison of Synthetic Speech 
Although  results such as Fig. 7, Fig. 11, and Table I suggest 
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that S is better  than S*,  they are hardly compelling.  This is a 
case where the proof must  be  in  the hearing.  Consequently, 
we synthesized the  entire  test  sentence using the  29th-order 
LPC approximations as discussed in  Section 111-C. The  29th- 
order LPC approximations to s”f, Sf, JT , and SI are also plotted 
in Figs. 3-6. The  two curves are  indistinguishable in Figs. 3 ,4 ,  
and 6; the  only discrepancy is for S;; (Fig. 5 ) .  In that case, the 
29th-order  approximation is unable to  match  the deep nulls 
and also exhibits  some  peak  splitting. 

The  standard LPC speech  and the speech  based on S sounded 
identical,  adding  further  confidence to  the discrete  frequency 
approximations.  The versions based on S and S* sounded  dif- 
ferent, but-somewhat to  our surprise-we and  others judged 
them to be equally  intelligible.  There  was,  however,  a  distinct 
qualitative  difference  when  preemphasis was not used. The 
speech  based on S* was qualitatively inferior-it had a  distinct 
ringing quality, as  though  spoken  from the  other end  of  a long, 
wide  pipe. When preemphasis  was used, alone or  with Ham- 
ming  windowing, the ringing quality was greatly  reduced or 
effectively  eliminated.  Hamming  windowing  alone  reduced 
the ringing only slightly. We hypothesize  that  this ringing ef- 
fect is a  reflection  of  the  characteristic  lobe  structure  and  deep 
minima  of  the spectral  estimates S*, since the ringing  is most 
prominent  when  the lobing is most  prominent  and regular. 
However,. the ringing can be  almost  imperceptible  while  lobing 
is still plainly visible in  spectral  plots. 

. .  

V. CONCLUSIONS 

Based primarily on the results  of  speech  synthesis,  but also 
on results like Fig. 7, Fig. 11, and  Table I,  we believe that it is 
fair to conclude  that MESA ( S )  yields better power spectrum 
estimates  for  speech processing than does MENSA (S*). 
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Design of Antialiasing  Patterns  for  Time- 
Sequential  Sampling of Spatiotemporal  Signals 

JAN P. ALLEBACH 

Abstract-The aliasing that results from time-sequential sampling of 
spatiotemporal signals is strongly dependent  on  the  order in which the 
spatial points are sampled. To design sampling patterns  that reduce 
aliasing, the sequence of sampling points is mapped  into several shorter 
subsequences via the Chinese remainder  theorem.  A  painvise  exchange 
algorithm then  finds  the  best ordering  of  each subsequence. The pat- 
terns  obtained with this  procedure perform  substantially better  than 
those known previously, and perform  as well as the  optimal  patterns 
that  can be expressed in closed form when the signal is termporally 
undersampled by less than a factor of 2. 

M 
I. INTRODUCTION 

ANY signal  processing and  communications  problems 
involve time-varying images. To be  processed digitally, 

these signals must be sampled  in  space and  time.  It is common 
practice to do  the sampling  in  a  time-sequential  fashion,  collect- 
ing a  frame  of samples one-by-one  from  the  spatial region and 
then repeating  this process. The  scanning  action  may be gen- 
erated  electromechanically  or  by  multiplexing  the  outputs 
from  an  array  of sensors. 
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With some  systems  such as sensor  arrays,  the  spatial  points 
may  be sampled in  any  order. With other  systems,  the  order- 
ing may be partially  constrained by the scanning mechanism. 
In either case, the  points are  most  frequently  taken  in lexico- 
graphic  order  which  in  2  spatial  dimensions  results  in  line-by- 
line scanning. Anumber  of researchers have experimented  with 
other orderings  of the  spatial  points [ l ]  - [5]. In particular, 
Deutsch [ l ]  , [ 3 ]  proposed an ordering  which tends to dis- 
tribute  the samples taken during any  time interval  of duration 
less than  the frame  period  uniformly over the spatial region. 
Since the ordering may be  generated by a  mapping  from the 
bit reversed output  of a  binary  counter, we refer to  it as the 
bit reversed sampling pattern. 

Fig. 1 shows the lexicographic  and  bit reversed sampling 
patterns  for  one spatial  dimension. During each frame  period 
of duration B,  M samples  are taken  uniformly over the  spatial 
region at interval X. With either  pattern, we would  expect to 
resolve  signal components  with  temporal  frequency fo < I /  
(28)  and spatial  frequency uo < 1/(2X). With the  bit reversed 
pattern samples taken during  a  time  interval B/X, 1 < X <M 
are  distributed  at  approximately  a  spatial  interval  of AX. With 
this pattern, we might expect to also  resolve  signal components 
with fo < A/(2B) and uo < 1/(2hX). As h increases, we trade 
spatial  resolution  for  temporal  resolution. 

The  experimental  results  that have been  reported in  the 
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