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The Discrete Wavelet Transform: Wedding the . 
A Trous and Mallat Algorithms 

Mark J. Shensa 

Abstract-In a general sense this paper represents an effort 
to clarify the relationship of discrete and continuous wavelet 
transforms. More narrowly, it focuses on bringing together two 
separately motivated implementations of the wavelet trans- 
form, the algorithme U trous and Mallat’s multiresolution de- 
composition. It is observed that these algorithms are both spe- 
cial cases of a single filter bank structure, the discrete wavelet 
transform, the behavior of which is governed by one’s choice 
of filters. In fact, the h trow algorithm, originally devised as a 
computationally efficient implementation, is more properly 
viewed as a nonorthonormal multiresolution algorithm for 
which the discrete wavelet transform is exact. Moreover, it is 
shown that the commonly used Lagrange i~ trous filters are in 
one-to-one correspondence with the convolutional squares of 
the Daubechies filters for orthonormal wavelets of compact 
support. 

A systematic framework for the discrete wavelet transform 
is provided, and conditions are derived under which it com- 
putes the continuous wavelet transform exactly. Suitable filter 
constraints for finite energy and boundedness of the discrete 
transform are also derived. Finally, relevant signal processing 
parameters are examined, and it is remarked that orthonor- 
mality is balanced by restrictions on resolution. 

I. INTRODUCTION 
AVELETS are rapidly finding application as a tool W for the analysis of nonstationary signals [ 11-[5]. 

However, with the notable exception of orthonormal 
wavelets [6]-[9], very little literature has been devoted to 
linking discrete implementations to the continuous trans- 
form. As in the case of the discrete Fourier transform, 
these implementations (or filter banks) can, and should, 
stand on their own as abstract decompositions of discrete 
time series: Their wide sweeping significance, however, 
lies in their interpretation as wavelet transforms. In a gen- 
eral sense, this paper represents an effort to clarify the 
relationship of discrete and continuous wavelet trans- 
forms. More narrowly, it focuses on bringing together two 
separately motivated implementations of the wavelet 
transform. One of them, the algorithme U trous’ for non- 
orthogonal wavelets [4], [5], was developed for music 
synthesis [2] and is particularly suitable for signal pro- 
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I .  

cessing. The other, the multiresolution approach of Mal- 
lat and Meyer, originally used in image processing, em- 
ploys orthonormal wavelets [6]-[ 101. The latter 
algorithm, apart from its wavelet interpretation, was dis- 
covered previously in the form of quadrature mirror filter 
(QMF) filter banks with perfect reconstruction where it 
finds application in speech transmission and split-band 
coding [ 111-[ 131. 

A glance at these two algorithms suffices to reveal 
closely related structures. In fact, apart from the con- 
straints on their filters, the decimated B trous [5] and Mal- 
lat algorithms are identical. We are thus led to examine 
the expanded family of algorithms encompassing both 
types of filters. In this vein, it is shown that the Lagrange 
interpolation filters commonly employed by the B trous 
algorithm are actually the squares (in a convolutional 
sense) of the Daubechies filters for compact orthonormal 
wavelets. We also derive conditions under which the dis- 
crete implementation computes a continuous wavelet 
transform exactly and find that they bear an intimate re- 
lationship to the B trous constraints. 

From a more general viewpoint, the situation is as fol- 
lows: The algorithms to be discussed all are filter bank 
structures (see Fig. 1) .  Their only distinguishing feature 
is the choice of two finite length filters, a low-pass filter 
f and a bandpass filter g. The low-pass condition, ex- 
pressed more precisely as C f k  = J2, is necessary to the 
construction of a corresponding continuous wavelet func- 
tion. The bandpass requirement, while apparently not es- 
sential to all applications, ensures that finite energy sig- 
nals lead to finite energy transforms (see Section VI). 
Under these conditions, the filter bank output will be re- 
ferred to as the discrete wavelet transform (DWT), a ter- 
minology which will become clear in the course of the 
paper. 

One class of DWT filter pairs are the Daubechies filters 
[8] which yield orthogonal wavelet decompositions and 
constitute, in more conventional terms, a QMF filter bank 
with perfect reconstruction. Another is that for which the 
low-pass filter satisfies the i trous condition hk = 
6 ( k ) / d 2 .  Such filters, which simply serve to interpolate 
every other point, correspond to a nonorthogonal wavelet 
decomposition. As mentioned above, if they are further 
restricted to be Lagrangian interpolators, they become the 
squares of the Daubechies filters, which is quite remark- 
able in consideration of the totally different derivations. 
This also implies that a maximally flat filter with the same 
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Fig. 1. A wavelet filter bank structure. The down-arrow indicates deci- 
mation. The output of the transform is the family of signals w ' ,  forming 
the two parameter transform w i  in the scale-time plane. Following termi- 
nology to be introduced, w'  is the (decimated) discrete wavelet transform. 

number of vanishing derivatives at 0 and 7r is a Lagran- 
gian interpolator; a fact which may aid in the design of 
maximally flat filters [ 141. 

A fundamental question is, when do these discrete im- 
plementations yield exact (i.e., sampled) versions of a 
continuous wavelet transform? Aside from regularity con- 
ditions relating to smoothness [8], we find that i f f  is a 
trous, then the DWT coincides with a continuous wavelet 
transform by a wavelet $( t )  whose samples $(n) form the 
filter g (i.e., g, = $(n)) .  Even i f f  is not B trous, the 
algorithm is exact provided the signal lies in an appropri- 
ate subspace; however, in that insthnce, the sampled 
wavelet values depend on f as well as g. This is the situ- 
ation in the orthonormal case where, moreover, the filter 
g is almost completely determined from fthrough the con- 
straints of orthogonality. 

In the remainder of this introduction we define, and 
briefly motivate, wavelet transforms at various levels of 
discretization. Section I1 contains an abbreviated deriva- 
tion of the h trous algorithm followed by a description of 
the Mallat algorithm. (The uninitiated reader is particu- 
larly referred to [ 11, [6], [8] .) In Section I11 we define the 
undecimated DWT, relate it to the decimated transform, 
and provide algorithms for its computation. Section IV 
states and proves several theorems which delineate the re- 
lationship between the DWT and the continuous wavelet 
transform. It may be read independently of the algorithms 
of Section I1 although the motivation for the constructions 
may not be clear. Section V defines the Lagrange a trous 
filters and proves that they are the squares of the Daube- 
chies filters. In Section VI, we formulate the inversion 
problem and provide filter constraints which ensure finite 
energy and bounded operators. It concludes with a short 
examination of the tradeoffs involved in choosing the 
bandpass filter, emphasizing the differences of the orthm- 
ormal and nonorthogonal cases. 

A .  Transform Dejinitions 
The continuous wavelet transform of a signal s( t )  takes 

the form 

W(a, b) = J a  $ (G) s( t )  dt (1.1) 

where $ is the analyzing wavelet, a represents a time di- 
lation, b a time translation, and the bar stands for complex 
conjugate. The normalization factor 1 / d a  is perhaps most 
effectively visualized as endowing IW(a, b)I2 with units 

of power/hertz.2 Certain weak "admissibility" condi- 
tions are usually required on $(t)  for it to be a candidate 
for an analyzing wavelet; namely, square integrability and 

where $(a) is the Fourier transform of $( t ) .  They ensure 
that the transformation is a bounded invertible operator in 
the appropriate spaces [8], [16]. If $(U) is differentiable, 
then it suffices that $ be zero mean, i.e., that S $( t )  dt 
= 0, for (1.2) to be satisfied. 

In the realm of signal processing, the significance of 
(1.1) is probably (or, at least, traditionally) best grasped 
by comparing it to the short-time Fourier transform: 

(1.3) ' F(w, b) = S h(t - b)e'"'s(t) dt. 

Thus, to obtain F(w, b), one multiplies the signal by an 
appropriate window h (such as a Gaussian) centered at 
time b and then takes the Fourier transform. In mathe- 
matical terms, (1.3) is an expansion of the signal in terms 
of a family of functions h(t - b) e'"', which are generated 
from a single function h(t) through translations b in time 
and translations w in frequency. In contrast, the wavelet 
transform (1. I) is an expansion in functions $((t  - b ) / a )  
generated by translations b in time and dilations a in time.3 
Thus, the continuous wavelet transform resembles a (con- 
tinuous) bank of short-time Fourier transforms with a dif- 
ferent window for each frequency. The significance of this 
is that, while the basis functions in (1.3) haveA the same 
time and frequency resolution (that of h(t) and h (U))  at all 
points of the transform plane, those of (1.1) have time 
resolution (that of $ ( t / a ) )  which decreases with a and 
frequency resolution (that of $ (aw)) which increases with 
a .  This property can be a great advantage in signal pro- 
cessing since high frequency signal characteristics are 
generally highly localized in time whereas slowly varying 
signals require good low frequency resolution. 

As originally proposed by Morlet et al. [17], $ was a 
modulated Gaussian 

r ~ / ( ~ )  = e j V o t e - t 2 / 2  (1.4) 

and this function is still the prototypical analyzing wave- 
let for signal processing applications [I]. The window 
function $ ( t / a )  has Fourier transform $(aw) = 
ae -(" - [ v o / a 1 1 2 a  12, which has analysis frequency v o l a .  We 
emphasize that vo is simply a parameter which determines 
the analyzing wavelet; its role should not be confused with 
that of a even though the scale axis is often expressed in 
terms of frequency under the transformation a -, vo/u .  
Observe that (1.4) only satisfies the admissibility condl- 
tion (1.2) approximately (cf. [ 161, [ 181). As expected, its 

*The energy density is given by (WIZ [(da d b ) / a 2 ] ,  an expression which 
is intimately linked to representations of the affine group (see [3], [Is], 
[16]). Since a is proportional to bandwidth, 1 WIZ is power/hertz. See Sec- 
tion VI for a discussion of the discrete case. 

3Alternatively, dilations in time may be considered contractions in fre- 
quency since the Fourier transform of $(? /a )  is a$(aw). 
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bandwidth is proportional to l / a ,  thus giving rise to a 
constant relative bandwidth; i.e., BW / ( v o l a )  = con- 
stant. This feature is also reflected in the narrowing of the 
time window at higher frequencies; i.e., at smaller a .  In 
general, one's choice of the function $(t)  is dictated by 
its time and frequency localization properties [3], [ 181. 

We shall be exclusively concerned with discrete values 
for a and b. In particular, we assume that a has the form 
a = 2' where i is termed the octave of the transform. The 
integral (1.1) then yields a wavelet series 

1 t - n  
W(2', n) !2 - J2' s IC/ (7) s(t) dt.  (1.5a) 

We remark that finite energy for the wavelet transform is 
not at all equivalent to finite energy for the wavelet series. 
It depends on the sampling grid as well as the function 
$( t )  [3]. Thus, the admissibility condition (1.2) is not 
necessarily appropriate in the discrete case and shall be 
replaced with conditions on the relevant filters in Section 
VI. In addition, we shall often take b to be a multiple of 
a 4  

W(2', 2'n) 7 $ 7 - n s(t) dt.  (1.5b) 
4 2 '  s-(: ) 

A logical step in applying the theory to discrete signals 
is to discretize the integral in (1.5) 

The sample rate has been set equal to one. As indicated 
by 2% on the left-hand side, (1.6), as well as (1.5b), are 
decimated wavelet transforms. Octave i is only output 
every 2' samples. In this form the resulting algorithms will 
not be translation invariant ([7]). This is easily seen by 
substituting s(k - r) for s(k) which produces w(2', 2'(n 
- r / 2 ' ) ) ,  an integer translation of w(2', 2'n) only if r is 
a multiple of 2'. However, the invariance, which is lost 
by decimation, is easily restored by separately filtering 
the even and odd sequences (see Section 111) or by using 
an equivalent algorithm, also described in Section 111. Our 
major reason for starting with (1.5b) rather than (1.5a) is 
historical. It delineates the relationship of the DWT to the 
QMF filter banks and (orthonormal) wavelet structures al- 
ready found in the literature [6]-[9]. It also simplifies our 
derivation of the i trous algorithm and readily lends itself 
to physical interpretation (see Section VI). Note that the 
original Mallat algorithm [6] was decimated; i trow [4] 
was not. 

Let g be the discrete filter obtained by truncating the 
sampled wavelet function; i.e., g, = $(n). Then, pro- 
ceeding from (1.6), we shall be able to amve at the DWT 

4Physically, this reflects a need for less frequency sampling of the trans- 
form output at lower frequencies ( i . e . ,  larger scales U ) .  Mathematically, b 
= 2'n has its roots in the orthonormal wavelets where it  suffices for in- 
vertibility of the tranform [ 6 ] .  The general case, however, is much more 
complex [3]. Too sparse a sampling leads to incompleteness; oversampling 
results in a redundant set of functions. 

pictured in Fig. 1, 

[W'I, = C g,-][S'l' (1.7) 

where [w'], corresponds to w(2', 2'n) of (1.6) and so is 
the original signal s. The mysterious appearance of the 
filter f in (1.7) will be unraveled in the derivation of the 
i trow algorithm in Section 11. Finally, we shall come full 
circle in Section IV where we show, under quite general 
conditions, that given filtersf and g there exists a function 
$(t)  with $(n) = gf k E-, such that the DWT acting on 
the sampled signal is exactly the sampled output of the 
continuous wavelet transform (i.e., of the wavelet se- 
r i e ~ ) . ~  In other words, the DWT with filter g defined by 
g i  & which was originally conceived as an ap- 
proximation of the (continuous) WT for an arbitrary ana- 
lyzing wavelet $A( t ) ,  is exact for another wavelet func- 
tion $ B ( t )  where $B(n) = gf for all n. Of course, if there 
is sufficient regularity, $A ( t )  and $B (t) will be close since 
they coincide on the integers up to the length of g. 

Before embarking on this voyage, we summarize, and 
hopefully clarify, the plethora of transforms with a brief 
analogy to the Fourier transform, Fourier series, the dis- 
cretized z transform, and the discrete Fourier transform 
(DFT). The Fourier transform of a continuous signal s(t) 

W 

S(W) k 1 e-j"'s(t) dt 
- w  

is a function of the continuous variable W .  Restricting it 
to a discrete (one-dimensional) grid results in the coeffi- 
cients of a Fourier series 

~ ( 2 ~ ~ )  = e-j'*m' s(t)  dt (1.9) s:w 
which in turn may be computed approximately by 

sZ(2.lrm At)  = c e-j21rmkArs(k A t )  At  (1.10) 

the z transform of s, k s(n A t )  output at discrete points 
. If s( t )  is band limited and sampled at an appro- 

priate rate, A t  = 1 / N ,  then the above may be computed 
exactly using the DFT 

k 

e -12lrmAI 

j2.lrmk 
(1.11) 

jm  - l N  c exp (-N) sk. 
N I  

These correspond precisely to "(a, b ) ,  W(2', n) ,  w(2', n) ,  
and undecimated w i .  With wavelets, however, we have 
the additional difficulty of dealing with a whole class of 
functions $(I) rather than simply , ju t .  Also complicating 
things are its two-dimensional structure and the decimated 
versions, which, due to their 2'n dependency on i, play a 
distinguished role without analogy in the one-dimensional 
case. 

'The adjoint filter g l  =-z_k is used to simplify future notation. It cor- 
responds to the integrand J . ( - t )  * s found in ( l . l ) ,  (1.5), and (1.6).  



2461 SHENSA: DISCRETE WAVELET TRANSFORM 

11. Two ALGORITHMS 
A. Notation 

Decimation, which appears as a down arrow in Fig. 1, 
plays a pivotal role in all DWT algorithms. However, it 
leads to operators which are not time invariant and present 
a potential source of confusion. It is thus worthwhile to 
first establish some formal notation. 

Signals and filters in boldface type will be treated as 
vectors, in which case * indicates discrete convolution and 
yields a vector. The symbol f will be used for the Her- 
mitian adjoint filter [ f ‘ ] k  = f - k .  Note that this is the com- 
plex conjugate reversal and does not imply a conversion 
of a column vector to a row vector. The above mentioned 
decimation operator is represented by a matrix 

Akm 6(2k - m) 

where Bkm is the Kronecker delta and 6(k)  
significance is the dilation operator 

6 ~ .  Also of 

which dilates a vector by inserting zeros. Observe that A 
and 0 are transposes of each other, and that although they 
are linear, they are not time invariant; i.e., they are not 
functions of k - m .  

Convolution followed by decimation becomes [A( f * 
$ I l k  = C m  & m [ f  * SI, = [f* SI2k = C m f 2 k - m S m .  How- 
ever, a particularly insidious pitfall remains; namely, 

(Af) * s # A ( f *  s). (2 .3)  

This “associativity” problem may be avoided by replac- 
ing convolution by f with a matrix F defined by 

which shall occasionally be used in our proofs. A trivial 
calculation yields AFs = A(f * s). The symbol f will 
also be used for the adjoint of matrices. This is consistent 
with the above notation where [F’],,, F,, = f n - ,  e 

We define the Fourier transform s”(w) of a function s ( t )  
by (1.8) and the z transform (on the unit circle) of a dis- 
crete signal s by 

t 
f m - n .  

sz(w) k C sne-j*”. (2 .5 )  
n 

In the subsequent interplay between continuous and dis- 
crete functions one must be careful to distinguish the usage 
of these two transforms, Ignoring their differences can 
easily lead to erroneous conclusions. In particular, al- 
though the Fourier transform of s(2t) is s^(w/2)/2, 

Some comment concerning filter definitions is also ap- 
propriate. Usage in the literature is uniform only up to the 
adjoint. Also, the z transform is sometimes defined with 
a positive exponential which leads to similar differences 
in the frequency domain. In keeping with signal process- 
ing applications we have chosen (2.5) as above, consist- 
ent with the Fourier transform, and we shall define our 
filters so that adjoints do not appear in convolutions. This 
produces a minimum of adjoints and greatly simplifies the 
notation. Unfortunately, it also results in the definition 
g: = $(n) and the introduction off  as an interpolation 
filter whereas g andf would be more natural. Note, also, 
that our filters are the adjoints of the filters defined in [8], 
although their z transforms coincide since [8] defines the 
z transform with a plus sign. 

B. The A Trow Algorithm 
We take the discretized wavelet series (1.6) as our 

starting point. The difficulty in implementing (1.6) is that, 
even for +( t )  of finite support, as i increases, $ ( t )  must 
be sampled at progessively more points, creating a large 
computational burden. The solution posed by [4] is to ap- 
proximate the values at nonintegral points through inter- 
polation via a finite filter f t .  The resulting recursion is 
highly efficient and may be implemented with the filter 
bank structure of Fig. 1. 

The interpolation is perhaps best introduced with an ex- 
ample. Let f t  be the filter (0.5, 1 .O, 0.5). Then, 

f - 2k$(k) 

approximates a sampling of $(t/2). With the help of the 
dilation operator 0, this may formalized as a general pro- 
cedure for dyadic interpolation. The steps are illustrated 
in Fig. 2 .  Let g be a filter defined by g: +(n);  i.e., 

First we spread g’ to provide space in which to put the 
interpolated values. The resulting filter is Dg’. Then we 
apply a filter f which leaves the even points fixed and 
interpolates to get the odd points. This condition, that f 
be the identity on even points, is sufficiently important to 
warrant a separate defintion, which follows. 

Definition 2.1: The low-pass filter f is said to be an a 
trous filter if it satisfies 

The J 2  is simply a convenient means of including the 
normalization factor of (1.6) in the filter. The result of the 
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J I \\ 
Dgt : +(A) 0 +io) 0 +U) 0 +(a 

pfV2 

d W ) :  +(-I) x +(O) x +U) x + ( 2 )  

Fig. 2.  Diagram illustrating the dilation and interpolation of a function 
$ ( t ) :  $ ( n / 2 )  = d2 f + * (Dg+). 

entire interpolation operation, as pictured in Fig. 2, is thus 

if' * ( o g t ) l n  = [ ~ ~ ~ g ' l n  

some sense. This, in turn depends principally on choice 
of the filter f. A major step towards treating this question 
lies in the results of Section IV, as was outlined at the end 
of the introduction. Since the algorithm is exact for some 
&(t), the question reduces to a) the quality of the ap- 
proximation $ = $B and b) the effect of this approxima- 
tion on the wavelet integral (1.1). Inasmuch as $(n)  = 
$B(n) for the finite set of integers n used to obtain g from 
$(t), it is sufficient that these functions be smooth enough 
and decrease fast enough at infinity. Conditions on f which 
achieve regularity of the constructed wavelet $B are found 
in [SI. Quantifying these statements remains a subject for 
future study. 

C. Multiresolution Algorithm 

the same tree structure as (2.12) (cf. [6]-[9]). Namely, 

= .f; - 2k $(k) 

1 Mallat's algorithm, illustrated in Fig. 3, has essentially 
= J2 $(n/2). (2.10) 

Noting that $((k/2) - n) = $((k - 2n)/2) and insert- 
ing the approximation (2.10) into (1.6), we obtain 

s i + l  - - A(h * s ' )  

d"' = A ( g  * s'). 

(2.13a) 

(2.13b) 

w(2, 2n) ;z x f l - 2 n - Z m g m S k  - t  In keeping with the literature, we have replaced the filter 
f with the filter h ,  which also serves to indicate that this 
class of filters is constrained, as detailed below. We re- 
mark that none of these filters are a trous filters. The con- 
straints on h and g which ensure an orthonormal multi- 
resolution analysis [6]-[9] are 

k ,  m 

= g n - m ' z m ' - k S k  
k,m' 

(2. 1) 

tively by replacing s in (2.11) with s i - ' ,  we find w(2', 

= [g * (A(? * s>>l, 
which is simply wi (1.7) with i = 1. Continuing induc- - 

C [ & 2 j - n h z j - m  + g 2 j - n g 2 j - m ~  = 6nm (2.14a) 
i 

2%) = wi for all ii where wh is given by (1.7), which can 
be rewritten for real f (2.14b) 

C g, = 0 (2.14~) s i + '  = A(f * si) (2.12a) 
n 

(2.12b) h, = J 2 .  (2.14d) wi = g * si. 
n 

Except for decimation of the output (the undecimated ver- 
sion will be derived in Section 111), this is the a trous al- 
gorithm described in [4]. Thus, we see that the a trous 
algorithm is simply a DWT for which the filter f (an in- 
terpolator) satisfies condition (2.9) and the filter g is ob- 
tained by sampling an a priori wavelet function $(t). 

Remark 1: The definition (1.6) is not so transparent as 
it might seem. It is, of course, intended to reflect an ap- 
proximation to (1.5). From this viewpoint one might well 
consider a change of variables t --* t/2' before discretiz- 
ing (1.5). Such a procedure certainly alleviates the com- 
putational problem since it dilates s( t )  (that is, samples s 
at 2', values which are known) rather than contracting 
$(t). However, unless the original function s(t) was highly 
oversampled (which begs the computational question), the 
approximation is poor. More precisely, to accurately ap- 
proximate s(t), and therefore also (1.5), we must sample 

Recalling that Hm, k hm - , and that A ' = D, we may 
rewrite (2.14a) and (2.14b) as 

(H'D)(AH) + (G'D)(AG) = Z (2.15) 

(AH)(G'D) = 0. (2.16) 

Furthermore, (2.15) and (2.16) imply (e.g., multiply 
(2.15) on the left by A H  ' ) 

( A H ) ( H ' D )  = z 
(AG)(G~D) = z. (2.17) 

Thus, H'D and GtD are injections and (2.13). is an or- 
thogonal decomposition of the discrete signal s' .  That is, 
si-' = H'Ds' + GtDwi  with the scalarproduct (H'Ds' )  
* (G'Dw') = 0. In fact, (2.15) is a paradigm for invert- 
ing the transform. These concepts are illustrated in Fig. 

at least at the nyquist rate rnyp for s. Then the integral for 
octave i requires $(t) to be sampled at a rate 2' rnyq. 

4. 
Furthermore, from (2.14) it follows that (2.13) repre- 

Remark 2: The derivation above, as well as that in [4], 
of the a trous algorithm make no statements regarding the 
accuracy of the approximation (2.11) or even of the dis- 

a decomPosition [6I9 [8I, [91 as follows: 
function ($(t) whose Fourier trans- There exists a 

form is given by 
m 

(2.18) cretization from (1.5) to (1.6). The former is iterated over 
i and, hence, to succeed must be numerically stable in 



SHENSA: DISCRETE WAVELET TRANSFORM 2469 

Fig. 3. The Mallat multiresolution algorithm. The down-amow indicates 
decimation. 

Fig. 4.  Illustration of a single stage and its inverse in the multiresolution 
algorithm for orthonormal wavelets. 

Expression (2.18) forms the basis of a recursion 

which in the time domain takes the form 

4(t) = h-kJ2 4(2t - k). (2.20) 
k 

With some additional computation (see Section IV), one 
may demonstrate that the translates and dilates of 4, 

have the property 

4 c 1  ( t )  = [AHlnk+:(t). (2.22) 

Note that the above definitions differ in the sign of i from 
those of [8]. 

Finally, define 

$(t) A d2 g-k4(2t - k). (2.23) 

Then, using (2.14) and the above properties of 4, one can 
show that the family of wavelets, 

(2.24) 

are orthonormal ( 5  $L(t) $jk(t) dt = 6, &), and that the d' 
are the coefficients of the expansion of s ( t )  in terms of the 

More precisely, the translates and dilates + l ( t )  of the 
*: .6  

61n contrast, the wavelet functions $ : ( r )  (1 / J2 ' )  $((2/2') - n) of (1.5) 
are not generally orthogonal. It is the filter constraints (2.14a) and (2.14b) 
that ensure orthonormality. Dropping these two constraints in Section IV, 
we develop a structure identical to (2.21)-(2.24); however, the constructed 
$:(r) need not be orthogonal. 

scaling function form a basis for L2(R) ,  and 

d ;  = J 2 '  s s( t )$  ($ - n )  = s s( t )$;( t )  (2.25) 

provided 

s; = s(t)$(t - k) .  (2.26) S 
Then, if s(t) is in L2(R) ,  the expansion of s(t) is 

W 

s(r)  = , c c d;$;( t ) .  (2.27) 

This follows from, (2.25) and orthonormality since com- 
pleteness of the q5L(t) implies completeness of the $ i ( t ) .  

Until recently, the only known orthonormal wavelets 
with compact support (i.e., zero outside a finite interval) 
were the Haar functions, generated by $(t)  = 1 for 0 I 
t < 1/2;  - 1 for - 1 /2  I t < 0; and 0 elsewhere. Dau- 
bechies [8], [19] has uncovered an entire family of finite 
length filters satisfying (2.14), demonstrating that the cor- 
responding wavelets defined by (2.18), (2.23), and (2.24) 
are orthonormal as a consequence of (2.15), (2.16) and 
have compact support since they were generated by finite 
length filters (see Section IV, eq. (4.10)). The first two 
of these filters are 

I = - w  n 

1 
h' = - (1, 1) 

J 2  
(2.28a) 

and 

(1 + J 3 , 3  + J 3 , 3  - J 3 ,  1 - J 3 )  h' = 4 ~ 2  1 

(2.28b) 

where the first component of h is on the left. The wavelets 
corresponding to (2.28a) are exactly the Haar function 
mentioned above. 

Some additional remarks relating the two algorithms are 
in order. The conditions (2 .14~)  and (2.14d) effectively 
make g a bandpass filter and h a low-pass filter (e.g., an 
interpolation filter) with the sum on g k  analogous to the 
condition $(t)  dt = 0. Also, d'" corresponds to w l .  
The additional decimation appearing in (2.13b) would not 
appear in a translation invariant version of Mallat's al- 
gorithm (cf. Section 111). On the other hand, although the 
discrete filters g play algorithmically identical roles, the 
$ i ( t )  of the ?i trous algorithm are not the wavelet vectors 
of a functional expansion. Rather the $ k ( r )  are the duals 
of a set of vectors for which the coefficients of the signal 
expansion are w:. That is, they are the coefficients of an 
expansion of the form s(t )  = C l ,  ( s,-$; ) $L(t) where ( ) 
indicates the L 2  inner product, and $k( t )  is the dual basis 
or frame (see [3], [15]) of 11.;. In Mallat's algorithm, since 
the $k( t )  are orthonormal, the basis and its dual coincide. 
Thus, in many senses, the discrete filters g are more fun- 
damental than the wavelets themselves. It is usually the 
coefficients which are of major interest; the actual wave- 
lets $k( t ) ,  let alone their duals, are rarely computed. 
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Finally, in anticipation of Section V, let us form the 
squares of the two previous examples 

1 1 
h f  * h = - (1, 1) * - (1, 1) = (1/2, 1, 1/2) ' 

J 2  J 2  
(2.29a) 

h t * h = ( - ' o 2  1 2  0 2) (2.29b) 

where * indicates convolution, and h given by (2.28a) and 
(2.28b), respectively. Note that the filtersf = h * h / J 2  
are 2i trous filters and that the interpolation equation (2.10) 
holds exactly if $( t )  is a polynomial in t of degree one or 
three, respectively. 

and 

16' 7 16' 16' 16 

111. WAVELET TRANSFORMS WITHOUT DECIMATION 
As has often been pointed out [7], the recursions (2.12) 

and (2.13) are not, in general, translation invariant. In 
contrast, the original undecimated 2i trous algorithm [4] , 
[5], which is pictured in Fig. 5 and consists of entirely of 
convolutions, is patently translation invariant. In this sub- 
section we shall use that property to provide a formal def- 
inition for an undecimated discrete wavelet transform w ,  
then demonstrate that w; = K&, and also show that @ is 
computed by the algorithm of Fig. 5. 

Let Tm be the operation of translation by m; i.e., 

( T m s ) n  2 s n - m *  (3.1) 

In order to include the dependency of w' on so, we add it 
as an argument, writing w ' ( s o ) .  Equations (2.12a) and 
(2.12b) become 

wi(s0)  = G(AF)'sO.  (3.2) 

(Recall that Gmn & g, - ,.) Finally, we shall need two im- 
portant identities, which are proved in Appendix A. 
Namely, for any F of the form Fmn = fm - n ,  we have the 
following lemmas. 

Lemma 3. I: 

[(AF)'Ink = [ ( A W I O , ~ - * ~ ~  (3.3) 
Lemma 3.2: 

1 - 1  

[(AF)'],e'kw = eJ2ln0 IT fZ(2'w). 

As expected, w' is not translation invariant, 

(3.4) 
k r=O 

[ w 1 ( ~ m s 4 ] n  = c [ ~ ( ~ ~ l n , k ~ ; - r n  

= [ G ( A F ) ' I , , ~ + ~ ~ ;  

# [G(AF)'],,-,,,p;. (3.5) 

For example, [A F],, = f2, - ,, # [A F], , , ,  - ,,. However, 
if we replace m by 2'm in (3.5) and use Lemma 3.1, the 
last step becomes an equality so that 

[ ~ ~ ( ~ 2 ~ r n s O ) l n  = [ w 1 ( s 0 ) 1 n - m .  (3.6) 
Thus, translating so  by 2'm translates octave i by m. 

i$ $+l 

Fig. 5 .  The (undecimated) discrete wavelet transform. The filters D'f  are 
obtained from f by inserting 2' - 1 zeros between each pair of filter coef- 
ficients. The operation of filtering is understood to mean convolution. 

Note that the zeroth element of a series is invariant un- 
der decimation so that w f  and v3f should coincide at n = 
0. Utilizing this fact, we obtain the nth output of the un- 
decimated discrete wavelet transform by translating the 
signal back by n samples and taking the decimated trans- 
form at time zero. More precisely, 

Dejnitiun 3. I: Define the undecimated discrete wavelet 
transform G in terms of the decimated transform w by 

IQ; [w ' (s@)] ,  P [w'(T-nso)]o.  (3.7) 

= w ' (T-, Tm s O)IO 

= [w' ( T m  - n so)l0 

= [ w ' ( s O ) ] , - , .  (3.8) 

We see that the desired invariance is achieved 

[ w ' (T, 

It is also clear from (3.6) and (3.7) that sampling vV; every 
2' points produces exactly wf, that is, 

w:, = W i t n .  (3.9) 

Next, we show that @ may be computed by the filter 
sequence pictured in Fig. 5. The proof is obtained by tak- 
ing z transforms. From (3.2) and (3.7) 

c fiie-'"" = c c [G(AF)']Om~,+ne-J"W 
n m n  

= [G(AF)' ]omeJm"s, (w) .  (3.10) 
m 

Applying Lemma 3.2 to (3.10), we have 

wi):(w) A C *;e-'nw 
n 

1 - 1  

= gZ(2'w) f,(2"w)sz(w) (3.11) 

where i = 0 is understood to mean there are no factors of 
f,. As described in the next paragraph, this is exactly the 
z transform of the algorithm pictured in Fig. 5. 

It is eady to see that D'f  is f with 2' - 1 zeros inserted 
between every pair of filter coefficients and that its z trans- 
form is f, (2'w). That is, 

r = O  

and 

(D' f ) ,  = fz(2'w).  (3.13) 
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Equation (3.11) is then equivalent to 

( D ' f )  * si s i + l  = 

*; = (Dig) * si 
(3.14a) 

(3.14b) 

I 

where so  A s. This is essentially the original (undeci- 
mated) 2 trous algorithm found in [4] and [5 ] .  However, 
we would like to emphasize that, since the development 
in this subsection has not made use of any filter con- 
straints, the general equivalence of the decimated output 

that of Fig. 1 (equations (2.12)) follows for arbitrary fil- 
ters. 

A. An Alternative Implementation 

of the algorithm pictured in Fig. 5 (equations (3.14)) and Odd 

Q 
A second possibility for the implementation of IV is to 

use the algorithm in Fig., 1 and proceed directly from 
(3.7). That is, to output iO.t',, one simply translates the sig- 
nal by n and then computes wb. As an algorithm, this takes 
the form a) compute wb; (b) translate the signal by one 
sample; (c) go to step (a). Moreover, in view of (3.6), 
one need not reperform the entire recursion (,i.e., (2.12)) 
for every time point n in order to obtain w'. Rather, at 
each octave, the decimation is replaced by a split into even 
and odd sequences, each of which is a starting point for 
the next octave (see Fig. 6). A couple of examples suffice 
to convince one that if, at octave i ,  n mod 2' = 0, then 
one takes the upper branch; if n mod 2' = 1, then one 
takes the lower branch. A rigorous derivation follows from 
the formula (cf. [20]) 

T m  /2  seven m even . (3.15) 
T(rn - 1 ) / 2 ~ o d d  m Odd 

ATms = 

We remark that Figs. 5 and 6 are computationally 
equivalent provided that the algorithm in Fig. 5 is imple- 
mented efficiently. The code must be written so as to omit 
multiplication by the zero elements of filters D'f. (They 
are mostly zeros for i > 2.) Depending on the number of 
octaves, the computational burden still remains much 
greater than that of the decimated algorithm (i.e., Fig. 1); 
however, there is considerable parallelism which may be 
sufficiently exploited on suitable hardware to produce a 
real-time implementation [5]. 

IV. THE DWT AS A N  EXACT WAVELET TRANSFORM 
Regardless of the filters employed, one can, of course, 

perform the recursions (2.12) or (2.13) on the sampled 
signal s. Moreoever, provided that f (respectively, h) is 
low pass and g bandpass, the procedure may be inter- 
preted physically as a bank of proportional bandwidth fil- 
ters (cf. [21]-[24] also Section VI). In the present section, 
we examine the mathematical significance of relaxing the 
filter constraints (2.9) and (2.14). Our goal will be to re- 
late the more general filter bank to the continuous wavelet 
transform, thus, in a sense, justifying the term DWT (cf. 
[25]). In this endeavor, the major questions which we shall 
address are: for what functions $( t )  is the recursion (2.12) 

(zlj?a+l 

Fig. 6. Diagram of an implementation of the undecimated DWT. 

an exact implementation of (1.6) and for which $( t )  and 
s ( t )  do (1.5) and (1.6) coincide? The general answer is 
that we are able to construct such a rc/ provided the dis- 
cretized signal lies in the appropriate subspace of (cf. 
(2.26)). A somewhat surprising result is that it is neces- 
sary and sufficient for f to  be a trous for condition (2.26) 
to be dropped. Our approach shall be to mimic the con- 
struction of orthonormal wavelets outlined in Section II-C. 

A. Construction of the Scaling Function 4 

ing function 4(t) with Fourier transform 
We begin with the stipulation of the existence of a scal- 

00 (JIa( , ) )  1 -  w 
r =  I 

wherex(w) = ( f t ) , ( w )  is the z transform o f f t .  To em- 
phasize the nonorthogonality of the corresponding wave- 
lets, we retain the symbol f rather than h. Note that this 
function 4 need not have (and in general does not have) 
all of the properties of the orthonormal 4 outlined in Sec- 
tion II-C. 

For (4.1) to converge to a nonzero function, the factors 
must approach one. Thus, f ,  (0) = 1 ,  which implies 

cfk = d2.  

Even though 4 could be normalized differently by the in- 
clusion of a factor in (4.1), the filter f must necessarily 
obey the low-pass condition (4.2); i.e., (2.14d). No,te also 
that, under the chosen normalization, j +(t)  dt  = d(0) = 
1. However, without spme additional conditions, the re- 
lationship of 4 ( t )  to $ ( U )  remains somewhat tenuous. 
Even under pointwise convergence, the limit may be a 
highly discontinuous , fractal function [9]. Suitable regu- 
larity conditions for the inverse Fourier transform of a 
product of the form (4.1) to converge to a reasonably be- 
haved (e.g., L'(Z?), L2(R),  and/or continuous) function 
may be found in [8] and [26]. The results are summarized 
in Appendix B. 

I 
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A time domain representation of 4(t) in terms off  can 
be derived from (4.1). Let x be the indicator function of 
[ -1 /2 ,1 /2)  

From (4.1) and Lemma 3.2, it is not difficult to see that 

4(t) = lim C [(AF)i]okJ2i~(2it - k). (4.4) 
1 - 0 3  k 

In fact, the Fourier transform of (4.4) is7 

which is just (4.1). Note that the existence of the function 
(4.4) could have been taken as the starting point for our 
analysis, since our proofs will not make use of (4.1). 

We continue our parallel with Section 11-C. Define 
4k(t) by definition 4.1, as follows. 

Definition 4.1: 

Then, substitution of 2't - n for t in (4.4) and the use of 
Lemma 3.1 yield 

J2'4(2't - n) 

= lim C [(AF)']okJ2J+1x(2J+1t - 2'n - k )  

= lim C [ ( A F ) ' - ' I ~ , ~ - ~ ,  , ,J2'~(2't - k )  

= lim [(AF)'-'],kJ2JX(2Jt - k). (4.7) 

,+m k 

j - m  k 

J + W  k 

On replacing i by -i, this becomes 

4h(t) = lim C [(AF)'+'],d2'~(2~t - k). (4.8) 
j - w  k 

An immediate consequence of (4.8) is 

(4.9) 

paralleling (2.22). Thus, we see that, despite their lack of 
orthogonality, the 4k(t) have retained most of their struc- 
ture. Furthermore, i f f i s  a finite filter, then 4(t) has finite 
support [8]. More, precisely, suppose the coefficients of 
f are zero outside [-A'-, N+]. Let q J ( t )  
[(AFJ]okd2jx(2jt - k). Then, q J ( t )  converges to 4(t), 
and, as in (4.9), we have 

(4.10) 

'This equality is immediate from Lemma 3.2 and i ( w )  = 
(2 sin ( w / ~ ) ) / w .  

We find, for example, that q j  is zero for t < ti where tj 

calculation for the right half interval, it follows that 4(t) 
= limj-w qJ(t) is zero outside [-N-, N,]. 

- - (tj- - N-)/2. With to = - 1 /2, and with a similar 

B. Exactness 
To avoid confusion and stress their differences, let us 

first recapitulate some definitons. Four different trans- 
forms W(a, b), W(2', 2'n), w(2', 2h) ,  and w; have been 
mentioned ( ( l . l ) ,  (1.5), (1.6) and (2.12)). We retain a 
terminology parallel to Fourier transforms, namely, 
wavelet transform (WT), wavelet series,8 discretized 
wavelet series, and discrete wavelet transform (DWT), 
respectively. The first two transforms involve integrals of 
a continuous signal; the latter two contain sums of sam- 
pled signals. The first three utilize a continuous wavelet 
function $(t) ,  the last one employs the discrete filters g 
and f. For consistency, we shall continue our develop- 
ment using decimated transforms; however, the results 
hold without change for undecimated transforms. This 
follows immediately, since they coincide for n = 0, and 
the undecimated transforms may be obtained at time n = 
no, by translating the signal by no samples and taking the 
transform at n = 0. (See Section I11 where definition 3.1 
remains valid for W(2', n) and w(2', n)). 

Our starting point shall be a signal s( t )  and discrete fil- 
tersfandgwith w'definedby (2.12)ord1by(2.13), i.e., 

A Fs' s l + l  = 

w' = Gs' 
d ' f l  - Aw'.  (4.11) 

Recall that the matrices F,, and G,, are given by f, - 
and g ,  -,, respectively. Of course, we must also specify 
an initialization of the recursion (4.11) for some i; for 
example, for the zeroth octave so. The obvious choice is 

s: A s(n) (4.12a) 

however, we shall also consider 

s: G C - n)s(k) (4.12b) 

which relates to the discretized wavelet series w(2', 2h) ,  
and 

s: A j 4(t - n)s(t)  dt (4 .12~)  

which corresponds to the sampled WT (wavelet series). 
For a given g, we shall construct a continuous function 
$(t)  such that the DWT of (4.11) is an exact implemen- 
tation of the discretized wavelet series under (4.12b) and 
of the wavelet transform under (4 .12~) .  

k 

Define $( t )  by 

$(t) 2 4(t + k)gk = 4(c? - k ) g i  (4.13) 

'At times, we shall prefer the term sampled WT rather than wavelet se- 
ries in order to emphasize its role as a restriction of the continuous trans- 
form. 
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The recursion (4.9) implies that q5,h(t) = Ck 
[(AF)'Ink+;(t). Using this expression, along with (4.6), 
the definitions (4.13) and (4.14) yield 

= z n - k $ ' ; ( r )  

= C [G(AF)'InkQ:(t). (4.15) 

If we take (4.12b) as the definition of so, the discretized 
wavelet series (1.6) takes the form 

w ( 2 ,  2%) 2 C J.k(m>s(m> 
m 

= C [G (A ~ 1 ' 1 n k  Q i (m> s(m) 
ink 

= [G(A F)'s0], (4.16) 

which, by (4.11) is exactly wk. Furthermore, under 
(4 .12~)  we have (again using (4.15)) 

II 

W(2', 2'n) 1 T' , ( t )s ( t )  dt 

= s f; [G(AF)'In,4i(t)s(t) dt 

= [G(A ~ ' l n k  j 4; (t> s(r) dt 

= [G(AF)'s0], (4.17) 

again w',. 
Finally, let us investigate the significance of the ii trow 

condition; i.e., of the constraint (2.9), hk = hkO/J2. We 
prove the following theorem. 

Theorem 4. I :  f is an ii trow filter 4(n)  = ana. 
Proof: Letting i = -1, n = 0, and t = n in (4.9) 

(4.18) 
gives 

4(n)  = C [AF]okJ2 4(2n - k ) .  
k 

Then, 

4(n)  = 6nO * J2hn = 6ao- (4.19) 

Conversely, suppose that f2,, = s n O / J 2 .  Then, since 
x ( - k )  = Am, (4.8) with i = 0 and t = 0 implies 

Q(-n)  = lim [ ( A F ) J ] n o J 2 J  
J + m  

= lim C [(AF)J-']nk[AF],J2 J2 ' - '  

= lim [(A F)' - ' ]n0J2/ - I 

J + C D  k 

/ -a  

. . .  - - lim [AF],J2 = 6,o. 
j + m  

(4.20) 

The import of Theorem 4.1 quickly follows. Equation 
(4.12b) implies (4.12a) for arbitrary signals if and only if 
4(n) = Ana. Thus, 

Corollary 4.1:  The algorithm'(4.11) is an exact im- 
plementation of the DWT with so set equal to the sampled 
signal if and only iff is an trous filter. 

Furthermore, g is also related to $( t )  by sampling: 
Corollary 4.2:  Iff is an ?i trous filter, then $(t)  defined 

by (4.13) satisfies $(n) = g:. 
Wavelet coefficients of the type d' = Aw' - ' are easily 

obtained by replacing $(t)  by J 2  $(2t). More precisely, 
let $ ' ( t )  & d 2  $(2r) = J 2  Ck gk4(2t + k ) ,  which coin- 
cides with (2.23). Then, provided so  satisfies (4.12c), 
(4.11) and (4.17) imply 

d', = w i i '  

= s $i;'(t)s(t) dt 

= s $;'(t)s(r) dt. (4.21) 

Hence, although the $;'(t) are not orthogonal, the Mallat 
algorithm still computes the wavelet transform. Of course, 
u n g r  (4.12a) and h trous, or for (4.12b), we have d', = 
Ck $ A' (k)  s(k), the counterpart of (4.16). It is interesting 
that, in a sense, the decimated wavelet transforms (1.5b) 
and (1.6) contain superfluous information. That is, they 
are underdecimated by a factor of two, and, thus, w '  prop- 
erty belongs to octave i + 1. 

C. Summary 
Let us summarize the results of this section. We are 

given discrete filters f and g such that (4.4) is well de- 
fined. Define $( t )  by 

(4.22) 

with corresponding transforms sampled WT (wavelet 
series) 

$(t> 40 - k>skt 

(4.23) 

and discretized wavelet series 

w(2', 2%) A c s;i,(k)s(k). (4.24) 

Let d,, * s stand for the scalar product Ck &(k)sk, and 
#,(t)  - s( t )  for the L2 scalar product j &(t ) s ( t ) .  Then 

f i s  ii trous * $(n) = g:. (4.25) 

k 

For s discrete: 

so = s andfis i trous 3 w(2', 2%) = wb (4.26a) 

s: = & s 3 w(2', 2'n) = wi,. (4.26b) 
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For s(t)  mtinuous: 

s: = +,(t)  s(t) * W(2', 2'n) = wf. (4.27) 

Ail the above results extend immediately to the undec- 
imated transforms, W(2', n) ,  w(2', n) ,  and @: by transla- 
tion invariance and definition 3.1. Also, the correspond- 
ing properties hold for d' with $(t)  replaced by J 2  $(2f). 
Note that the orthonormal wavelets are only exact under 
(4.26b) or (4.27) since their filters h are not a trous filters. 
Furthermore, they do not satisfy (4.25). 

V .  LAGRANGE INTERPOLATION FILTERS 
A reasonable class of a trous interpolators to consider 

for (2.10) are those which are exact for polynomials P(t)  
of degree I M  for some M ,  i.e., for which 

The minimum number of coefficients (unknowns) 
equals the dimension of the space, i.e., satisfies 2N = M 
+ 1 .  Thus, the sums in (5.3) go from 1 to N. Moreover, 
since for any n ,  the polynomials Q(x) L P(x - (n - 1)/2) 
also form a basis, (5.3) is equivalent to 

N - N  

P ( i )  = k =  c I akP(l - k) + k =  C - I  akP(-k) (5.4) 

which must hold for all P(x)  of degree 1 2 N  - 1. 

grange polynomial 
We pick out the kth coefficient by letting P be the La- 

II ( x - i )  
a i # j  

i # j  

LfN-'(x) = i , j  in [-N + 1, N I .  II ( j  - i )  
( 5 . 5 )  

- P - = C f;-zkP(k). 
$2 (;) k 

(5.1) Then, LfN-'(k) = 1 3 ~ ~ ,  so that replacing P in (5.4) with 
L ~ N - ' ,  we get 

aj = L ; ! J ' ( ~ )  f o r j  = 1, - , N (5.6a) - 
a - .  J J  = L ? N - ' ( ~ >  f o r j  = 1 ,  - - , N. (5.6b) 

Inasmuch as the Lagrange polynomials L 2 N - '  form a ba- 
sis for polynomials of degree less than or equal to 2N - 
1 ,  these ak are in fact the unique solution to (5.4). 

It is also straiglitforward to see from (5.5) and (5.6) that 
a is symmetric, i e. ,  f o r j  > 0 

For reasons which will become clear very shortly, we shall 
call these filters Lagrange a trous filters. Since the a trous 
filter f satisfies f2k = 13,,/J2, (5.1) is an identity for n 
even. Let a contain the odd components o f f t  

J2fikp1 fork > 0 

fork < 0. 

for k = 0 
(5.2) 

. 
Then (5.1) is equivalent to 

P (f) = k F o a k P  (F - k) 

+ k < O  c akP (T - k)  (5 .3)  

II (1/2 - i )  II (-1/2 + i )  
i # j  - - i # l - j  

aj = II ( - j  + 1 - i )  II ( - j  + i )  
i #  I - j  i # j  

II (1/2 - i )  

II ( j  - i )  
- i # j  
- a- j .  - - 

i # i  
(5.7) 

for n odd and for all polynomials P of degree I M .  (Ac- 
tually, a single value of n implies (5.3) for all n; see 
(5.4).) We proceed to express the ak in terms of Lagrange 

In summary, we have the following theorem. 
Theorem 5. I :  Let f be an a trous filter, i.e., 

polynomials, and to show that the above conditions are 
essentially equivalent to f = h * h ' /42  where h is an 

1 
hk = J2 I30k. (5.8) 

appropriate Daubechies filter. 
Assume, furthermore, that f is real with symmetric sup- 

A .  Construction of a 
First, we parameterize the family of filters a satisfying 

(5*3) by 
mials for which it must hold. For such a relationship to 
exist, one must relate the length of the filter (the number 

port described by k E [-2N + 1 ,  2N - 11. Then, f is-a 
Lagrange trous filter, that is, (5.1) holds for all poly- 
nomials P of degree 1 2 N  - 1 ,  if and only if the odd 
components off are determined by (5.6). Furthermore, f 
is necessarily symmetric. 

+ '' the dimension Of the space Of 

of unknowns) to M .  To accomplish this, we shall assume 
that a has exactly the minimum number of coefficients 
needed to satisfy (5.3). We further assume that a has sym- 
metric support; i.e., there is an N such that ak = 0 for (kl 
> N and ak # 0 for Jkl = N. This assumption is not 
unreasonable, at least for symmetric wavelets $( t ) ,  since 
there is no reason a priori to distinguish between t and 
- t ,  and one would even expect a to be symmetric. We 
shall see, in fact, that the weaker condition of symmetric 
support joined with the previous constraints implies that 
a actually is symmetric. 

B. Relationship to Daubechies (QMF) Filters 
In [8], Daubechies constructs essentially the entire class 

of finite length filters h which satisfy (2.14) and fulfill 
suitable regularity conditions on (2.18). Explicitly, they 
take the form 

(5.9) 

where h(z )  C h , P  is the z transforms of h ,  and Q is 
an appropriately constrained polynomial. (In this section 
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it is convenient express the z transform as a polynomial 
which we denoted 6 ( z )  where h,(w) = h(ejw). )  Her deri- 
vation uses a specific g, which up to a phase factor is 
given by 

g, = (-l)%(l - n) (5.10) 

and, as a consequence, (2.14a) reduces to 

A h h t D  = 1. (5.11) 

In other words, [hh t ] 2 n  = A,,,, which is the B trous con- 
dition for hh t / d2 .  Finally, if Q is taken to be of minimal 
degree (which turns out to be N - l ) ,  (el2 is unique [8]. 
In other words, the squares of these filters are character- 
ized completely by satisfying (2.14d), (5.1 l ) ,  and being 
of the form (5.9) with degree 2N - 1. We proceed to 
show that the h * h equal the Lagrange B trous filters. 

Let h be the Daubechies filter of order 2N. Since h * 
h is symmetric, the above conditions are equivalent to 

B(z) 
N N 

h * h t  = 1 + c bk.Z2k-i + c bkz -2kc '  
1 

(5.12a) 
and 

b(z> = i ( i ( 1  + ~ ) ) ~ ( ; ( 1  + z - ' ) ) N Q ( ~ ) Q ( ~ - ' ) .  (5.12b) 

That is, J 2  f = h * h if and only if f(z) is of the form 
(5.12a), (5.12b) and is of degree 2N - 1 in z (respec- 
tively, in z - ' ) .  

Next, we show that the bk coincide with the ak of (5.3). 
We multiply (5.12a) by z n  for an arbitrary integer n, 

N N 

Z " b ( Z )  = Z n  + c bkZn-1+2k + c bkZn+i -2k  . 45.13) 

The 2N zeros at z = - 1 in (5.12b) imply that 

where i = 1, , 2N - 1. The signs work out since n 
- 1 + 2k - i and n + 1 + 2k - i have the same parity 
while n - i differs. Define Po@) = 1. Then, since the 
polynomials PO(x) and Pi (x) for i = 1, - , 2N - 1 form 
a basis for polynomials of degree 1 2 N  - 1, and since 
(5.14b) implies (5.17) for i = 0, (5.17) must hold for 
arbitrary polynomials P(x)  of degree 5 2N - 1. Replac- 
ing Pi by P in (5.17) and setting ak = bIkl yields (5.3). 

Conversely, Theorem 5.1 implies that if a satisfies (5.3) 
for all polynomials of degree 1 2 N  - 1 and has symmet- 
ric support, then it must be symmetric. Clearly (5.17) 
must be also be satisfied. From (5.2) and reversing the 
above algebra, thisis equivalent to (5.12a) and (5.14) with 
J 2  f(z) replacing p (2) where f(z) is of degree of 2N - 1 
in z and also in z - ' .  Letting n = 1 (or 0) in (5.14a), we 
see thatf(z) has 2N roots at z = - 1. Sincefis symmetric, 
f(z) must also have the form (5.12b). We conclude that 
J 2 f  = h * h t  where h i s  a Daubechies filter. Thus. 

Theorem 5.2: There is a one-to-one correspondence be- 
tween the squares of Daubechies orthonormal wavelet fil- 
ters h of length 2N and the Lagrange B trous filters f of 
length 4N - 1 given by f = h * h t / d 2 .  

Note that one can compute the h of length 2N by taking 
all possible square roots of the Lagrange a trous filters f.9 
f is easily computed from (5.6) where its even compo- 
nents given b y h k  = 6,/.j2, its odd positive components 
by f 2 k  - = bk for k = 0 to N, and foraodd negative k by 
symmetry. Also, the spectrum o f f ,  f ( e Iw)  = Jh(eJw)12, 
presents a convenient method of computing the power 
spectra of the h's. In another vein, since the h are maxi- 
mally flat filters (i.e., have same number of vanishing de- 
rivatives at z = l and z = -l), Theorem 5.2 shows that 
a maximally flat filter is a Lagrangian interpolator; a fact 
which may aid in the design of such filters [ 141. 

and since & - 1 )  = 0, we also have 
N 

2 c b k = 1 .  (5.14b) 

Next, we note that 

Define a set of polynomials Pi by 

Pi@) 4 2x(2x - 1) * (2x - i + 1). (5.16) 

Finally, setting the ith derivative of the right-hand side 
of (5.13) at z = - 1 to zero, utilizing (5.15) and definition 
(5.16), we obtain 

VI. WAVELET FILTERS IN SIGNAL PROCESSING 
This section has its roots in a question which originally 

motivated the author to undertake this study: Inasmuch as 
the B trous and Mallat algorithms share the same recur- 
sions, why not choose the Daubechies filters since they 
enjoy the additional advantage of orthonormality? The 
strongest arguments in favor of orthonormality seem to be 
mathematical elegance, ease of inversion, and, more sub- 
tly, good numerical properties. The major drawback is a 
lack of flexibility in filter design, in particular, an essen- 
tially fixed relative bandwidth. On the other hand, we have 
seen that the DWT has a firm analytical basis independent 
of the B trous approximation, even in the nonorthonormal 
case. In the present section, we shall briefly examine the 
issues of inversion, boundedness, and adjustable relative 
bandwidth. (Another fundamental issue, regularity of the 
associated wavelet functions, appears in Appendix B.) In 

P; - = c bkPi (" - 2 + k) 'During the revision of this paper, it was brought to the author's attention 
that an implicit relationship between the squared filters and Lagrange in- 
terpolation had been independently noted in private conversations between 
I .  Daubechies and Ph. Tchamitchian. Similar observations are to appear in 
t271. 

(;> k > O  

(5.17) 
n + l  

4- k > O  c bkP; (7 - k) 
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particular, we wish to establish conditions under which 
these properties obtain, expressed directly in terms of the 
filters f and g rather than in terms, for example, of the 
scale function +(t)  or wavelet $(t) .  This view is in the 
spirit of the DWT as an entity in its own right, and it is 
certainly a necessary element in deciding which filters to 
use in practice. 

Any software realization of the wavelet transform only 
implements a finite number of octaves. Mathematically, 
this reduces inversion to an algebraic question, one of 
finding filters which satisfy certain (not overly restrictive) 
equations. However, other considerations begin to come 
into play. Exact inversion requires finite filters, and, even 
then, exceedingly long filters may not be useful. More- 
over, the constrained problem is considerably more diffi- 
cult to solve. An alternative approach, approximation by 
truncated infinite filters, might be acceptable, but, once 
again, practical considerations dictate that the filters de- 
cay quickly. Similarly, the behavior of the DWT at infin- 
ity (i.e., w i  as i goes to infinity) becomes relevant. For 
example, the condition C, g ,  = 0, the discrete counterpart 
of (1.2), is not necessary for inversion of a finite number 
of stages. However, it is necessary to finite energy and 
boundedness, which are desirable properties inasmuch as 
they reflect directly on the numerical stability of the al- 
gorithm and/or its inverse (see, for example, [3]). 

A .  Inversion 
To invert either the decimated or undecimated discrete 

wavelet transform it suffices to invert a single stage (oc- 
tave); that is, to find S I ,  given S I + '  and wl+' or W"'. 
The equations for inverting the decimated algorithm are 
exactly analogous to those for the Mallat algorithm pic- 
tured in Fig. 4. One seeks two filters p and q which invert 
a single stage of the decimated DWT in Fig. 1; i.e., such 
that 

S I  = PDs'+' + e l l s 1 + '  

= (PD) (AF)s '  + (QD)(AG)s'.  (6.1) 

Equivalently, 

(PD) (AF)  + (QD)(AG)  = Z (6.2) 

where Z is the identity matrix. This type of equation, 
which in the frequency domain may be separated into two 
equations comparable to (2.14a) and (2.14b), has been 
treated extensively (but not exhaustively) in the subband 
coding literature (cf. [12], [13], or even [8]). The QMF 
filters of the Mallat algorithm satisfy (6.2) with g , (w)  = 
f,(w + T ) , P  = f t ,  and q = g' (i.e., (5.10) and (5.11)). 
A less restricted class is just p = f t  and q = g' .  The 
general class of filters satisfying (6.2), so-called bior- 
thogonal filters, are examined in [28] and [29]. It should 
be emphasized that for perfect reconstruction in applica- 
tions all filters must be of finite length (FIR). This does 
not imply that infinite filters (IIR) implemented by their 
truncations are not worthy of consideration [28]. 

For the undecimated algorithm the requirements for in- 

g l  $ 

Fig. 7 .  Illustration of a single stage and its inverse for the undecimated 
algorithm found in Fig. 5 .  

version are much less stringent. In order to invert a stage 
of the algorithm of Fig. 6,  the filters p and q need only 
satisfy (cf. Fig. 7) 

SI = p * SI+' + q * W' 
= ( p * f  + q * g ) * s ' .  (6.3) 

p * f + q * g = 6  (6.4) 

That is, 

where the Kronecker delta, 6 A 60 ,m,  is the identity for 
convolution. This is a single equation, and consequently 
less restrictive th!n (6.2). If the polynomials formed by 
the z-transforms f ( z )  and g ( z )  are relatively prime, one 
may apply the Euclidean algorithm for the greatest com- 
mon divisor (in this case, one) to find p and q.  It has the 
advantage that finitefand g lead to finite p and q.  Another 
method is simply to solve the equation in frequency space, 

P z ( w ) f i ( w )  + qz(w)gz(w) = 1. (6.5) 
There is almost too much flexibility in solving this equa- 
tion, although it becomes much more restrictive if one 
demands that the filters be finite or rapidly decreasing. 
Once again, a popular choice [30] is f , f ,  + g,g ,  = 2, 
which, for example, can be solved for gz  by taking the 
square root of 2 - 1 f z I  as long as 1 f ,  (U) l 2  I 2. (Or, vice 
versa, it can be solved forf,.) The Daubechies (QMF) 
filters h/d2 and g/d2 certainly satisfy this equation so 
that inversion for the undecimated version of the Mallat 
algorithm is immediate. Another case, useful in signal 
processing, is to choosefto be h trous, p = f t / 2 ,  and g 
any filter with nonvanishing spectrum except possibly 
where I f,(u)I equals d2 (see next subsection). Important 
questions of numerical stability, filter lengths, etc. cer- 
tainly remain to be answered, but are well beyond the 
scope of the present paper. 

Finally, before departing from this subject, it should be 
mentioned that inversion of the undecimated case in the 
form of Fig. 5 also follows from (6.4). The inverting fil- 
ters are just D'p and D'q. It is a simple matter to verify 
that (6.4) implies that 

(D'p) * ( D ' f )  + (D'q) * (D'g)  = 6 .  (6.6) 
(Inserting zeros in 6 just yields 6.) 

B. Finite Energy and Boundedness 
The discrete wavelet transform is a m.apping of se- 

quences s,, n = 1,. 2, * * * into the space of doubly in- 
dexed sequences wk, i ,  n = 1, 2, . * * . Finite energy for 
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the signal is simply 

c 1s,12 < OQ. (6.7) 
n 

One’s initial tendency is to look for the same condition 
on the wavelet transform, i.e., C i , ,  Iwk12 < OQ. However, 
the actual situation is not quite so transparent. Referring 
back to the continuous case, we have [ 161 

i.e., the weight (measure) da d b / a 2  results in units of 
energy. For the DWT, a = 2’ and db is either 1 (the un- 
decimated case) or 2’ (the decimated case). Discretizing 
and noting that d u / a  = d(ln U) ,  we see that 

= In 2 ($) (6.9) 

since Ai  = 1 .  Observing that octave i has a bandwidth, 
up to a constant factor, of 1/2’, we assign (6.9) the fol- 
lowing physical interpretation: The discrete wavelet 
transform is in units of power/hertz. Multiplying by the 
bandwidth 1 /2’ gives power, and additional multiplica- 
tion by the time interval A b  gives energy. Note that the 
decimated version only outputs every 2’ points so that in 
that case Ab = 2’. In summary, 

du db (In 2) Ai A b  -+ 
U 2  2’ 

i) Iw:I2, I Wh12 are in units of power/hertz; 
ii) octave i has bandwidth = 1 /2‘; 

iii) I W i  12/2’ and IwL are in units of energy. 

One should take care to note that for w;,  the energy weight 
du db /u2  is a constant independent of i so that IwfI2 is 
discretized in a fashion so as to be both power/hertz and 
energy /cell. 

be the squared norm of s, and define 

(6.10) (1f”(12 & 2 lim sup 5 l(s‘((* 

which corresponds to the DC energy (i.e., at w = 0). Fi- 
nally, define the energy of the DWT by 

Let 1 1 ~ 1 1 ~  C, 
1 

i + m  

1 E = c 7 I( w’ 
’ 2  + 1)s” ( I 2  (6.1 la) 

E = l(~’11~.+   IS"(^^. (6.1 lb) 

Energy conservation takes the form of the following Par- 
seval’s relationship for discrete wavelets: 

Dejnition 6.1: A particular choice of filters f and g is 
said to be energy conserving if, for some constant C ,  

I 

* 

One may also specify conservation for decimated trans- 
forms, in which case the 2’ is dropped. 

Except for some clarifying remarks at the end, we re- 
strict the discussion in the remainder of this subsection to 
the undecimated DWT. Following the above definitions, 

we see that the wavelet transform will have finite energy 
if and only if 

(6.13) 
1 c 2 11wq2 + IIf”112 < 00. 

I L  

This is a necessary condition for the mapping w, from 
Z2(Z) to Z2(Z2; 2-’, 1) to be bounded. Of course, in prac- 
tice, implementations never compute an infinite number 
of octaves. Nevertheless, the property (6.13) of finite en- 
ergy can be quite important. Unbounded transformations 
tend to have poor numerical behavior even when trun- 
cated. Similarly, the inverse will not be bounded unless 
the series (6.13) is bounded below. A wavelet represen- 
tation which has these properties, 

1 
AllsJ12 5 C 2 11 + I(fm112 I B \ ( S \ ( ~  (6.14) 

I L  

is called a frame (cf. [3], although here the ambient Hil- 
bert space is 1’ rather than L2(R) . )  We proceed to derive 
conditions on the filters f and g for (6.14) to hold. 

Equations (3.14) imply 

Suppose that 

max (If,(ct1)1~ + I gz(w)12) s 1 .  (6.16) 
U 

Then, in the time domain, (6.15) and (6.16) imply 

L 

Adding 1) @‘-‘~~2/2’-’  to both sides and repeating for de- 
creasing octaves implies that 

Finally, letting J go to infinity, we get not only (6.13), 
but also the right inequality of (6.14) with B = 1 .  

However, the condition (6.16) is much too strong. That 
is, the transformation g -+ Cg for a large enough constant 
C would cause (6.16) to be violated even though C has 
no effect other than to multiply the total energy by a con- 
stant. In fact, the filters f and g produce finite energy 
transforms if and only i f f  and Cg yield finite energy. 
Thus, to have finite energy, it is sufficient to find a C > 
0 such that max, ( 1  fz(w)(2 + C1 gZ(w)l2 I 2. Such a C 
exists provided that 1 f, (U)’ I 2 and ( 1  /2) 1 gZ(w)l2/  
(1 - [ I  /2] 1 f , (w)I2) is finite; i.e., is less than some finite 
B = 1 /C. A similar argument holds for the lower bound. 
If 

(6.19) min i  w <IfZ(U>l2 + I gz(412) 2 1 
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then (6.18) holds with the inequality reversed and the left 
inequality of (6.14) holds with A = 1 .  Once again, we 
apply the trick with the constant C and find that, for the 
inverse to be bounded, it is sufficient that there exist A = 

2 A. In summary, 
Theorem 6.1: A sufficient condition for the undeci- 

mated DFT IV and its inverse to satisfy (6.14) (that is, to 
be bounded) is that, for all U, l f , ( ~ ) ( ~  5 2 and 

1/C > 0 such that (1/2)) gZ(w)l2/(1 - [1/21 If,(w)12) 

To satisfy (6.20), one must have If , (w)l  = 2 g,(w) = 
0, and the multiplicities of the corresponding roots must 
be identical. Note, also, that (6.20) can be used to give 
an estimate of B / A ,  the so-called tightness of the frame. 

Whether these conditions are also necessary remains an 
open question. One can, however, show from (3.11) and 
an examination of the power IVi(w) at w = 0 that a nec- 
essary condition is g, (0) = 0 (equivalently, C, g, = 0). 
This is the discrete analog of the admissibility condition 
(1.2). The author conjectures that in the discrete case it 
is not a sufficient condition. (We remind the reader that 
even in those cases for which the DWT is exactly the sam- 
pled WT, finite energy of the continuous wavelet trans- 
form does not imply that of the discrete transform.) We 
do have, however, the following theorem: 

Theorem 6.2: A necessary and sufficient condition for 
energy conservation (6.12) is that for all w 

1 1 
- ( I f Z ( ~ > l 2  + 2 I  gz(w)I2) = 1 .  2 

(6.21) 

To prove this we may, without loss of generality, set C 
= 1 (i.e., redefine g by the constant factor C). Sufficiency 
follows as above, with inequalities replaced by equalities. 
To prove necessity, we first note that energy preservation 
for arbitrary signals implies the energy must be conserved 
for each stage. (For example, if the signal is s ' ,  energy 
must be preserved, and since it is preserved for so, the 
first stage must preserve energy.) From (6.15) this implies 
(6.21) with C equal to one. 

The decimated case seems to present problems. In or- 
der for the above proofs to carry over, the even part of 
the signal would need to compensate for the lack of the 
factor 1/2' in (6.11b), but I ~ s ~ , ~ . , I ~ ~  # l /2 l~s i1~*.  This 
problem presents yet another area for additional research. 

C. Resolution and Relative Bandwidth 
Considerable insight may be gained by viewing the al- 

gorithm in the frequency domain. One stage of the deci- 
mated DWT, illustrating (4.11) from this point of view, 
is pictured in Fig. 8.  Since we are dealing with the dis- 
crete wavelet transforms, $ ( z )  = $(ej") is evaluated on the 
unit circle. For convenience only the positive frequencies 
are pictured. Briefly, the algorithm is 

a) Bandpass filter the upper half of the spectrum to 
yield w ' .  

b) Low-pass filter to obtain the lower half of the spec- 

c) Decimate to expand the lower half to [0, n]. 
d) Go to a). 

In somewhat more detail: We first obtain the high fre- 
quency information by using g to filter the upper half of 
the spectrum of s' .  The filter output is w ' .  Then, in prep- 
aration for the next octave, s'  is low-pass filtered by f. 
This retains the, as yet unexamined, low frequency con- 
tents and also prevents the upper half of the spectrum from 
aliasing (i.e., contaminating the low frequency contents) 
in the dilation which follows. Finally, the operator A 
spreads" the remaining energy to fill the spectrum, pro- 
ducing octave i + 1 .  The procedure then repeats itself, 

is bandpass filtered to get the spectral contents at 
frequencies which are, in absolute units, one half the fre- 
quencies of the previous octave. 

A potential problem is immediately apparent. If the 
bandwidth of gz(w) is less than ~ / 2 ,  a portion of the sig- 
nal energy will be discarded; it never appears in w ' .  One 
possible remedy is to make g, sufficiently broad; how- 
ever, that would limit the resolution. Alternatively, we 
may introduce so-called voices. That is, we can employ 
a bank of filters of the type g (see Fig. 9) in order to cover 
the entire upper half of the spectrum. 

We formalize some of these concepts using the modu- 
lated Gaussian of (1.4) as an example. With the introduc- 
tion of an additional parameter P ,  +(t) becomes 

+(t)  = A e j v t  e - - p 2 t 2 / 2 .  (6.22) 

trum (10, 7T/21). 

+ I 

Its Fourier transform is given by 

(6.23) 

We define the bandwidth of $(U) as twice the interval 
between points for which the modulus of (6.23) drops to 
1 / e  of its peak value, i.e., 

BW A 2d2 P .  (6.24) 

The filter g (which, here, equals g t )  is the sampled ver- 

" -  e J ~ n e - 8 2 n 2 / 2 .  (6.25) 

For convenience, we set the sample rate equal to one. The 
following three restrictions on v and 0 are necessary: First, 
in order that gz(w) lie in the upper half of the spectrum 
(cf. Fig. 8), we require that 

sion of (6.22), that is, 

(6.26a) 
7T 
- 5 v. 
2 

Next, in order that +(t)  is admissible and analytic (see 
[ 18]), we demand 

(6.26b) 

"A, which decimates, is a contraction. Thus, in the Fourier domain, it 
is a dilation. 
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0 ff 

Fig. 8 .  Illustration of one stage of the algorithm, octaves i and i + 1 inclusive, viewed from the frequency domain. 

g, considered as a filter on octave i is v/2', and its band- 
width is 2 J 2  p/2'. For this reason it is simpler and less 
ambiguous to speak in terms of a relative bandwidth which 
is independent of decimation. More precisely, we define 

3c E *e 
. .  . .  . .  

BW 
mean frequency ' 

RBW (6.28) 

(Any appropriate representative of the "center" of the 
filter can replace the mean frequency in (6.28).) In the 
case of g,  we have 

0 T/L R RBW = - (6.29) (2 J 2  p / 2 7  
(v/2') 

Also, since n / 2  5 v 5 n, we have 2 d 2  p/a 5 RBW 
I 4 d 2  p/?r ,  or approximately 

p 5 RBW I 2p. (6.30) 

2 J 2  p -- 
U 

Fig 9 Plot of the power spectra of the bandpass filters for four voices 
where $(U)  is given by (6 23) 

Under (6.26b), g,(w) - 0 for w I 0. (Reference [18] 
recommends 0 I v/5 as being sufficient.) Finally, in or- 
der that the spectrum not be aliased, we set In view of (6.30), we shall consider the parameter @ as, 

essentially, the relative bandwidth of g.  
v I T - J 2 p .  (6 .26~)  The number of voices M which we would expect to need 

to cover the upper half of the spectrum is These may be summarized in 
a / 2  1 

2 J 2  p 26 '  
max (2nP, n/2) I v 5 ?r - J2 6 .  (6.27) M - - - -  (6.31) 

is determined 
At this point a word of caution is advised. The band- 

width of the discrete filter g (e.g., (6.25)) is 2 J2 p only 
when the sample rate is 1.  Since the ith octave is the re- 
sult of i decimations by 2,  sampling the original signal so 
at a rate A r  = 1 results in a Nyquist frequency of n/2'  
for octave i (i.e., for si). Thus, the central frequency of 

The filter for voicej, which we denote 
by sampling the function $ ( t / a ' I 7  i.e., 

[p], 2 rl/(n/aJ> f o r j  = 0, * , M - 1 

and a 2 2'IM. (6.32) 
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The power spectra of the ,v are illustrated in Fig. 9. An 
alternative would be to define the voices as frequency 
translations of the filter g. However, (6.32) seems to be 
a more natural definition since it maintains the affine 
structure. (It is equivalent to taking a nondyadic value for 
the dilation parameter U in (1. l ) . )  Note that the band- 
widths of the voices decrease with j ,  and the spectral 
spacing 2 d 2  p /CY' differs somewhat from that assumed in 
(6.31). 

Control over the relative resolution is important be- 
cause, although the absolute resolution (,0/2') improves 
at higher octaves, at the same time, the analysis frequency 
decreases. If one wishes to improve resolution at a given 
frequency, one has to better the relative resolution, i.e., 
decrease 0. On the other hand, the standard tradeoffs ap- 
ply to choosing p. Small increases the relative resolu- 
tion but also requires more voices and a longer filter g; 
thus, more computation. (The duration of $( t )  is on the 
order of 2 J 2 / p  so that to provide a reasonable approxi- 
mation to (6.22), the length of g must be proportional to 
1 / p . )  Moreover, the increased length of g implies a wors- 
ening of the (relative) time resolution. The time-band- 
width product is bounded below by the uncertainty prin- 
ciple, and no amount of computation will simultaneously 
produce arbitrarily small time and frequency resolution in 
a single wavelet transform. 

With respect to choosing the low-pass filterf, we note 
that the spectrum of a longer filter f will generally have a 
sharper cutoff. This cutoff is relevant because it prevents 
the energy in the upper half of the spectrum from leaking 
(aliasing) into the lower half under the decimation A. For 
most applications, a Lagrange B trous filter of length 7 (N 
= 2) is sufficient [ 5 ] .  One can, of course, also use the 
asymmetric filters h .  Their discrimination of temporal di- 
rection seems intriguing, but remains univestigated. 

Finally, how do the above considerations relate to or- 
thonormal wavelets? The power spectra of filters h and g 
obeying (2.14) satisfy [8], [20] 

lh,(412 + I g,(4l2 = 2 (6.33a) 

and 

I h m l  = I gz(&7r)l = .j2. (6.33b) 

It follows that, for positive frequencies (likewise, for neg- 
ative frequencies), g and h must each maintain a band- 
width on the order of 7r/2.11 Thus, in exchange for or- 
thonormality one relinquishes control over bandwidth. 
The relative bandwidth is, essentially, fixed at 
(n/2)/(37r/4) = 2/3.  On the other hand, if one wishes 
to give time and frequency localization equal weight (e.g., 

= 1 SO that bandwidth = duration = 2d2),  a relative 
bandwidth in the neighborhood of 2 /3  is in a sense opti- 
mal. 

"For the orthonormal wavelets of compact support, the larger the value 
of N ,  the more rapid the asymptotic convergence of $(U) to zero; i . e . ,  as 
w + m [8]. This hints at a smaller bandwidth for $ and, hence, also for g, 
for large N .  However, the speed at which the $(w) fall off near w = 0 
appears to be fairly insensitive to N .  

VII. CONCLUSION 
We have seen that the B trous algorithm bears an inti- 

mate relationship to Mallat's multiresolution algorithm. 
Originally devised as a computationally efficient imple- 
mentation, it is more properly viewed as a nonorthogonal 
multiresolution algorithm for which the discrete wavelet 
transform is exact. Moreover, the commonly used La- 
grange B trow filters are simply the convolutional squares 
of the Daubechies filters for compact orthonormal wave- 
lets. 

From a broader viewpoint, these two algorithms are in- 
stances of the discrete wavelet transform (DWT), which, 
in more conventional terms, is simply a filter bank utiliz- 
ing decimation and two filters. There are two basic ver- 
sions of the DWT one of which is simply the decimated 
output (octave i is decimated by 2') of the other. The 
decimated DWT is characterized by octaves a) obtained 
by alternating a low-pass filter f with decimation, and b) 
tapped by a bandpass filter g to produce the output. The 
undecimated DWT inserts i zeros between the elements 
of the filters at octave i in lieu of decimation. (In the case 
of voices, several g's are used.) Finally, we note that un- 
der very general conditions, there exists a function $(t) 
such that the filter bank outputs wi correspond to the sam- 
pled wavelet transform 

thus, justifying the terminology discrete wavelet trans- 
form. 

The personality of a given DWT is distinguished by the 
choice of filters. I f f  satisfies the B trous condition f2n = 
- hnO/J2, then g is the sampled version of $(t); i.e., g, = 
$ ( - n). If finite length f and g obey the constraints of the 
multiresolution algorithm, then the J2' $(2't - n) are the 
compact orthonormal wavelets. A number of fundamental 
constraints have been discussed. In various combinations 
they have a bearing on the regularity of the wavelet func- 
tion, on the energy in the transform domain, and on the 
boundedness and invertibility of the transform. In partic- 
ular, we have provided a set of conditions on the filters 
sufficient for the transform and its inverse to be bounded. 
The signal processing properties of the discrete wavelet 
transform depend particularly strongly on the choice of g. 
The general constraints mentioned above are not restric- 
tive on g; however, there is considerably less freedom in 
the orthonormal case. In particular, if orthonormality is a 
requirement, the half bandwidth of g (and, hence, the rel- 
ative bandwidth of the wavelet) is no longer adjustable. 
It remains fixed at approximately 7r/2. 

Many topics remain for investigation. Although con- 
siderable work has been done in finding filter pairs which 
have a complementary set for the inverse transform ([ 81, 
[28], [29]), it is far from exhaustive. The equivalence of 
maximally flat filters (with equal order roots at 0 and T) 
with Lagrange B trous filters as a design tool is perhaps 
worthy of investigation. Many of our filter conditions on 
energy are sufficient but possibly not necessary; a tight 
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set of necessary and sufficient conditions for boundedness 
would be desirable. Finally, an investigation into the 
quality of the approximation of the DWT to the sampled 
WT in the case where it is not exact could be fruitful. It 
would perhaps lend more insight into the role of the reg- 
ularity of the wavelet function in particular applications. 

APPENDIX A 
PROOF OF LEMMAS 3.1 AND 3.2 

Lemma 3.1: 

[(A F)']nk = [(AF)'1O,k - 21n. (A. 1) 

(A. 2) 

Proof: For i = 1, we have 

[AFIrrk = h n - k  = [ A F 1 0 . k - 2 n .  

respectively. Also, 

w:, = IT&. (B. 3) 

In essentially all applications f is a low-pass filter and g 
is high-pass. This rather vague qualification is quantified 
below. 

That is, in addition to the above definitions, it is ex- 
pedient to impose auxiliary conditions on the filters to en- 
sure a) that the DWT is related to some WT with a rea- 
sonably behaved scale function 4 ( t ) ;  b) that the transform 
have finite energy and be a bounded transformation; and, 
often, c) that it be invertible. The algebraic conditions for 
invertibility are found in (6.2) and (6.4). At the time of 
this paper no single set of necessary and sufficient con- 
ditions exist for the satisfaction of a) and b). Indeed, the 

Then, by induction, 

t(AF)'Iflk = 

- - 

Lemma 3.2: 

definition of "reasonable behavior" of the scale function 
ultimately depends on the application. In an attempt to 
provide some degree of organization, we first list the can- 
didate constraints, loosely labeled as low-pass, high-pass, 
or energy conditions. We then summarize their conse- 
quences. If either of the filters is infinite it is assumed to 
satisfy the decay condition [8], [26] 

f 2 n  --m [(AF)' - ' l m k  

h n  -m  [ (AF)'  - ' 1 0 , k - 2 ' -  Im 

f - m  [(A F)' - '10,k -21- lm -2ln 

3 E such that c Ifn[ n e  < 00. 
n 

(B.4) C j - m  t (A F - ' ~ m ,  k - 2tn 

[(A F)'lO,k - 2'n. (A.3) 1. Candidate Constraints 
i) Low pass 

i -  1 c f, = J 2  c [(hF)'],kejkW = eJ2lnW fZ(2'w). (A.4) f l  

r = O  
(i.e., (1/2)fz(0) = 1). 

Proof: For i = 1, we have ii) Energy 

k [AF],eJk" = Cf2f l -ke ikw  k ;lL(412 5 1. 

= eJ2""f,(w). (A.5) iii) Low pass 

1 
Then, by induction, Jjfz'"' = (1 + e'w>Nr(4 (B.7) 

1 - 2  c k [ (AF) ' lnkeJkw = c k [ (AF)] f lkeJk(2 ' - 'w)  r = O  f,(2'W). where ly(w)l 5 C < 1 /2  ((B.7) implies thatf,(a) = 0). 
iv) Energy: complementary low-padhigh-pass pair 

Equation (B. 8) implies 

a) high pass 

APPENDIX B 
SUMMARY OF FILTER CONSTRAINTS 

The discrete wavelet transform 19' and the decimated 
discrete wavelet transform w' (or d') are defined for ar- Cg, = o  (B.9) 
bitrary filters f and g by n 

s l + l  = ( D ' f )  * s f  

I9' = (D'g) * s f  

(B. la) 

(B. 1b) 

(i.e. 9 g z  (0) = 0) 

b) low padh igh  pass 

;If,(@l = 1 =$ sz(4 = 0 (B. loa) and 
s i + l  - - A(f * si) (B.2a) gz(o) = 0 * ;[f i(o)l = 1. (B.lOb) 

w' = g * S I  (B.2b) v) Energy 

d i + t  g Awi (B.2c) ;(If,(4l2 + Clgz(4l2) = 1. (B. 11) 
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2. Implications 
Necessity for pointwise convergence of (4.1) to $(U):  

(B.5). 
Sufficiency for (4.1) and (4.4) to :onverge in L ’ ( R ) ,  

and L2(R) to continuous 4(t)  and +(U), respectively: 
(B.5)-(B.7). This is one of the central results of [8], which 
also includes an examination of the decay of 4(t)  and other 
regularity properties. Note that an important class of 
wavelets which does not fall under the domain of this 
theorem is the Haar wavelets (2.28a). Pointwise conver- 
gence still holds for the Haar wavelets, but they are not 
continuous. 

Necessity for finite energy: (B .9). 
Sufficiency for finite energy and that the transformation 

be bounded: (B.6) and B < 03 in (B.8). 
Sufficiency for a bounded inverse: (B.6) and A > 0 in 

(B.8). 
Necessity and sufficiency for energy conservation: 

(B. 11). 
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