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Abstract 

This paper discusses the concepts of fractal geometry in a cellular biological context. It defines the concept of the fractal dimension, 
D. as a measure of complexity and illustrates the two different general ways of quantitatively measuring D by length-related and 
mass-related methods. Then, these several Ds are compared and contrasted. A goal of the paper is to find methoda other than 
length-related measures that can distinguish between two objects that have the same D but are structurally different. The mass-related D 

is shown potentially to be such a measure. The concept of lacunarity, L, is defined and methods of measuring L are illustrated. L is also 
shown to be a potentially distinguishing measure. Finally, the notion of multifracticality is defined and illustrated to exist in certain 
individual nerve and glial cells. 
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1. Introduction 

This paper presents a restricted review of the applica- 
tion of fractal geometry to quantitative cellular morphol- 
ogy. In presenting these methods and their associated 
results we hope to be able to develop a coherent discussion 
of fractal geometry. Fractals and many natural objects have 
a number of special properties. First, they are complex as 
is manifest in their ‘roughness’. Second, they may have 
structural variation or inhomogeneities that may be mani- 
fest by ‘texture’. The fractal dimension (D) measures the 
former and the lacunarity (L) measures the latter 
(Mandelbrot. 1982, 1994). This paper will deal with the 
conceptual and methodological aspects of fractal geometry 
concerning these properties. 

Fractal geometry can be considered as an extension of 
conventional (Euclidean) geometry. Conventionally, we 
consider integer dimensions which are exponents on length, 
i.e., surface = length’ or volume = length3. The exponent 
is the dimension. Fractal geometry allows for there to be 
measures which change in a non-integer or fractional way 
when the unit of measurement changes, hence the term 
‘fractal’. The governing exponent, D, is called the fractal 
dimension (Mandelbrot, 1982). If one is interested in 
globally describing the shapes of objects quantitatively, 
one can associate D values with complexity of form 
(Cutting and Garvin, 1987; Smith et al., 1989; Smith and 
Lange, 1996). Analytic Euclidean geometry does not easily 
lend itself to this goal, but fractal geometry does. This is 
largely because complexity of form and scaling are inti- 
mately related. For example. to the microscopist. the fea- 
ture of an object that dictates that more fine structure will 
be revealed as it is magnified is its morphological com- 
plexity (e.g., increased resolution and detail). Fractal ob- 
jects have this property. It is known as self-similarity or 
scale invariance. A self-similar object appears qualitatively 
the same, irrespective of magnification. This suggests that 
fractal geometry might provide useful measures of this 
type of complexity. Indeed, the fractal dimension measures 
the rate of addition of structural detail with increasing 
magnification, scale or resolution. The fractal dimension, 
therefore, serves as a quantifier of complexity of form 
(Cutting and Garvin, 1987). Fractal geometry has proven 
to be a useful tool in quantifying the structure of a wide 
range of idealized and naturally occurring objects. The 
range of application extends from pure and applied mathe- 
matics, through physics and chemistry to biology and 
medicine. 

Of course this is but one definition of complexity. To 
some. complexity could be embodied in a lack of pre- 
dictability as in complex poetry or music. A true fractal is 
the antithesis of this. If one knows its form at one resolu- 
tion, one can exactly predict its form at any other scale. 

Those new to fractal geometry may be concerned with 
the ‘meaning’ of D. In this context, it should be empha- 
sized that D is a descriptive, quantitative measure; it is a 

statistic, in the sense that it represents an attempt to 
estimate a single-valued number for a property (complex- 
ity) of an object with a sample of data from the object. 
Moreover, D does not necessarily imply any underlying 
mechanism of form generation or function. In general. 
connections between the empirical values of D and any 
specific, say, growth mechanisms require the answering of 
specific scientific questions and not statistical or mathe- 
matical ones. One can, for example, view D in much the 
same way that thermodynamics might view intensive mea- 
sures such as temperature. That is, as a measure of a 
property of some object or material, even though in the 
case of temperature a good deal is known about the 
underlying mechanisms leading to its value. 

As useful as D has been in quantifying structural 
properties of objects, it is not a unique, sufficient measure. 
For example, two objects may appear visually very differ- 
ent from one another in their structural characteristics and 
yet have the same fractal dimension (Smith et al., 1989; 
Smith and Lange, 1996). In the same sense, two materials’ 
samples may have. say, the same mean value on some 
measure but be significantly different in some other re- 
gards, for instance in their statistical variance. We would 
hope that we might find other measures which, when taken 
along with D, constitute sufficient measures of complexity 
and other global morphological properties. That is, provide 
a quantitative description of cells that is congruent with 
our traditional visual impression of complexity. The search 
for such measures is one goal of this paper. 

2. Methods and results 

2.1. Methods of calculating fructal dimension 

In general, there are two basic approaches to measuring 
the fractal dimension of an outlined (border) object in a 
plane. The first, and most commonly used, is length-re- 
lated and measures the lengths or distances between points 
on the border of, say, a binary image (i.e., a one-pixel-wide 
black border on a white background). The resultant D is 
called the capacity dimension. The second or mass-related 
method counts border pixels located within discs of vari- 
ous diameter, where the discs are randomly centered on the 
image border. The resultant D is called the ‘sandbox’ or 
the cumulative mass dimension (Feder, 1988; Caserta et 
al., 1990, 199.5). In either case, it is the statistics of the 
samples as a function of the size of the sampling domains 
(ruler lengths, disc diameters. etc.) that is the important 
measure. When a distance measure is applied, the size of a 
pixel side becomes the unit of length. When a pixel 
counting measure is applied. the individual border pixel 
becomes the unit of mass. 

2.2. Length methods 

There are several ways of measuring length-related 
fractal dimensions, which have been detailed elsewhere 
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Fie. 1. Mea~ring the length-related. capacity fractal dimenston (D) of a 

Koch snowflake (A. upper). with a calculated D = 1.26 by the dilation 

(DIL). box counting (GRID) and perimeter tmce (TRA) methods. (B. 

lower) Log-log plots of the equivalent perimeters with measuring ele- 

ments (resolvable \ire) from size 2 to 128 pixels. in powers of 2. In this 

and all log-lo_r plots. the cuwe fit\ are a power function. See text. 

(Smith et al.. 1989) and shall only be reviewed here. They 
can be tested by using the borders of fractals of known D. 
for example the Koch figures. e.g.. in Fig. 1 (Smith et al.. 
1989) ‘. The classical method of Richardson (Mandelbrot, 
1982) involves measuring the perimeter of an object with 
various lengths of rulers (spans or calipers) (trace method). 
When the log of the perimeter is plotted against the log of 
the ruler lengths. a fractal object gives a straight line with 
a negative slope S. Then. D = 1 - S. 

A second method is based on the concept of ‘covering’ 
the border and is called a ‘box counting’ or grid method. 
Here, sets of square boxes (i.e.. grids) are used to cover the 
border. Each set is characterized by a box size. The 
number of boxes necessary to cover the border is noted as 
a function of the box size. The log of the number of 
covering boxes of each size times the length of a box edge 
is plotted against the log of the length of a box edge. 
Again. a straight line results. with slope S. and D is 
calculated as before ‘. 

A third method. developed by Flook (Flook, 1978; 
Smith et al.. 1989). is called the dilation method. Dilation, 
in this case. means a widening and smoothing of the 

’ Mo\t images m thi\ paper are hhown mainly a\ Glhouettes. for visual 

clarity. All measurements. however. were done on one-pixel-wide. bor- 

der-only Images. 

’ An old verston of NIHImape Imaging software program. called 

ImageFractal and run on Macintosh II computers. performs a box-count- 

ing routine on one-pixel wide. binary image files. It i\ available via FTP 

from zippy .nimh.nih.go\ /pub/NIHImage/spinoffs. The results can be 

\a\ed ah a text file for analysis with any applicatton capable of curve 

fitting and Gmplr bpread \heet manipularion\. 

Fig. 2. Examples of length and mds\ method> result\. (A) Image of Koch 

(D = 1.50) quadic island. (B) Length (dilation) method example. Island 

after dilation with a disc kernel diameter of 16 pixels. Note loss of border 

detail shown in A. (C) Maar method example. Apphcation of six groups 

of concentric discs. with various diameter\ and ccntel-ed on border of 

Koch Island. all centers lyin, - within the radius of gyl-ation (large circle). 

See text. 

border (see Fig. 2B). It can be accomplished by convolu- 
tion operation with a binary disk, i.e. all the non-zero 
components of all the convolution kernels have a (Boolean) 
unitary value. The result is a thickened. but grey scale 
border. To return this border to Boolean one values. all 
non-zero pixels are thresholded to a Boolean one. The rate 
at which the total surface area of the border grows as a 
function of the diameter of the convolution kernel depends 
on D. The log of each resulting area divided by the kernel 
diameter is plotted against the log of the kernel diameter. 
Yet again, a straight line results with a negative slope S 
and D is calculated as above. 

It should be noted that with length-related methods, the 
magnitude of the resultant measure (perimeters, etc) in- 
creases as the measuring element (ruler. etc.) decreases in 
size. In a deterministic or mathematical fractal, the in- 
crease continues without limit as the measuring element 
approaches zero or infinity. This is an illustration of the 
important and defining property of fractals, viz. self-simi- 
larity (scaling symmetry or invariance) (Mandelbrot, 1982). 
Universal self-similarity exists only in mathematical for- 



DIL = 1.25 

GRI = 1.25 

TRA = 1.25 

Fi2. 3. Meaburmf the fractal dimension (U) of a cell cultwed spinal cord 

neuron (above) by the dilation (DIL). grid (GRID) and perimeter trace 

(TR.A) methods. (Lowzer) Log-log plots of the equivalent perimeters with 

measuring element\ (resolvable size) from size 1 to I28 pixels. in powers 

of 2. See text. 

mulas or in computer algorithms. Real world or natural 
fractals are only self-similar in a statistical sense and have 
fractal dimensions restricted to ranges of scales (Baumann 
et al., 1993). That means that the fractal is statistically 
self-similar and looks qualitatively the same over many 
scales. 

The operations designed to estimate length-related frac- 
tal dimensions have a low pass filter character to them. 
That is. with increases in the size of the measuring ele- 
ments, the higher spatial frequencies (border roughness) of 
an image are progressively removed, while leaving the 
lower spatial frequencies (long branches). This is illus- 
trated for dilation in Fig. 2B. The final D value calculated 
is an average property of the whole object and has no 
spatial locality. All three of the methods employed to 
calculate D are essentially plots of log length vs. log 
length. Thus. the relevant power relationship is: 

L( e) = Fr” (‘1 
L(P) is the equivalent perimeter as a function of the 

resolving element, r. F is a prefactor and S is the slope of 
the plot of log L(r) vs. log e. Since 5’ is negative and /SI is 
less than one. D is between I and 3 for objects in a plane. 

Given sufficient detail and magnification of a cell’s 
binary border. the results of all three operations give 
similar Ds (see Fig. 3) (Smith et al.. 1989) All of these 
methods consistently underestimate the values of ‘true’ or 
deterministic fractals by a few percent (Fig. I). This is a 
consequence of the fact that a finite, digitized image with a 
limited number of pixels (resolution) and cannot realize 
the detail implicit in a deterministic fractal. This error is 
probably found in the measurements of natural fractals as 

well, but since it is a consistent and not random one, and 
since most results are used comparatively, the error should 
not significantly affect the conclusions drawn. 

The first two methods can readily be implemented on a 
computer or can even be done (tediously) by hand. The 
Dilation method is more difficult to program on a com- 
puter ‘. but is somewhat superior to the others in that it is 
less sensitive to the location of the image in a frame or to 
pixelization effects. For example, if the border is not 
centered in the image frame and does not adequately fill 
the frame, the grid method vvill give too few points with 
large grids and erroneously increase the slopes in the 
log-log plots. In addition, since many borders become 
straight (Euclidian) lines with small rulers in perimeter 
measurements. the slope tends towards zero (D = 1) and 
leads to nonlinearities in the log-log plots (see Fig. 3, 
TRA). The dilation method is superior because it measures 
at every point on the border at all scales and hence 
generates more data (Smith et al.. 1989, 199 I>. In Fig. 4 
and all subsequent figures the length-related Ds are from 
the dilation method. 

The mass-oriented measure of D involves counting of 
border pixels contained in a sampling region (e.g., disc 
diameters), as a function of the sizes of the sampling 
regions (Feder, 1988; Caserta et al.. 1990, 199.5: Smith and 
Lange, 1996). Here, one centers boxes or circles (the result 
will be the same irrespective of the shape used) of differ- 
ent sizes at many randomly located points on the border 
and counts the number of border pixels contained within 
each box or circle (or disc). This so-called ‘sandbox’ or 
cumulative-mass method (Caserta et al., 1995; Smith and 
Lange. 1996) is a variant of the box-counting method. This 
is diagramed in Fig. 2C. Then, the log of the number of 
pixels within each box or circle is plotted against the log 
of the measuring element (edge size, diameter). A fractal 
object gives a line with a positive slope. which is the D 
for that object. The power relationship plotted is: 

p(r) =Ar” (2) 

where I is the number of pixels (mass> in a box of size 
r, r is the circle diameter or box-edge length, A is a 
prefactor and D is the slope of the plot of log p(r) vs. log 
r and D is the mass fractal dimension. 

The motivation for employing mass measures of fractal 
objects is several fold. In the first instance, they provide 

’ There i\ a program macro (Fractal Dilation) for recent versions of the 

image processing program NIHImnge (version I.53 or later) for the 

Macintosh that performs the Dilation algorithm on one-pixel wide, binary 

image files. All the software i5 available via FTP from 

zippy.nimh.nih.gov/pub/NIHImage/User Macros. The results can be 

saved as a text file for analysis with any application capable of curve 

fitting and himple spread sheet manipulations. 
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Fiy. 4. Two cell cultured neuron\ (ADI nith the ame length-related D 

( I .5 I 1 but - ith different morphologir. In thts and all subsequent figures. 

Icngh-related Ds v.ere drtermmsd by the dilation method. (A) Cerebellar 

Put-ktnje cell. (D) Sptnal cord cell. (B.E.) Log-log plot\ of equivalent 

perimeter3 ~5. resolvable size. of A and D. rr\pectively. to give Iength-re- 

lated D\ of I .5 I. (C.F) Log-log plot\ of pixel count\ a\ a function of disk 

diameter\. from A and D. to give maarrlated fIs of I.54 and 1.56 and 

lacunarittes (L) of 0.31 and 0.23. re\pectiwly. 

another and often different value(s) of D for the same 
object analyzed with length measures. For example. for 
Euclidian objects (lines. squares. etc.) and deterministic 
fractals. the length and mass fractal D values are theoreti- 
cally the same. In practice. however. they may differ 
slightly. due to the less than perfect resolution realized in 
the finite. digitized images employed, as mentioned above. 
With natural fractals the two Ds are often different, with 
the mass fractal D value (usually) being the larger (Fig. 4. 
cf. B.E and C.F). While. in a statistical sense, the two 
measures are not completely independent (see Fig. 5). they 
may still provide useful distinctions in certain cases (Fig. 
1: see below). Secondly. and more important. the mass 
measures provide more information about the fractal object 
or set than the length measures (Feder. 1988). This can be 
appreciated from a consideration of conventional box 
counting (grid) methods. With the length measure, the only 
concern is the number of boxes of each size required to 
cov’er the set (border). This result is a crude measure in 
that it says nothing about the structure or distribution of 
pixels within an image (Feder, 1988). Mass measures. 
however. deal with this distribution property in that the 
number of pixels in a given size box is the (weighted) 
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 

LENGTH FRACTAL DIMENSION 

Fig. 9. Linear, pair-wise plot of mass-dertved n\ (D-mass) w. length-de- 

rived ns (D-length) for a variety of cell types. Correlation coefficient = 

0.86. 

measure and thus leads to the notion of mass density (i.e.. 
mass/area). Mass measures also lead conveniently to the 
concepts of lacunarity and multifractals. as shall be dis- 
cussed below. 

It is instructive to examine the length and mass methods 
of determining D when applied to Euclidian objects such 
as lines and circles. Fig. 6 illustrates such results. With a 
line (Fig. 6A, line), the length plot results in a slope of 

LINE CIRCLE 
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Fig. 6. Euclidian figures: (A) line and circle. Application of length 

measures (B) and mass measure> (Cl. In C. both mean count and 

Ftandardired variance or coefficient of variation (standard 

deviation/mean) are plotted vs. diw dtameter. See text. 



zero and D = 1. as expected (Fig. 6B. line). Likewise, the 
line mass measure has the expected slope of one and 
D = 1 (Fig. 6C, line), with a constant normalized variance 
or coefficient of variation (standard deviation/mean). This 
is a consequence of the fact that all the pixels lie on a 
single line with constant separation and with constant, zero 
angle between them. With a circle (Fig. 6A, circle), the 
length plot gives a slope of almost zero (S = -0.02) and a 
D near one (D = I .02) (Fig. 6B, circle). The mass method 
also gives a D near one (D = 1.02), but the variance is not 
constant (Fig. 6C. circle), particularly for small diameter 
discs. This results from the fact that the digitized ‘circle’ 
does not have pixels that are all equally spaced along the 
border. nor have a constant angle between them. The result 
is. therefore. an artifact of the digitized approximation of a 
circle and differs slightly from the expected result of 
D = I and gives a notion of the limits of accuracy of these 
measuring methods. One can also see evidence of such 
artifacts when measures are applied to non-Euclidian, frac- 
tal objects. 

While natural fractal objects can illustrate the problem 
of disparate images having the same capacity fractal di- 
mension (Fig. 4) it can be more clearly and convincingly 
demonstrated with deterministic images that are generated 
according to some mathematical formula or algorithm, 
such as the Lindenmayer or L-system method (Prusinkie- 
wicz and Lindenmayer, 1990). Such results are shown in 
Figs. 7 and 8 for objects of relatively low D (Fig. 7, 
D = 1.26) and relatively high D (Fig. 8. D = 1.62). re- 
spectively. Note that the objects (A and B) look quite 
different, but the respective slopes of the length related 
plots (C and D) are identical. This phenomenon. therefore, 
may be found throughout the range of borders in a plane of 
D from 1 to 2. 

Natural fractals. however, rarely show such sharp di- 
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Fig. 7. Koch (A) and L-system-derived image\. which look very different. 
but have the hame low balued capacity Ds (1.26). See text. 

I 
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Fig. 8. Koch (A) and L-system-derived images. which look very different, 

but have same high valued capacity Ds (I .62). See text. 

chotomies of border roughness or profuse branching in 
isolation. Rather. they represent some (usually unknown) 
combination of these two properties. It would be useful to 
be able to sort them out in individual cases, but thus far, 
however, this has not been practicable (see Section 3). 

In addition, there is another distinguishing property of 
fractal objects, which is found in natural fractals, that can 
also be more clearly demonstrated with stylized images 
(Fig. 9). This involves images that have either uniformly 
distributed pixels (Fig. 9, uniform) or non-uniformly dis- 
tributed pixels (Fig. 9. nonuniform). Here. the global 
length-derived Ds may be the same (Fig. 9B,E, D = 1.67), 
but the mass-derived ones are both larger and may be 
unequal (Fig. 9C, D = 1.90: F. D = 1.81). More impor- 
tantly, however. is the significant difference in the vari- 
ances of the two image types. This is indicated by the fact 
that the vertical scatter of points in the mass measures is 
smaller in the uniform image (Fig. 9C) than in the nonuni- 
form one (Fig. 9F). The individual points in the vertical 
scatter at each disc size represent the individual border- 
located, disc centers. These phenomena relate to lacunarity 
and to the multifractal character of natural, nonuniform 
fractal sets (images), which are discussed below. 

2.4. Other ,fractul measures 

The preceding text and data represent examples of the 
focus and attention found in the early history of analytical 
fractal geometry, particularly as they applied to natural 
(and especially biological) objects. There, the emphasis 
was on the search and application of measures of fractal 
objects such as the capacity D. The attempt was to focus 
on natural fractal objects that were similar to deterministic 
fractals in the properties of uniformity of structure and 



range of self-similarity. Eventually. it became apparent 
that many natural fractal objects were often not very 
structurally uniform and had restricted, and often variable, 
ranges of self-similarity. Attention was therefore drawn to 
the variation in structure within fractal objects and a search 
for different measures to quantitate this variability (see 
Feder. 1988; Vicsek. 1988). An example, as mentioned. 
was the observation that a given value of D does not 
uniquely specify a cellular morphology and very differ- 
ently looking objects can have the same or very similar Ds 
(see Fig. 4; see also Figs. 6-9 and 12, for other examples) 
(Smith et al., 1989). This is a general problem in fractal 
geometry (Evertz and Mandelbrot, 19921, which can ap- 
pear in several guises, and falls under the mantel of 
‘differences in texture’ (Mandelbrot, 1994). What is 
needed, therefore, is at least one other measure that distin- 
guishes such objects. That measure would provide a new 
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D = 1.67 

quantitative measure and expand the scope of analyzing 
natural objects. 

2.5. Lacmarir?, 

Lacunarity is potentially such measure. Lacunarity can 
be variously defined and characterized. In a restrictive 
sense, it is a measure of the lack of rotational or transla- 
tional invariance (or radial symmetry) in an image (Allain 
and Cloitre, 1991). The name lacunarity is from the Latin 
lucuna for lack, gap or hole (Mandelbrot, 1982). Hence, a 
fractal is said to be lacunar if the gaps in an object are 
wide, i.e., if they have large intervals. holes or voids. But 
that does not grasp the totality of the lacunarity concept. 
Indeed. the notions of ‘gappiness’ may deflect attention 
away from the essential properties of the measure sought. 
In a more general sense, lacunarity is a measure of the 
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Fi_c. 9. Peano curve (A. uniform) and L-\!\tem tree (D. nonuniform) images. (E3.E) Both curves have the same length-derived Ds (I ,671. but different 

mass-derived Ds (C. D = 1.90: F. D = I .X1: and lacunarities: L = 0.07 and 0.25). Note increased vertical spread of points in F as compared to C. See 

text. 



non-uniformity (heterogeneity) of structure or the degree 
of structural variance within an object. Lacunarity is usu- 
ally defined in terms of mass related distributions. Thus, 
high lacunarity is suggested if the vertical scatter of mass- 
related points around each disc size is large in the log-log 
plots (see Fig. 4C, F, Fig. 9F Fig. 12C, F). 

Mandelbrot (1982) suggests that the magnitude of the 
prefactor (e.g., A in Eq. (2)) is roughly inversely related to 
lacunarity. He notes, however, that this definition has 
limited validity and application. There have been a number 
of methods proposed for calculating the lacunarity (L) of 
images in a plane; however, there is no general agreement 
as to the ‘best’ or ‘correct’ procedure (Allain and Cloitre, 
199 1). Mandelbrot (1982. 1994) has said the lacunarity 
information is to be found in the variations in fractal 
measures, which grasps the essence of lacunarity, and most 
proposed methods focus on this variability. Apparently, all 
have their limitations and problems, particularly with re- 
spect to universality. but they generally provide a measure 
of the basic properties of L. namely, variability, inhomo- 
geneity, heterogeneity. etc. (Allain and Cloitre, 199 I ). 

A common procedure is to calculate the mean and 
variance (or standard deviation) of some measure. e.g., the 
mass (number of pixels) in a box of a given size. For 
fractals, the result of this calculation is a strong function of 
scale. thus. to obtain a single number, L, the variance 
calculations must be normalized. This can be done, for 
example, by dividing the variance by the square of the 
mean at each scale (Mandelbrot, 1982). Alternately, one 
can divide the standard deviation by the mean at each scale 
to give what, in statistics is called the coefficient of 
variation or relative dispersion (Bassingthwaighte et al.. 
1994). Since the former result is simply the square of the 

latter. either procedure is valid as both increase with 
increased measured lacunarity, which is the desired result. 
In this paper, lacunarity will be defined as related to the 
coefficient of variation. Specifically, L is the average of 
the coefficient over all scales (box or disc sizes). 

For a self-similar object, the coefficient of variation 
should be constant with scale, since the form of the object 
at large scales is a magnified version of its form at small 
scales. That is, the object looks the same at all scales. 
Therefore, the mean and standard deviation would scale up 
in the same proportion and their ratio would be a constant, 
viz., L. Furthermore, the variability of the mass measure 
about its average value would have a constant vertical 
scatter when plotted in the log-log graphs, as is approxi- 
mately the case in Fig. 4C, F, Fig. 9F and Fig. 12C, F. 

In this context, the fractal lacunarity of a group of 
selected images is illustrated in Fig. 10. The L of each 
image is joined by a vertical line to its L value on the 
one-dimensional L-axis. The images are identified by their 
lettered labels and their mass D and L values are shown in 
Table 1. A few points are worth noting. First, image 
variation and non-homogeneity increase with increasing L. 
Second, voids or ‘gappiness’ in the images show little or 
no relationship to L, with large gaps appear in images at 
low L (C, D) and at high L (I, J). Some of the results 
confirm expectation. For example. the line (A) has a D of 
one and an L of zero, since it is both Euclidian and has no 
variability. Others, do not. The digitized circle (C) does 
not have the expected D of one and L of zero. As in Fig. 
6, D is near one, but the variability results from the fact 
that the digitized circle has elements of straight lines at the 
top, bottom and sides of the image and of variously sized 
steps in the other pixel locations around the circle. This 

Fig. IO. Illustration of images (A-J) with their lacunarity (L) values joined from the image with 8 straight line to the one dimension L scale. Inset (i) in 
image I sho!w detail of complex region at high magnification. 



Table I 

Identification of image> shown in Fig. IO. along with their mass fractal 

dimension5 (D) and lacunarity (L) \aIucs 

1trm D L 

A. Line 

B. Peano curve 

C. Circle 

D. Koch \novflak~ 

E. Purkinje neuron 

F. Brain a\trocyte 

G. Spinal cord neuron no. I 

H Spinal cord neuron no. 2 

I. L-hystrmh image no. I 

J. L-\! stem\ mu_rr no. 2 

1.00 

I .90 

I .01 

I .26 

I x9 

I 68 

I.73 

I .62 

1.32 

I II 

0.00 

0.03 

0.07 

0.10 

0.18 

0.22 

0.37 

0.10 

0.12 

0.19 

means that the pixel counts will vary as the discs (Fig. 2C) 
are located at different points on the circle. Note that the 
homogeneous. deterministic fractals (B.D) have an L near 
zero. They should be exactly zero. since they have uniform 
textures. The discrepancy. again. is due to lack of resolu- 
tion and pixelization errors of the digitized images. Fi- 
nally. the largest Ls are found in those L-system derived 
images that have the greatest separation of D values 
within the image. as shown in I and J. This suggests an 
interrelationship with lacunarity and multifractal processes 
(see Section 3). Since some resolution of the images are 
lost in their compression for inclusion in the figure, an 
enlarged segment of the most complex part of an image is 
showin in image I. inset (i). 

What follows is an attempt to measure the lacunarity of 
a collection of biological cells that has been reported in 
preliminary form elsewhere (Smith and Lange. 1996). 
Measurements were made on a cell-by-cell basis. The mass 
Ds and L were calculated for each cell. When the entire 
population cells‘ Ls vs. their mass Ds were plotted, it was 
found that there was negative correlation of 0.75 between 
the two measures (see Fig. 1 1 J. This suggests ( I> that the 
high D cells. like those near D = 2, are sufficiently filling 
the frame so there is little room for holes or variation and 
(2) that the two measures are not completely statistically 
independent (orthogonal) over the entire population. On 
the other hand. when considered for particular cell pairs 

0.15 0.2 0.3 0.4 

ALL LACUNARITY 

Fig. I I. Pax-wiw plot of mass-derived I% \ \. lacunarity of each cell for 

a number of diffcrcnt cell type\. Correlation coefficient = 0.75. See text. 

I  

RESOLVABLE SIZE RESOLVABLE SIZE 

DIAMETER DIAMETER 

Fig. 12. Two morphologically distinct cell types (A) In-viva cerebellar 

Purkinje cell (camera lucida drawing) and (D) cell cultured glial cell). 

with identical length-related L)s (1.66: in B and E): hut different mass 

dimensmna (I.72 and 1.66 and lacunaritiz\ (0.19 and 0.31. in C and F). 

with identical Ds. the degree of independence may be 
adequate for fractal lacunarity to provide a useful distin- 
guishing measure (Figs. 4. 9 and 12). 

2.6. Mult$ructul ineus~ires 

The term multifractal describes (often natural) objects 
that are neither universally nor statistically self-similar but 
possess an uneven distribution of complexity within the 
domain of the object or set. Namely. D varies from point 
to point within the object. The underlying notion has been 
alluded to above, as, for example, in the small variance 
range found in deterministic objects (Fig. 6C, line and 
circle and Fig. SC> as opposed to the larger variance found 
in natural-looking fractals (Figs. 4 and 9F and Fig. 12). 
The idea can be made more explicit from data obtained by 
mass measures (cf. Fig. 2C). For example, instead of 
plotting the global distribution of pixel counts across all 
the range of border-centered disc locations vs. diameter 
(Figs. 4. 9 and 12C,F), one plots separately the pixel 
counts for each individual box-center location vs. diameter 
(Fig. 13A. peano and tree). Here. a range of straight lines, 
and hence slopes and Ds. are obtained. From such results 
histograms of the distributions of D values can be ob- 
tained (Fig. 13B, peano and tree). For uniform fractals 
(Fig. 13B. peano) the range of D values is quite small. 
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PEANO TREE 

i,,,,,[iL 
1.5 D VALUES 2.0 O 1.5 D VALUES 2.0 

Fig. 13. Log-log plots of pixel counts vs. diameters for each border- 
centered disc (cf. Fig. 2C) of uniform (PEANO, A) and Nonuniform 

(TREE, A) images in Fig. 9. (B) Histograms of distribution of Ds for 
each type. Note that the width of the distribution of peano D values is 

much less than that of tree. See text. 

while with nonuniform. natural-looking (Fig. 13B, tree) 
fractals, the range is considerably greater. (With determin- 
istic objects. the variance should be zero, but, again. the 
artifacts of dealing with finite. digitized images introduces 
a small range of Ds. particularly with small diameter discs 

CULTURED PURKINJE (4A) 

IS 16 I7 18 19 

D VALUES 

C 
‘” HUMAN PURKINJE (12A) 

R 

I D = 1.73 
a 6 S.D. = 0.873 

Fd 

p4 

“1 3 15 16 17 18 19 2 

D VALUES 

(Fig. 9C and Fig. 13B, peano.)) But the larger range of D 
values for the tree indicate that it is. by definition, multi- 
fractal. since the range greatly exceeds any artifactual 
variation. As yet, however, there are no recognized rules 
for deciding when the multifractal threshold has been 
reached in any real life situation. 

Fig. 14 shows a similar analysis for the cells shown in 
Figs. 4 and 12. Their histograms also show a considerably 
greater variation than is likely from artifacts alone and 
suggest that these cells have a multifractal structure (cf. 
Fig. 14 with Fig. 13B, peano). To our knowledge this is 
the first demonstration of multifractal properties in biologi- 
cal structures. 

2.7. Silhouettes or borders? 

Finally. there is some divergence in the literature as to 
the ‘proper’ or ‘correct’ objects for applying fractal analy- 
sis. namely, should it be an object’s silhouette or its 
border? We have argued (Smith and Lange, 1996) that in a 
fractal analysis of cellular shape, it is the dimension of the 
border that is of interest and that it alone should be studied 
(one-pixel-wide, binary (black-on-white. border-only im- 
ages). Since in our work (e.g., with Golgi stains) the cell 
interior is often a featureless Euclidian, with integer di- 
mension, measuring silhouettes would give the ‘wrong’ D, 

CULTURED SPINAL CORD (4D) 

14 IS 16 1.7 1.8 19 2 

D VALUES 

CULTURED GLIA (12 D) 

D = 1.64 
S.D. = 0.0874 

“I 4 16 18 2 

D VALLUES 

Fig. 14. Histograms of distribution of D values from cells shown in Fig. 4 and Fig. 12. (A) Cultured Purkinje cell (4A). (B) Cultured spinal cord neuron 

(AD). (C) Human Purkinje cell (I 2A). (D) Cultured glia cell (12D). Note the wide range of distribution of D values. when compared to uniform fractal (cf. 
Fig. l3B, PEANO). 



namely a mixed D (see Section 3). We have examined the 
matter by studying objects of known D (lines, squares. 
Koch figures. etc.). We have used the box-counting algo- 
rithm to measure length and the mass radius method for 
mass. as described in this paper. We begin with one pixel 
wide objects and progressively increase the width of the 
object. on the inside. by a known amount. Then, both 
methods are applied to all objects and the resulting Ds 
plotted against object width and compared them with 
images that remained border-only objects. The objects 
occupied approximately half the width of a plane in a 
256 X 256 pixel frame. All the results showed that as long 
as the widths were less than about IO pixels wide. the 
results of all measurements on both filled and empty 
borders were essentially the same. With objects whose 
border widths were greater than about IO pixels, there was 
a significant departure in the results from the border-only 
and the filled border images, with the former maintaining 
the expected values (of one for lines or boxes) and the 
latter increasing sigmoidally to a D value of two. The 
final value of two was reached when the width of the line 
w’as near its length and the borders were nearly filled, as 
expected (results not shown). The conclusion we draw 
from this experiment is that. since one does not always 
work with objects that have widths small with respect to 
their overall size. it is advisable to employ border-only 
images to obtain the correct result ‘. 

3. Discussion 

From the results and conclusions of previous research 
reported in this review (see below). it should be abun- 
dantly clear that the concepts of fractal geometry and the 
use of the notion of a fractal dimension are helpful analyti- 
cal tools for quantitative studies of the morphology of 
individual biological cells. To the traditional measure of 
linear-related. capacity fractal dimension. one can now add 
the newer measures of mass fractal dimension and lacunar- 
ity. and the notion of multifractal. While these newer 
measures may not be completely independent of (orthogo- 
nal to) the capacity dimension (Figs. 5 and I I). they both 
may be able to distinguish. on a case-by-case basis. be- 
tween objects that appear different. but have the same 
capacity fractal dimension (Figs. 4. 9 and 12). 

’ Since the acceptance of thih paper. a chapter tn a book has appeared 

which contains tntorrnation that validate\ thix concluston. VicvA points 

out that theoretical frxtal\ in a plane. in addition to ha\tng an infinite 

Isngth. hale a zero area. The close\1 one can come to this in a diytized 

image i\ a one-pixel-\sidr horder. For rrlerrnce \et’ Vic\ek. T. Fractal 

grometr~. In: P.M. lannaccone and M. Kohka (eds). Fractal Geometry in 

Biological Slstrms. CRC Press. Neu Yorh. 1996. 

3.1. Factors qfecting the jwtul dimension 

The characteristics of cellular morphology that most 
influence the magnitude of D are the profuseness of 
branching and the ruggedness or roughness of the border, 
with increases in either leading to a larger D (Smith et al., 
1989). This means, of course, that two cells that look very 
different (e.g, one with few branches and a rugged border 
(Fig. 4A); and th e other with a smooth border and many 
branches (Fig. 4D)) but may have the same D (see Fig. 
4B,E). This result emphasizes that, with such global or 
statistical measures, D provides no unique morphological 
specification. As an aside one might note that the concepts 
of border roughness and profuse branching relate to a 
given image at a particular magnification at a higher 
magnification a rough border might appear as diffuse 
branching and, at a lower magnification, profuse branching 
might look like rough border. These are manifestations of 
self-similarity. 

The exact method employed to measure D does not 
depend on whether an image is self-similar. That is deter- 
mined by the log-log plots. The range of the linear slope of 
those plots identifies the range of self-similarity (Smith et 
al., 1989; Baumann et al.. 1993). In the work considered 
here. it is only the border that is fractal. The structureless 
interior is Euclidian, not fractal. 

Most of the experiments reported in the literature that 
apply the concepts of fractal geometry to cellular morphol- 
ogy involve mainly the use of length-related measures of 
D. This reflects. in part. the historical precedence of these 
over mass measures. A recent review (Smith and Lange, 
1996) has covered the reported results in considerable 
detail and may be consulted. Suffice it here that the main 
areas of that review are summarized: 

I, Experiments that focus on the quantification and classi- 
fication of cellular morphology. 

a. Tissue cultured neurons and glial cells (Smith et 
al., 1989. 1991; Caserta et al., 1990. 1995; Reichen- 
bath et al.. 1992; McKinnon et al., 1993). 
b. Retinal ganglion cells (Montague and Friedlander. 
1989, 1991; Morigiwa et al.. 1989; Caserta et al., 
1990, 1995). 
c. Vertebrate CNS motor cortical cells (Porter et al., 
1991). 
d. Vertebrate cerebellar glial cells (Siegel et al., 
1991: Senitz et al., 1995). 

2. Experiments that use the fractal dimension to study 
cellular growth and differentiation (Smith et al., 1991; 
Smith and Behar, 1994; Smith and Neale, 1994). 

3. Studies that proposed models for cellular growth and 
differentiation (Pellionisz. 1989; Caserta et al., 1990; 
Neale et al., 1993; Smith and Neale, 1994; Smith and 
Lange, 1996). 



The results of Fig. 6 raise questions about the usual 
dichotomy of designating objects ‘fractal’ and ‘non-fractal’. 
Mandelbrot has pointed out that the distinction between a 
fractal and a Euclidian is not always clear (Mandelbrot. 
1982, 1994: see also Tautu, 1994). In the context of the 
notion of fractal geometry as an extension of conventional 
(Euclidian) geometry and of analytical experiments. the 
distinction appears to be even less clear. For example, the 
objects usually described as Euclidian or non-fractal 
(points, lines, circles, cubes, etc.) may be viewed as fractal 
objects with the lowest complexity (integer fractal dimen- 
sions) within their respective dimension domains (zero to 
one. one to two, etc.) 

3.3. Dijferent ,fractal dimensions 

In a recent paper. Caserta et al. ( 1995) made a quantita- 
tive comparison between the length related, box-counting 
and mass dimension methods of measuring D on retina1 
ganglion cells. They conclude that the latter is the pre- 
ferred method because it is more ‘accurate’. We find this a 
curious conclusion, since, we see these two methods as 
measuring two different aspects of a cell’s border. As we 
have pointed out in some detail in this paper, the former 
method is a measure of the cell’s perimeter, while the 
latter is a measure of its mass. or perhaps better, it’s 
density. Now it is true that they may both have very nearly 
the same value of D. they are not usually exactly the same 
(Figs. 4. 9 and 12) and can provide a measure that can 
distinguish between cells. one of the ‘distinguishing’ mea- 
sures we seek in this paper. 

3.4. Mult(frac.tals and self-similarity 

The finding that objects can be multifractal, namely, 
that the fractal dimension varies as a function of location 
within a set (image, frame), potentially raises some funda- 
mental questions about the meaning of a ‘fractal object’ 
and ‘self-similarity’. Historically the notion of a fractal is 
that is possesses the property of self-similarity, namely, 
that a portion of the fractal ‘looks’ the same as the whole 
at different scales or magnification. For deterministic, fully 
developed fractals self-similarity is universal; i.e., that a 
portion of the border of a fractal is exactly the same as the 
whole. For natural fractals, the definition of self-similarity 
was relaxed so that a fractal is only ‘statistically’ self-simi- 
lar. i.e., that the portion of the object ‘looks’ qualitatively 
like the whole. 

The definition of self-similarity has been redefined to 
focus on a measure related to scale. This has the merit of 
changing the criterion from a visually, subjective one to 
one with a mathematical basis. Namely, that an object 
possesses scale invariance and hence is fractal with a 
fractal dimension, if the log-log plots of some result (e.g., 
equivalent mass> vs. log of some measuring element (e.g., 
box size) produced a ‘good’ straight line fit over some 

range of scales. When this range is sufficiently extensive, 
it is called scale invariance. Again. with deterministic 
fractals the range is without limit (universal). For natural 
fractals the requisite range is usually loosely or opera- 
tionally defined as some order(s) of magnitude of the 
measuring element range (Baumann et al., 1993). In all 
practical instances, however. the issue boils down to the 
question of the ‘goodness’ of the straight line fit and is 
usually decided by some statistical criterion (e.g., the 
correlation coefficient between the data and a straight line 
model, based on, for example. least-squares criteria). 

In many practical situations, the above considerations 
may seem so small as to border on the inconsequential. 
But, in the case of multifractals, these issues cannot be 
avoided. In the case of multifractals. the question arises as 
to how one is to interpret the global and the local measures 
of the fractal dimension. To the degree that the global 
fractal dimension is a statistical measure of the whole 
object, it represents a measure of its global complexity 
and, hence, demonstrates the fractal properties of the ob- 
ject as a whole. One the other hand, the local fractal 
dimensions represents the complexity and the fractal prop- 
erties of different loci within the object. In a sense, this is 
the essence of multifractals-namely, that objects can have 
global and different local fractal dimensions and. hence. of 
difference in complexity. In some cases. the mean D of 
the multifractal histogram is near the global D. The multi- 
fractal concepts extend far wider than the introduction 
given above, but their general consideration is beyond the 
scope of this restricted review (see Feder, 1988: Vicsek, 
1988: Evertz and Mandelbrot. 1992). Briefly, the conse- 
quences of being multifractal are several. The most signifi- 
cant are that multifractals actually possess an infinite 
number of fractal dimensions and the spectrum of fractal 
dimensions leads to the definition of quantities that are 
analogous to the thermodynamic properties of temperature, 
entropy, etc. (Feder, 1988; Vicsek. 1988) 

3.5. Mixed fractals 

In their book, Bassingthwaighte et al. (1994) discuss 
how fractal objects may evolve from single or multiple 
processes ‘. The first is that a single process. applied at 
one scale. can spread across all stages and scales to 
produce a global fractal of singular dimension, namely. a 
monofractal. This is the conventional concept as to how 
fractals are produced and is the process involved in gener- 
ating true fractals. It may begin at a large scale and 
contract to smaller scales during various stages. This is 
how. for example, Koch and other fractals are produced by 
either Mandelbrot’s rules (initiator and generator) 

’ By process we mean one mechanism that would lead to a single D, if 

applied alone and at all stages of object generation (growth) and over all 

scales. 



(Mandelbrot. 1982) or with L-system rules (axiom and 
production) (Prusinkiewicz and Lindenmayer. 1990). Al- 
ternatively. the process may spread from the small to the 
large scale at all stages. as in diffusion limited aggregation 
or DLA (Feder. 1988: Vicsek, 1988). Furthermore, this 
may be how single process natural fractals grow, although 
it is not easy to verify. 

On the other hand. their may be two or more processes 
operating to produce a fractal with one global D. In 
principle. this may occur in many ways. For example. 
there could be the simultaneous global application of the 
processes at all stages and scales. Or the processes may be 
locally separate and applied simultaneously at all scales. 
This latter mechanism is most likely to produce a multi- 
fractal. Alternatively. either global or local processes could 
be applied at different stages and scales: or any combina- 
tion of the above. In practice. however. it is usually 
difficult or impossible to know or demonstrate whether 
any of these mechanisms are operating with deterministic 
or natural fractals. as has been discussed by Russ (I 994). 

The preceding discussion allows us to put in context 
some of the results we and others have made here and 
elsewhere. First. consider log-log plots where there is no 
easily determined or extensive range of a straight line. The 
conventional wisdom is that the object is not a fractal. It 
may be. however. that the object is a mixed fractal. That 
is. there a two or more mechanisms involved, where one is 
apparent at large scales and another at small scales. This is 
what may be happening in certain neurons that have a 
steep slope at large scales and a shallow to zero slope at 
small scales. This is illustrated in Fig. 3. TRA plot. where 
the Euclidian (straight line) properties dominate at small 
scales. 

In addition. one can mix the production rules of two 
true fractal5 in an L-system production (Prusinkiewicz and 
Lindenmayer. 1990) to produce a mixed fractal (either 
oloballv or locally). to obtain either a straight line that has c 
an unknown relationship with the underlying fractals or the 
absence of any straight line. The resultant object has a 
fractal appearance, but the plots do not help one to under- 
stand hon. the results were obtained (unpublished observa- 
tions). 

We mentioned in the result that there may be a relation- 
ship between lacunarity and multifractala. Let us discuss 
what that might be. In the first place. both are measures of 
variation. And they may both be manifestations of mixed 
and/or multi-fractals. Lacunarity relates to the variations 
in the pixel counts at all box sizes (scales) and at all box 
centers. Thus. it suggests that more than one process is 
applied at all stages and all scales in fractal object genera- 
tion. Multifractals. by definition. indicate local variations 
across the object and probably represent different pro- 

cesses that are applied at different loci and presumably at 
all stages and scales. 

The notion that biological tree-like. fractal structures 
represent an optimal design for a particular function is 
generally accepted. For example. such ideas have been 
proposed for the lung for the flow of air and the vascular 
bed for the flow of blood (Bassingthwaighte et al.. 1994). 
It may well be that the fractal, dendritic trees of neurons 
are also optimally designed. but in this case for the flow of 
their most important commodity: information (see Smith 
and Lange (1996) for a discussion). In addition. the fractal 
dimension is said to be a measure of the number of 
degrees of freedom involved in the underlying object 
generation mechanisms (Mayer-Kress. 198.5). That neurons 
have different Ds suggests that some neurons have more 
degrees of freedom required for their growth and differen- 
tiation than others. Moreover, they may change during 
growth and differentiation with changes in D (Smith and 
Behar. 1994; Smith and Neale. 1993). 

4. Conclusion 

We believe that it is clear from the examples in this and 
other reviews that the use of fractal geometry in micro- 
scopic anatomy is now well established. It would seem that 
calculation of fractal dimensions and other related parame- 
ters are useful as quantitative morphological and develop- 
mental descriptors. Perhaps the most promising is the 
possibility that they will be increasingly useful in estab- 
lishing links between structure and function. And, they 
may lead to a definition of the rules of growth and 
differentiation of biological cells. which may be the pre- 
requisite for the delineation of the various basic mecha- 
nisms involved in fractal form generation. 
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