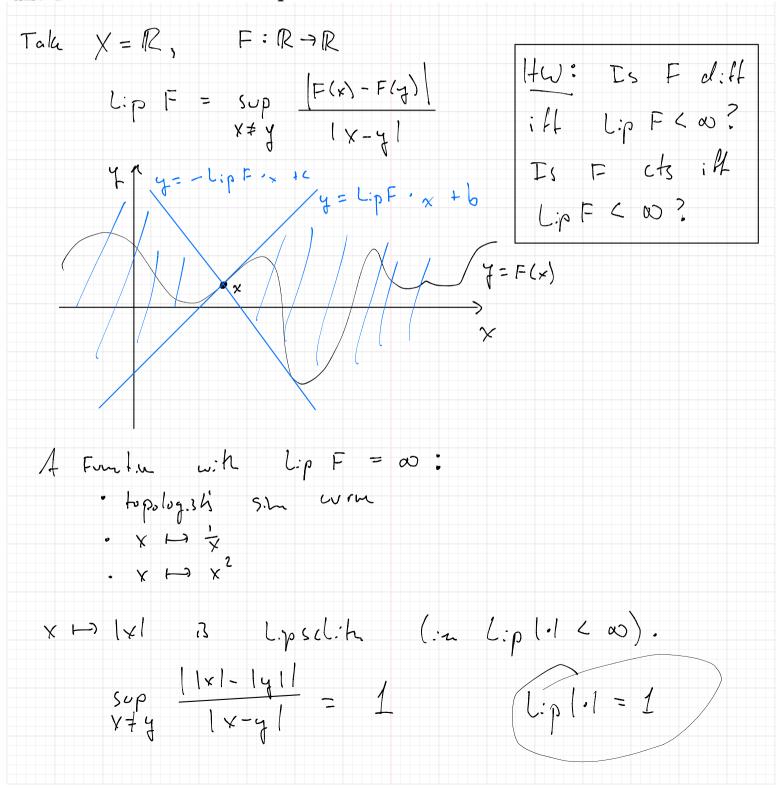
N=2 C(N) = set of all words formed by 1 & 2 $I = \{1, 2\}$ β = 22222 /2222 Observe: If I is secon, $L = \{1, 11, 2\}$ then so is IUJ for second but not fight: β=1122.... cry J $(\alpha) \Rightarrow (b)$ Spoh $\hat{I} = C(N)$. $\forall TS C(N) = U x^*$ ⊆ sipose BEC(N). Because C(N)= Î, Ja, x2,... with each as E I such that B = x, x2 x3 ... Thus $\beta \in d_1^{+} = \beta \beta \in \bigcup_{\substack{\substack{k \in L \\ k \in L}}} d_k^{+}$ 2 Spose $\beta \in \bigcup \lambda^* \subseteq C(N) = \widehat{\Box}$. HW: Finish this. Email it to us = by Tuesday. (Ben & Xardur)

2.2. Maps in metric spaces. If $F: X \to X$, then we define the Lipschitz constant of F by

$$\operatorname{Lip} F = \sup_{x \neq y} \frac{d(F(x), F(y))}{d(x, y)}$$

Of course if Lip $F = \lambda$, then $d(F(x), F(y)) \le \lambda d(x, y)$ for all $x, y \in X$, and moreover Lip F is the least such λ . We say F is Lipschitz if Lip $F < \infty$ and F is a contraction if Lip F < 1.



Barach fixed port Gragle: Hedren Contration mapping principle pron they In Pop 2.3.1, Hetchingan says that the "any it" dimention is clear. Prove it