1. Midterm 2

2. Worksheet 10

Continuously compounding interest and unrestricted population growth are both examples of quantities modeled by geometric growth. Suppose that you eat something contaminated with pathogenic *E. coli.* You ingest only 1,000 of these bacteria. Their population doubles every twenty minutes and undergoes unrestricted growth.

- 1. How many bacteria will there be in 20 minutes?
- 2. How many bacteria will there be in 40 minutes?
- 3. Set up an equation that describes the number of bacteria you will have at time t. What is the growth rate of this population?

ζι\	2000		
(2)	4000		
(3)	t	P(t) (pp e 6m t) Expant	
	0 20 40 60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		$\Rightarrow P(t) = (\alpha x) \cdot \lambda^{\frac{1}{2}} t$	
	If .	(+) = C e, the le= (where) ga	sh re
		P(t): 1000. 2 = 1000. e	(Solen

(1)
$$P(50) = \cdots$$

(5) $P(T) = 5$, $\omega \omega$, $\omega \omega = 1 \omega \omega \cdot 2$ (5) $\omega \omega = 1 \omega \omega \cdot 2$