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 Fractals and Self Similarity

 JOHN E. HUTCHINSON

 1. Introduction.

 Sets with non-integral Hausdorff dimension (2.6) are called fractals by
 Mandelbrot. Such sets, when they have the additional property of being in
 some sense either strictly or statistically self-similar, have been used extensively
 by Mandelbrot and others to model various physical phenomena (c.f. [MB]
 and the references there). However, these notions have not so far been studied
 in a general framework.

 In this paper we set up a theory of (strictly) self-similar sets, in a subsequent
 paper we analyse statistical self-similarity.

 We now proceed to indicate the main results. The reader should refer
 to the examples in 3.3 for motivation. We say the compact set K C R" is
 invariant if there exists a finite set y = {S1,...,5Ar} of contraction maps
 on R" such that

 K = (J S,K.
 i= 1

 In such a case we say K is invariant with respect to y Often, but not
 always, the Si will be similitudes, i.e. a composition of an isometry and
 a homothety (2.3).

 In [MB], and in the case the S, are similitudes, such sets are constructed
 by an iterative procedure using an "initial" and a "standard" polygon.
 However, here we need to consider instead the set y

 It turns out, somewhat surprisingly at first, that the invariant set K is
 determined by y. In fact, for given y there exists a unique compact set
 K invariant with respect to y Furthermore, K is the limit of various
 approximating sequences of sets which can be constructed from y.

 More precisely we have the following result from 3.1(3), 3.2.

 (1) Let X = (X,d) be a complete metric space and y = {SX,...,SN} be
 a finite set of contraction maps (2.2) on X. Then there exists a unique closed

 N

 bounded set K such that K = (J S,K. Furthermore, K is compact and is
 1 = 1

 the closure of the set offixed points sti ...offinite compositions St o ... o 5.
 of members of y

 713
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 714 J. E. HUTCHINSON

 For arbitrary A C X let y (A) = U S,A, yp(A) = y(yp~\A)). Then
 1 = 1

 for closed bounded A, y (A) —» K in the Hausdorff metric (2.4).

 The compact set K in (1) is denoted \y\. \27\ supports various measures
 in a natural way. We have the following from 4.4.

 (2) In addition to the hypotheses of (1), suppose p,, ..., e (0,1) and

 2n  p, = 1. Then there exists a unique Borel regular measure p. of total
 i=i

 N

 mass 1 such that p. = p,Sj#(p). Furthermore spt(p.) = \y\.

 The measure p. is denoted ||^p||.
 The set \y | will not normally have integral Hausdorff dimension. However,

 in case (X,d) is R" with the Euclidean metric, \y\ can often be treated
 as an m-dimensional object, m an integer, in the sense that there is a notion
 of integration of C°°w-forms over \y\. In the language of geometric measure
 theory (2.7), \y\ supports an m-dimensional integral flat chain. The main
 result here is 6.3(3).

 Now suppose (X,d) is R" with the Euclidean metric, and the S, G y are
 similitudes. Let Lip S, = ri (2.2) and let D be the unique positive number

 2n  rf = 1. Then D is called the similarity dimension of y a.
 i—l

 term coined by Mandelbrot. In case a certain "separation" condition holds,
 namely the open set condition of 5.2(1), one has the following consequences
 from 5.3(1) (see 2.6(1), (3) for notation).

 (3) (i) D = Hausdorff dimension of \y\ and 0 < y°(\y\) < oo,
 00 srD(s,\y\ n s,\y\) = o ifi
 (iii) there exist X,, k2 such that for all k G \y\,

 0 < < e?(|y I,k) ^ Q*°(\y |,Jt) < x2 < oo,

 (iV) \\yP\\ = [<rD(\y\)] "yD l \s>\ rp, = rf.

 A result equivalent to (3)(i) was first proved by Moran in [MP].
 With a stronger separation condition we prove in 5.4(1) that for suitable

 m, \y\ meets no m-dimensional C' manifold in a set of strictly positive
 %fm measure. In the notation of [FH], \Y\ is purely unrectifiable.

 In the case of similitudes in R", it is possible to parametrise invariant
 sets by points in a C°° manifold (5.5).

 My special thanks to F. J. Almgren, Jr., for making possible my stay
 at Princeton University, for suggesting I begin this study, and for his continuing
 comments and enthusiasm. I would also like to thank L. Simon for advice
 and for his invitation to Melbourne University. Helpful suggestions came
 from members of the Princeton and Melbourne seminars, especially R. Hardt,
 V. Scheffer and B. White.

This content downloaded from 138.23.171.99 on Mon, 29 Jan 2018 16:50:11 UTC
All use subject to http://about.jstor.org/terms



 FRACTALS AND SELF SIMILARITY 715

 rurally 1 wish to thank Benoit Mandelbrot, trom wüose ideas this paper
 developed.

 2. Preliminaries.

 (X,d) is always a complete separable metric space, often Euclidean space
 R" with the Euclidean metric.

 B(a,r) = {x E X: d(a,x) < r],

 U(a,r) = {x E X:d(a,x) < r}.

 If A C X, then À is the closure of A, A° is the interior, dA is the boundary,
 and Ac is the complement X ~ A.

 A C1 function is one whose first partial derivatives exist and are continuous.
 A C°° function is a function having partial derivatives of all orders.

 A C1 manifold in R" will mean a continuously differentiable embedded
 submanifold having the induced topology from R".

 A proper function is a function for which the inverse of every compact
 set is compact.

 2.1. Sequences of integers. P= {1,2,...} is the set of positive integers.
 iV G P, jV > 2 is usually fixed.

 (1) Ordered /Muples are denoted ip), where usually each /V G
 {1,...,jV}. We write a < ß, if a, ß are p-truples with a an initial segment

 of ß, i.e. a = and ß = (ilt...,ip,ip+x,...,ip+q) for some q > 0. a ^ ß
 means a < ß and a ^ ß.

 (2) C(N), the Cantor set on N symbols, is the set of maps (i.e. sequences)
 oo

 a : P —» {1,...,W}. Thus C(iV) = Ü {1,...,JV}. We write ap for a(p). A typical
 p= i

 element of C(N) is often written a, ... ap or /, ... ip ... . We extend the
 notation a < ß to the case a = ip) andß = i, ... ipip+l ... iq ... G C(N).

 (3) If i E {1,...,JV} and a = (il}...,ip) is a p-tuple, then ia = (i,ix,...,ip)
 is just concatenation of i and a. Similarly if a E C(N) then ia =
 »'a, ... ap_lap ... . Likewise if ß is a q-tuple and a is a p-tuple or
 a E C(N) we form ßa in the obvious way.

 The Ith shift operator aj : C(N) —> C(N) is given by cT,(a) = ia.

 (4) C(N) is given the product topology (also called the weak topology)
 induced from the discrete topology on each factor {l,...,jV}. Thus a sub-basis
 of open sets is given by sets of the form {a : a = /} wherep E P, i £ {1,... ,N }.
 C(N) is compact.

 (5) By î, ... ip we mean the infinite sequence ij ... ipil .:. ip ... ij ... ip ... E
 C(Af).Thusi, ... ipîp+i ... tp+q may be regarded as the general rational element
 of C(A0
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 716 J. E. HUTCHINSON

 (6) The set 7 will always be a finite set of finite ordered tuples (of not
 necessarily equal length) from {l,...,iV}.
 7= {a, ... a ... : a, G /} C C(N), where we are concatenating finite ordered

 tuples in the obvious way. Thus if 7= {(1 then 7 = C(N). If
 7= {< 1,2),(1» then 2a2 ... a, ... <£ /, etc.

 (7) For a an ordered tuple, let a* = {ß e C(N)\ a < ß).
 We say 7 is secure if for every ß G C(N) there exists a G 7 such

 that a < ß. This is equivalent to:for every p-tuple ß with p =
 max {length a:aG7}, there exists a G 7 such that a < ß. Since 7 is
 finite there is an obvious algorithm to check if 7 is secure.

 We say 7 is tight if for every ß G C(N) there exists exactly one a G 7
 such that a < ß. Again one can always check, in a finite number of steps,
 if 7 is tight.

 (8) Proposition, (i) The following are equivalent:
 (a) 7 = C(N),

 (b) C(N) = (J «*,
 c.e/

 (c) I is secure.
 (ii) The following are equivalent:

 (a) Each member of C(N) has a unique decomposition of the form
 a, ... a.q ..., with a,. G I,

 (b) C(N) = V a* (disjoint union),
 cxG /

 (c) I is tight.

 Proof. In both cases the implications (i) => (ii) => (iii) => (i) are clear. □

 (9) One can check that / is tight iff I is essential and satisfies the tree
 condition, in the sense of [OP,III].

 2.2. Maps in metric spaces. If F : X —* X, then we define the Lipschitz
 constant of F by

 d(F(x),F(y))
 Lip F = sup .

 d(x,y)

 Of course if Lip F = then d(F(x),F{y)) < kd(x,y) for all x, y E X, and
 moreover Lip F is the least such X. We say F is Lipschitz if Lip F < oo
 and F is a contraction if Lip F < 1.

 (1) It is a standard fact that every contraction map (in a complete metric
 space) has a unique fixed point.

 (2) Definition. Supposed = (S, ,...,5^} is a finite family of maps S,:X~*
 X. Then S. ... . = S. ° ... ° S, . l\ lp M lp
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 FRACTALS AND SELF SIMILARITY 717

 2.3. Similitudes. S:X-^>X is a similitude if d(S(x),S(y)) = rd(x,y) for
 ail x, y e X and some fixed r.

 R"-*R" is the homothety jir(x) = rx(r > 0).

 tb : R" —» R" is the translation Tb(x) = x - b.

 (1) Proposition. S : R" —* R" is a similitude iff S = \ir° xb ° O for some
 homothety pr, translation tb, and orthonormal transformation O.

 Proof. The "only if" is clear.
 Conversely, let S be a similitude, Lip S = r f 0. Letg(x) = r~l(S(x) - 5" (0)).

 Then g is an isometry fixing 0.
 Since

 (x,y) = j[\\x\\2 + \\y\\2-\\x-y\\2]

 = j [[d(0,x)]2 + [d{Q,y)\2- [d(x,y)]2],

 it follows g preserves inner products.
 Let {e, : 1 < /' < N) be an orthonormal basis for R". Then {g(e,) : 1 < z < AO

 is also an orthonormal basis, and hence

 g(x) = ^ (g(x)>8(ei))g(ei)

 = S (x>e-)g(e-)>
 1=1

 since g preserves inner products. It follows g is linear and so is an orthonormal
 transformation.

 Since

 S(x) = rg(x) + 5(0)

 = r(g(x) + r~lS(0)),

 it follows

 S = |lr0T_f.-iJfl„°g,

 and we are done. □

 (2) Remark. The same proof works in a Hilbert space to show that S
 is a similitude iff S = |x.r 0 t6 0 0, where now O is a unitary transformation.

 (3) Convention. For the rest of this paper, unless mentioned otherwise,
 all similitudes are contractions.
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 718 J. E. HUTCHINSON

 (4) Returning to the case (R ",d), let the similitude S have fixed point
 a, let Lip S = r, and let O be the orthonormal transformation given by
 0(x) = r~l [SOc + a) - a] (orthonormal since the origin is clearly fixed and
 O is clearly an isometry, now use (1)).
 Then

 S(x + a) = rO(x) + a,

 so

 S(x) = rO(x - a) + a,

 and hence

 S = T;lo|AroO°Ta

 = (Tl' 0 (t;1 "OnJ,
 so that S may be conveniently thought of as an orthonormal transformation
 about a followed by a homothety about a. We write

 S = (a,r, O)

 and say that S is in canonical form, a and r are uniquely determined by
 S, and so is O if r ^ 0.

 If 5, = (a,,/•,,(),), S2 = (a2,r2,02), then 5, ° S2 = (a,r,0)wherer = r,r2and
 O = O, °02. However the expression for a is not as simple, a calculation
 gives

 a = a2 + (/- r.r-.O^r'CI- r,0,)(a2 - a,).

 2,4. Hausdorff metric. If x 6 X, A C X, define the distance between x
 and A by

 d(x,A) = iof [d(x,a) :a e A}.

 If A C X, e > 0, define the z-neighbourhood of A by

 Ac = {x e X:d(x,A) < e}.
 Thus A C A.

 Let 38 be the class of non-empty closed bounded subsets 01 a. Let 'e
 be the class of non-empty compact subsets.

 Define the Hausdorff metric 8 on 38 by

 8(A,B) = sup[d(a,B),d(b,A): a £ A, b E B}.

 Thus 8(A,B) < E iff A C Be and B C Ac. It is easy to check that 8 is a
 metric on 38.

 It follows from [FH, 2.10.21] that (38,8) is a complete metric space. It
 also follows that if K C X is compact, then f D {A : A C K) is compact.
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 FRACTALS AND SELF SIMILARITY 719

 Some elementary properties of 8 which we will use are: let F:X—*X,
 then

 (i) S(F(A),F(B)) s Lip (F)8(A,B),

 (ii) »1 U A„ U 2U =ssuç 8(^,5,.)
 l'67 /e/

 2.5. Measures.

 (1) A measure |i on a set A' is a map \i\^(X) = {A : A C X} —> [0,oo]
 such that

 (i) (i(0) = 0,

 (Ü) Ju £,C*.
 It follows A C B implies ß(A ) < p(£). Thus p is what is often called an
 outer measure. One says A is measurable iff p(T) = p(7" fl A) + ß(T ~ A)
 for all T C X. The family of measurable sets forms a o-algebra. p is a
 finite measure if p(2Q < ». If A C X, ß L A is the measure defined by
 ß L A (£) = ß(A fl E).
 From now on, X = (X,d) is a complete metric space. One says that p,

 is Borel regular iff all Borel sets are measurable and for each A C X there
 exists a Borel set B D A with ß(A) = ß(B). If p is finite and Borel regular,
 it follows from [FH, 2.2.2.] that for arbitrary Borel sets E C X,

 (1) p(£) = sup{p(ÄT) :E D K closed),

 (ii) p(£) = inf{p(F):£ C V open).

 (2) We define the support of p to be the closed set

 sptp = Ar~U{F:F open, p( V) = 0}.

 Define the mass of p by

 M(p) = pffl.

 Define J? to be the set of Borel regular measures having bounded support
 and finite mass

 Define J?x = {p. £ J? : M(jjl) =1}.

 Fora e Xdefine8a = [[aj G ^xbyba(A) = 1 if a G A,8a(A) = Oif a £ A.

 (3) Let 3ft? (X) = {/: X -» R :/ is continuous, / is bounded on bounded
 subsets}. For fx G J?, 4> G 3ft?{X), define |x(4>) = SThen p. : 3ft? -»
 [0,oo), p. is linear, and |x is positive (i.e. 4>(*) s 0 for all x implies |x(<|>) s 0).

 If/: X-* X is continuous and sends bounded sets to bounded sets (e.g.
 if / is Lipschitz), then we define by f#\x(E) = \i(f~l(E)).
 Equivalently/#m-(4>) = P-(4> °/)- Notice that M(/#p.) = M(p,).
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 120 J. E. HUTCHINSON

 We define the weak topology on J? by taking as a sub-basis all sets of
 the form {p, : a < p,(<j>) < b}, for arbitrary real a < b and arbitrary <|> £ &W(X).
 It follows p., —» p. in the weak topology iff p.,(<i>) -* |a(4>) for all c() £ 3fö(X).

 2.6. Hausdorff measure.

 (1) Let the real number fc > 0 be fixed. For every 8 > 0 and E C X we
 define

 {oo oo *\ ^ a, 2^(diam Etf :EC |J £,, diam 8 [ 1=1 1=1 J

 JTk(E) = lim ^i(E) = sup fr\{E).
 *k t

 </C
 8—► 0 " * 8s0

 ßf?k(E) is called the Hausdorff k-dimensional measure of E. A reference
 is [FH, 2.10.3]. ak is a suitable normalising constant. If k is an integer,
 ak = JFk(x E R*: |x| < 1}. For arbitrary k we define a.k =
 T(\/2)k/T((k/2) + 1). The particular value of a* for non-integer k will
 not be important. The value of JF'k(E), but not that of M*kh(E), remains
 unchanged if we restrict the £, to be open (or closed, or convex).

 k is a Borel regular measure, but %?k is not normally finite on bounded
 sets. If X = R" then JF" = J?" ■ is counting measure. Iff : A C Rm -> R"
 is C 'and one-one, then fF""(f(A)) = \AJ(f)dJ?m, where /(/)is the Jacobian.
 Thus 2?k agrees with usual notions of k-dimensional volume on "nice" sets
 in case k is an integer.
 If F: X—> X is Lipschitz, then JTk(F(A)) < (Lip F)k%?k{A). If £ is a

 similitude, F#%?k = (Lip Fyk<%pk.
 For each £ C X there is a unique real number k, called the Hausdorff

 dimension of £, written dim £, such that 3?a(E) = oo if a < k, 3T"(E) = 0
 if a > k. 3Fk(E) can take any value of [0,oo].

 (2) Suppose S : X —» X is a similitude with Lip S = r. Then /'L S(A) =
 rkS#(<rkLA).For(^kLS(A))(E) = Jrk(S(A)nE)=Jrk(S(AnS-l(E))) =
 rkJTk(A D S~'(£)) = rk(JTk L A)(S~'(E)) = rkS#(^k L A)(E).

 (J) The lower (upper) k-dimensional density of the set A at the point x
 is defined respectively to be

 Qt(A,x) = lim inf
 %Tk{A n B(x,r))

 0
 k

 6* (A,x) = lim sup

 *kr

 %fk(A n B(x,r))

 OL„rk

 If they are equal, their common value is called the k-dimensional density
 of A at x, and is written

 Likewise, for (x a measure on X we define
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 FRACTALS AND SELF SIMILARITY 721

 ... , .. . H-W*.')) t (|x,jc) = lim inf —
 -.0  öl y

 ß(B(x,r))
 8* (p.,x) = lim sup -—

 »o  our

 and (|x,x) to be their common value if both are equal. Thus 0k(A,x) =
 0t(^* L A,x), and similarly for 0**, 0*.
 Upper densities turn out to be more important than lower densities. The

 main results we will need are that for |a e Jf,
 (i) 0**(|x,a) > \ for all a e A imphes %?k(A) < X~V(^)>
 (ii) 0**(p,,a) < X for all a £ A imphes ß?k{A) > 2~k\~ V(/0

 In particular if 0 < \i.(A) < », and the upper density is bounded away from
 0 and », this enables us to establish that 0 < %fk{A) < ». For a reference
 see [FH, 2.10.19(1), (3)].

 2.7. Geometrie measure theory. We will briefly sketch the ideas from
 geometric measure theory needed for §6. A complete treatment is [FH],
 in particular Chapter 4, and a good exposition of the main results is in [FH1].
 At a number of places we have found it convenient to abbreviate the standard
 notation.

 (1) Suppose m > 0 is a positive integer. A set E C R" is m-rectifiable
 iff E is «^""-measurable, <%""(E) < oo, and there exist m-dimensional Cl

 manifolds {Mt} J°=, in R" such that  U M,  = 0. (Here we differ

 somewhat from the convention of [FH]). For a.a. x E E, the tangent
 spaces at x to distinct M, containing x are equal. Let Ex be this tangent
 space where it exists.

 (2) Suppose now we are given
 (i) a bounded m-rectifiable set E with m > 1,
 (ii) a multiplicity function 0, i.e. an «^""-measurable function 0 with domain

 E and range a subset of the positive integers, such that \ EQd3?m < oo,
 (iii) an orientation T, i.e. an «^""-measurable function T with domain E

 such that for a.a. x £ E, T(x) is one of the two simple unit m-vectors
 associated with Ex.

 With the above ingredients we define a linear operator on C°° m-forms
 6 bv

 ■S 7X4)) = I e(x) < T(x), 4>(x) > d#"

 This generalises the notion of integration over an oriented manifold. The
 set of all such operators is called the set of m-dimensional rectifiable currents.
 A O-dimensional rectifiable current is defined to be a linear operator T on
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 722 J. E. HUTCHINSON

 Cœ functions (i.e. 0-forms) such that
 r

 i = l

 where r > 0, X,, ..., \r are integers, and a,, ..., ar E R". Thus T corresponds
 r

 to a finite number of points with integer multiplicities. T is written ) Xjaj.
 i= 1

 The set of m-dimensional rectifiable currents forms an abelian group in
 a natural way. It is denoted 32m.

 (3) For each T E 31 m, m > 1, we define a linear operator l)T on C°°
 (m - l)-forms by Stokes formula:

 dT(<t>) = T(d<j>).

 If T corresponds to a compact oriented manifold with boundary, then dT
 corresponds to the oriented boundary. Clearly ddT = 0. However it is not
 necessarily true that dT E 32m_x. Accordingly we define the abelian group
 of m-dimensional integral currents by

 Im= {TE 32m: dT e 3?m_x] ifm>0,

 In= 32n.

 Clearly lm C £%m. h or m > 1, d : lm -» lm_,, and is a group homomorphism.
 We can also enlarge âêm to the abelian group of m-dimensional integral

 flat chains, or m-chains for short, defined by

 &m = [R + dS-.RE^m,s eœm+l).

 In the natural way d is extendible to a group homomorphism 3 : -»
 if m > 1.

 (4) For T e we define the mass of T by

 M(jT) = 1 0</<rm if m > 1,

 \ f=1 ' 1=1
 MI

 One can extend the definition of M to & , but then one has [FH, 4.2.16].

 ^ = {T:M(T)<oo},

 K = œmr {r:M(ar)<oc}.

 One now defines the integral flat "norm" on by

 &{T) = inf {M(Ä) + M (S):T= R + 3S},

 and the integral flat metric by
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 FRACTALS AND SELF SIMILARITY 723

 Tl
 R

 t2

 Figure 2.1

 lT(r1,r2) = ^(7,1- t2).

 Thus T, and T2 of Figure 2.1 are close in the ^"-metric since there exist
 R and S of small mass such that T, - T2 = R + dS. d is continuous in the
 ^-metric, indeed J* (dT, ,'dT{) < (71, ,T2).

 (5) The m-dimensional integral flat chains generalise the notion of an
 oriented m-dimensional C1 manifold, but retain many of the desirable properties
 and at the same time are closed under various useful operations.

 Thus is a complete metric space under ,F [FH, 4.1.24]. The infimum
 in the definition of & is always realised [FH, 4.2.18].

 Convergence in M implies convergence in but certainly not conversely.
 If Tj T in JSf then M(r) < lim inf M(7}).

 For integral currents there is the important compactness theorem [FH,
 4.2.17] : if K C R" is compact and c < oo, then

 {T E Im : M(r) < c, M(dr) < c, spt T C K]

 is compact in the ^-topology. For T E we define spt T, the support
 of T, to be the intersection of all closed sets C such that spt <J> fl C = Q)
 implies T(cf>) = 0.

 If T E , m > 1, and d T = 0 (or if T E we say T is an m-dimensional
 integralflat cycle or m-cycle for short. If m > 1, it follows by a cone construction
 [FH, 4.1.11] that T = dS for some S E J^+l. Furthermore, one has the
 isoperimetric inequality [FH, 4.2.10] : for m > 1 there is a constant y = y(m,n)
 depending only on m and n, such that if T 6 Im and dT = 0, then T = dS
 for some S E Im+I with M(S) s +

 If T E Jf, and T = dS for some S E , we say T is an w-dimensional
 integral flat boundary, or m-boundary for short. Thus if m > 1, every m-cycle
 is an m-boundary.

 (6) If T e and /: R" —> R" is Lipschitz and proper, then one defines
 f#Te&~m [FH, 4.1.14, 4.1.24]. In case T corresponds to an oriented manifold
 and /is C\ then f#T corresponds to the oriented image of T under f, with
 appropriate multiplicities if/ is not one-one.

 The properties of/# T we will need are:
 (a) /# d T = df # T\

 (b) is linear, and is continuous in the ^"-metric;
 (c) if Lip /= r and Te &m, then M(/#T) < rmM(T) and <

 max{rm,rm+*}
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 724 J. E. HUTCHINSON

 (d) spt f#T C/(spt T).

 (7) One can generalise from the integral flat chains to the so-called flat
 chains, and even more generally to the currents of de Rham. However, one
 loses the useful geometric properties of the integral flat chains. For a full
 treatment of all these subjects see [FH].

 3. Invariant sets.

 We follow the notation of 2.2, and the other subsections of 2 as necessary.
 y — {Sl,...,SN} is a set of contraction maps on the complete metric space
 (X,d). Lip 5, = r,. s, ... l is the fixed point of S, ..., .

 ' • 11 'p x 11 'p

 We show the existence and uniqueness of a compact set invariant with
 respect to y and discuss its properties.
 We suggest the reader consider Examples 3.3 for motivation.

 3.1. Elementary proof of existence and uniqueness, and discussion of
 properties.

 N

 (1) For arbitrary A C Xlet y(A) = U S,(A ). Let y0(A) = A, y1 (A) =

 y (A), yp(A) = y{yp-\A)) for p>2. We will often use the notation

 A = S ... , (A). Notice yp(A) = II A. ..., . Notice also that diam !| lp 11 Ip^ ' v / 'I 'p

 (Ah ... , ) < rit • ... ■ rip diam (A)-* 0 asp —* oo, provided A is bounded.

 (2) Definition. A is invariant (with respect to y ) \A A = y (A).

 (3) Theorem and Definitions.
 (i) There is a unique closed bounded set K which is invariant with respect

 N

 to y Thus K = (J Kr Moreover K is compact.

 (in) KD Ki{D ... D * ... D ..., W ••• /, w a singleton whose
 p=l

 member is denoted k^ ....... K is the union of these singletons.
 (iv) k7i... } = si{ ... if, and in particular sti ... ^ £ Ä" (recall 2.1(5)).

 k. ... , ... = lim 5, ... , , in particular this limit exists.
 '< p-+ «

 (v) K is the closure of the set offixed points of the Sit ..., .

 (^i)SJl...JSKlt...ll,)=KJi...Jqli...lp.
 Jq 1 ' * ' ip * ^/l Jq* I 'p
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 FRACTALS AND SELF SIMILARITY 725

 (vii) The coordinate map it : C(N) —* K given by n(a) = ka is a continuous
 map onto K.

 (viii) If A is a non-empty bounded set, then d(Ah ...,kl{ ...0
 uniformly asp-* oo. In particular yp(A)-*Kin the Hausdorff metric.

 (4) Proof of uniqueness. We first remark that (i) and (viii) are established
 in 3.2 independently of the following.
 Assume now that AT is a closed bounded set invariant with respect to

 y, and observe the following consequences.
 N

 K= U S,(K)
 1 = 1

 = U SfSjK) = U SU(K) = U Kv

 = U

 Similarly

 *1

 ... If - S„ ... lp(K)

 = Sn-J U SipJK)
 Vn = i

 N

 = u Sh ... ip+i(K)
 V+l = 1

 N

 = u *„...v,+1.
 <,+1-1

 Thus AT D Kh D AT<1<2 D ... D Ki{ ... ^ D ..., and since diam (K,t ... , )-» 0

 as/?—» oo, (J AT, ..., is a singleton (by completeness of A') whose unique
 P

 member we denote kh .... ... . Thus we have established (ii) and (iii), under
 the given assumptions on K.

 The first part of (vi) is immediate, since

 SJl...JSKli...ip)=SJi...^Sh...lp(K))
 = SJl...Jvll...ip(K)

 = Kh - v. -
 The second part follows, since
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 s„...
 P = 1

 oo

 = n ... J(tiy... ip
 p~ i

 = ^
 >1 ■••>»'! ••• ••• •

 Since Siy ..., (fcf, . ) = kîy by the above, it follows fcri - is the unique
 fixed point s, ... , of S, ...... It follows both s, k, ... i ... E K, ... , , r *\ ip 'l *p ' 1 'p' '1 'P 'I 'p
 and hence since lim diam (K. ) = 0, that lim s, ..... = k. ... , .... This V '1 p ' 'l 'p '1 'p p—*00 p—» CO ' ^

 establishes (iv), and (v) follows from (iv). Notice we have established the
 uniqueness of K (since K is the union of singletons, each of which is the
 limit of a certain sequence of fixed points of the Siy ..., ).
 To establish (vii), and hence that K is compact (being the continuous image
 of a compact set), let it be as in (vii). Suppose a = (a, ... ap ...) E C(N)
 and e > 0. Then it(a) = kay ... ... and so there is a q such that Kay ... a C
 {* S K : d(x,n(a)) < e}. Since Kay ... a is the image of the open set (ß : ß, = a,
 if t < q), it follows n is continuous.
 To prove (viii) suppose A is non-empty and bounded. Then

 d(4h ... ip,kh ... . ...) = d(Sit ... lp(A),s,... ip(kip+{ ...»
 < r,, • ... • r, d(A,kl ...) '1 'py *p +1 7

 < r<( • sup {d{a,b) :a E A,b e

 < Constant / max r,.^
 \lsisN /

 —»0 asp —► co.

 All that remains now is to prove the existence of a closed bounded invariant
 set. But notice that we know from (v) what this set must be.

 (5) Proof of existence. First we need to establish the following lemma.

 Lemma. If {Sl,...,SN} is a set of contraction maps on a complete metric
 space (X,d), and sh ... , is the fixed point of Sh ... , = Su° ...° S, , then
 for each sequence », ... ip ..., lim sit ... , exists. p—>00 ^

 Proof. Let \ = max d{si,si), and let R = \(1 — r)-1 where r =
 Is i.JsN

 max {r(. = Lip(S,.) : 1 < i < N).
 N N

 Then |J B(st,rR) C p) B(snR) = C, say. For if d{snx) < rR then

 d{Sj,x) < X. + rR = A. + r\(l — r)_1 = \(1 - r)-1 = R. Thus S,C C C for
 / = 1, ..., N, and so CD Sit(C) D Siih(C) D ... D 5,. ... ip(C) D ..., i.e.
 CDC DC, D ... D C. ... , D ... . But the fixed point s, ... , must he in M M'2 M lp r 'i lp
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 Sh ... ip(C), and so since diam (Sit ... ip(C))—> 0 asp-» oo and the Sl{ ... ip(C)
 are closed, it follows that lim sh ..., exists and is the unique member of

 n - m.

 For a E C(N) let sa = lim sa ... a , and let K = {sa:a E C(N)}. Then
 p—»oc 1 p

 S,(sJ = sic> since S,.(0 G S, f) (Q, „ ) = f| c,0, - «„ 3 J,„(notice that
 p = l

 it is not normally true that Si(sai ... a ) = (jiai ... a )). Thus K = (J SJK) =

 y (K), i.e. K is invariant with respect to y.
 It remains to prove that K is compact. Define it : C(N) —> K by n (a) = sa.

 Since diam (K) is bounded (being a subset of C in the previous lemma)
 it follows precisely as in the proof of (vii) that tt is continuous, and hence
 that K is compact. This gives the existence of (1) and completes the proof
 of the theorem.

 (6) Definition. The compact set invariant under y is denoted by \y\.

 (7) Non-compact invariant sets. There are always non-bounded invariant
 sets, R" being a trivial example.

 For any A, y (A) = A implies y (Ä ) = À. Thus if A is bounded and invariant,

 then so is A, and hence Ä -\y\ by (3)(i). For example, yi/2(0,l) = (0,1)
 where yi/2 is as in 3.3(1).

 (8) The following observation is useful. Suppose A is set such that
 y {A) C A. Then clearly A D y {A) D y2(A) D ... D yp(A) D ... . If
 furthermore A is closed and non-empty, then K(= \y\) C A, and K, .... C
 Alt...ip for all

 To see this latter, choose a E A. Then by (3)(viii) for each fixed
 it, ..., ip, ..., k, ... , = lim S. ... , (a) E A. Hence K C A. Applying 5, ... .

 P p—>oo P 1 P
 to hoth sides K C 4

 •1 'p

 . N

 (9) If ^ r,< 1, then K is totally disconnected. For given a, b E K

 select p such that X f ^ rt- ... 'r.„^ = < d(a,b), where
 X = diam K. Since K = Il K, ... . , and diam K, ... = r. • ... • r, X, it w * 1 'p ' 1 P P

 * 1

 follows by an elementary argument that a and b are in distinct components
 of K.

 3.2. Convergence in the Hausdorff metric. We remark that this section
 is independent of 3.1(3), (4).

 Let 38 be the family of closed bounded subsets of X, & the family of
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 728  J. E. HUTCHINSON

 compact subsets. Clearly y : y —► y and y : ^ -» We have

 (1) Theorem, y is a contraction map on y (respectively tf) in the Hausdorff
 metric.

 Proof. 8(y (A ),y (B)) = 8 ( \J 5,0* )>U 5,(5) J 5 i I /

 < max 8(S,(yi),S,(B))
 l^i^N

 s f max r.^8M,5). □
 \ls ISN J

 Existence and uniqueness of a closed bounded invariant set \y\ follow
 from the contraction mapping principle. Since ^ is a closed subset of y
 it follows that | y \ E

 3.3. Examples.

 (1) Cantor Set. In the notation of 2.3 let

 {S,(r),S2(r)},S,(»-):R-*R,

 S,(r) = (0,r,I), S2{r) = (l,r,7),

 where I is the identity map.
 If r = 1/3, then yr(C) = C where C is the classical Cantor set, and so

 |^/31 = C. We have sketched C, more precisely ^3([0,1] ), in Figure 3.1.
 Notice the numbering system for the various components C, ..., .

 If 0 < r < 1/2, then |^| is a generahsed Cantor set. It is standard, and
 a consequence of 5.3(l)(ii), that dim \yr\ = log 2/log (1 /r).

 If 1/2 <r< 1, then ^([0,1]) = [0,1], and hence \^\ = [0,1]. Thus dif
 ferent S?r can generate the same set. In this connection see 4.1.

 (2) Koch curve. We refer to Figure 3.2. Let a,, a2, a3, a4, a5 be as
 shown. Let y ={Sl,S2,S3,S4) where 5,: R2 —> R2 is the unique similitude
 mapping a,a*to a(ai + , and having positive determinant (i.e. no reflections).

 Let K = \y\. Actually Figure 3.2 shows the approximation y4([a,,as])
 to K. Notice how one finds the components of K, e.g. K33l. S, has the

 Cj n «* C2 i

 Kl2-t M
 M

 Cl21

 d 1 r C2

 K.r1 M

 c121

 Figure 3.1 The classical Cantor set C.
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 .. ^y\^y vwv vua^/
 .1 .. . .,2 „, .(1,0)

 Ki Ki*

 Figure 3.2. The Koch curve K.

 fixed point si = kf ; 5, = a,, s4 = as, and s2, s3 are shown. Similarly S0- = S,0 Sy
 has the fixed point stj = krJ, where s23 is shown.

 One can visualise y (A)- (J Atj ... ^—> K as /> —> oo, for arbitrary

 bounded A (e.g. A a singleton).
 Now let y = {S,'.Sj}, where S\ is the unique similitude mapping

 ala* to at a* (/ = 1), a3a5'(/' = 2), having negative determinant (i.e. the 5,'
 include a reflection component). Then it follows y (K) = K and hence
 \y\ = K. For s[°s[ = sx, s[°s^ = sïy s^s[ = siy s;°s; = s4,
 hence (y")2 = y hence \y'\ is fixed by y hence [J"' | = \y\ by unique
 ness. Thus as in (2), different y can generate the same set.

 (3) Let M CR" be an oriented m-dimensional manifold with oriented
 boundary N as in Figure 3.3. Let y= {5,,...,SN) where SrR"-»R" are

 SnM

 M <= R3, M has the

 boundary N. Consider

 SoM / the case where M and
 S, M ^

 N do not lie in a plane.
 Si N

 Figure 3.3 M C R3, M has the boundary N. Consider the case where M and N do not lie
 in a plane.
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 _ yv

 contraction maps such that X 5, (A^) = IV, taking into account orientation
 1 = 1

 and after allowing cancellation of portions of manifolds having opposite
 orientation. Obviously such y are easy to find.

 \y\ will normally have dimension > m, and so cannot be an m-dimensional
 manifold, yet in some sense \y\ is an m-dimensional object with oriented
 boundary N. We make this precise in §6, where under mild restrictions on
 the S., \y\ becomes an integral flat m-chain having N as its boundary.

 3.4. Remark. The following gives a curious characterisation of line seg
 ments:

 A compact connected set A C R" is a line segment iff A = y {A) for some
 y = {Si,...,SN} where N > 2, the Si are similitudes, Lip S, = rt, and
 _ N

 Proof. One direction is trivial.
 Conversely, suppose A = y {A) with y as above. Let diam A = d(p,q)

 where p, q E A. By projecting A onto the line segment pq, one sees that
 yx(A) > diam A. If A f pq, by taking the nearest 'point retraction -tt of A
 onto a suitably thin solid ellipsoid having p and q as extremal points, one

 finds y\A) ^ ßt1 (it (A)). But yl(ir(A)) > diam A as we just saw, and so

 y1 (A) ^ diam A unless A = pq. One can check yx{A) < diam A by a
 covering argument, and so the required result follows. □

 The above was in response to a query of B. Mandelbrot concerning
 characterisations of the line—his query in turn arose from some rather vague
 remarks in a work of Leibniz. F. J. Almgren Jr. suggested a shortening
 of the original proof.

 3.5. Parametrised curves.

 (1) Suppose y = {Sl,...,Sfr} has the property that

 a = sx = fixed point of S1,,

 b = sN — fixed point of SN,

 Si(b) = Si+l(a) if 1 < / < AT — 1,

 (for example, 3.3(2)). Then one can define a continuous/: [0,1] —» \y\, with
 Image (/) = \y\, in a natural way.

 For this purpose, fix 0 = i, <t2< ... < tN+l = 1.Define g,.: [i,,f,+1] —*(0,1)
 for 1 < i < N by

 * - t,
 g,(x) = •

 ',+i -

This content downloaded from 138.23.171.99 on Mon, 29 Jan 2018 16:50:11 UTC
All use subject to http://about.jstor.org/terms



 FRACTALS AND SELF SIMILARITY 731

 Let

 y = y(a,b) = {/ : [0,1] —» X:/is continuous,/(0) = a,/(l) = b).

 Define y (J) for/ G y by

 ^= 5, °/° gi(x) for X e [t„ti+l ], 1 < i < N.

 Define a metric ^ on y by

 Wi>/2) = sup{|/,(x)-/2(x)|:xe [0,1]}.

 ^ is clearly a metric, and is furthermore complete since the uniform limit
 of continuous functions is continuous.

 (2) Proposition, y is well-defined, y~. y —> y, and y is a contraction map
 in the metric y.

 Proof, y is well-defined and y (/) E y if / e y since S,. °f0 g,(ti+, ) =
 5,0/(1) = Sfb) = 5I+I(a) = 5,+1 °/(0) = 5,.+1 °/°g,+ i0,+1) for 1 < i < JV — 1,
 5, °/0 g i (0) = 5, °/(0) = S fa) = a, and S„°/°g„(l) = 5„o/(i) = Sff(b) =
 b.

 Now suppose x E [/„*,+,] and/,,/, e y. Then

 I W,X*) - ^(/2)(*)l = 15,.°/, ° g,(x) - 5,.°/2o g,.(x)f

 < Lip 5,1/(g,(x)) -/2(g,.(x))|

 — Lip s,y(fl ,/2).

 Hence v(<r U\)^Ui)) — r&"Ui >/2)' where r = max (Lip S, : I == / =s TV >. It
 follows y is a contraction map. □

 (3) Theorem. Under the hypotheses on y in (1), there is a unique g & y
 such that y (g) = g. Furthermore Image (g) = \y\.

 Proof. The existence of a unique such g follows from (2).
 By construction, Image y(f) = .J^Image /) for every / G y. If y (g) = g,

 this implies Image g = ^(Image g), and hence Image g = \y\ by 3.1 (3)(i).
 □

 (4) It is often possible to parametrise other invariant sets \y\ CR by
 maps g : {x C Rm : \x | < 1} —► R" for suitable m, for example m = 2 in 3.3(3).
 But if m > 1 there is a lot of arbitrariness in the selection of the particular
 parametric map g. It is often better to treat | y \ as an intrinsic ' 'm-dimensional' '
 object in R" via the notion of an w-dimensional integral flat chain, c.f. 2.7,
 and 6.

 4. Invariant measures.

 4.1. Motivation. A motivation for this section is the following. In 3.3(1),
 (2) we saw examples of different families of contractions generating the same
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 set. Yet the yr of 3.3(1) seem to be different from one another in a way
 that y and y ' of 3.3(2) are not. We make this precise in 4.4(6).

 Another motivation is that it will be easier to "use" invariant sets if we

 can impose additional natural structure on them, in this case a measure.

 4.2. Definitions. (X,d) is a complete metric space, y= {5,is a
 family of contraction maps. Additionally, we assume the existence of a set

 JV

 p = {p,,...,Pjy-} with p, e (0,1) and N p,. = 1. In 5 we will see that in
 i=\

 case the S, are similitudes with Lip 5, = r,., it is natural to take p,. = rf,
 where D is the similarity dimension of y 5.1(3).

 We refer back to 2.5 for terminology on measures.

 (1) Definition. If v e J? let (y,p)(v) = p,SJ#v. Thus (.y,p)(v)(A) =

 P,v(STl(A)). Let (J^p)°(v) = v, (^p)'(v) = (^fp)(v), (yP)p(v) =
 (y'p)((yP)p-l(v)) for p > 2. Let

 V,., ... ip = Pli • ... • Pip ■ äti ... ip#(V).

 (2) Notice (y,p)p(v) = ^ v/( ... ip. Also M((^fp)(v)) = M(v) and so
 M((S1p)p(v)) = M(v) for all />."in particular, (J^p) : Jt ' -+JT1.

 (3) Definition, v is invariant (with respect to (y,p)) if (y,p)(v) = v.

 4.3. The L metric. We introduce a metric Lon/1 (see 2.5(2)) similar
 to the one introduced by Almgren in [AF, 2.6], but modified in a way which
 enables 4.4(1) to hold.

 (1) Definition. For p, v e 1 let

 L(p,v) = sup{p.(<t>) — v(<}>) : <{> : R, Lip <|) < 1}.

 Notice that <|> of the definition is a member of (X), and notice also
 that there is no restriction on sup {<}>(*) : * €= X).

 In checking that L is indeed a metric, the only part which is not completely
 straightforward is verifying L(p,v) < oo. So suppose spt p. U spt v C B(a,R).
 Then for Lip <}> < 1,

 ~ "W ~~ H-W — V\uf "T W/f "W YW ■ TV";;

 = |x(4> - 4>(a)) - v(<(> - <t>(a)), since M-(<t>(a)) = v(4> (a))

 < M,(Ä) + v(R)

 = 2 R.

 One can check that the L metric topology and the weak topology coincide
 on J?1 D {(x : spt |x is compact}.

 Finally notice that L(Sa,8fc) = d(a,b).
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 4.4. Existence and uniqueness.

 (I) Theorem.
 (i) (y,p) : ^1 —* JT1 is a contraction map in the L metric.
 (ii) There exists a unique p G such that (^p)p = p. If v E then

 (yp)p(v) —* p is the L metric, and hence in the topology of convergence with
 respect to each compactly supported continuous function.

 Proof, (ii) follows immediately from (i).
 To establish (i), suppose Lip 4> < 1 and let r = max rr Then for p, v £ JT

 1st

 (^fp)(p)(4>) - {.y,p){v)(§)
 N N

 = 2 (pA#p)(4>) - 2 (P,^v)(<f>)
 /=! i=l

 N

 = ^Pi(p(4>o5,.)-v(ct)°5,))
 1 = 1

 N

 = X 0 St) ~ v(r_,4» o 5,.))
 1=1

 AT

 - X P/rL(P-'v)
 1 = 1

 = rL(p,v),

 since Lip (r-1 d> ° S,) < r~l • 1 • ri < 1.

 (2) Definition. The unique measure invariant with respect to (^fp) is denoted

 (3) Definition. Let t be the product measure on C(N) induced by the
 measure p(i) = p, on each factor

 (4) Theorem.
 (i) H^fpll = tt#t, where u : C(N) —* K is the coordinate map of 3.1(3).(vii).
 (ii) spt \\Jfp\\ = \f\.

 Proof, (ii) follows from (i) and 3.1(3) (vii).
 To establish (i) let cr, : C(N) —> C(N) be the ilh shift operator 2.1(3). Clearly

 •n °CT,. = S,. °it and t is ({cr, ,...,ct^},p) invariant. Hence ^ p,5,#(tt#t) =

 X p.ir#((ri#T) = X P/(<T'#T) = Tr#T> and so by uniqueness tt#t = ||^p||.
 □

 (5) Remarks.
 (i) It follows from (4)(ii) that ||^fp|| has compact support.

This content downloaded from 138.23.171.99 on Mon, 29 Jan 2018 16:50:11 UTC
All use subject to http://about.jstor.org/terms



 734  J. E. HUTCHINSON

 (u) There are unbounded invariant measures, rq particular and trivially,
 J"" on R".

 (iii) If v is invariant, so is \v for any positive constant \. Requiring
 H^tpll e is simply a normalisation requirement.

 (6) Example. Referring back to 3.3(1), let p = {1/2,1/2} and write |xr for
 ||^,p||. We will show pr ^ |xr for 1/2 <r< s< 1. In 5.3(iii) we see that
 |xr = ^rL \\yr\\ forO<r< 1/2.

 Suppose 1/2 < r < s < 1. Take A C [0,1 — j). Then S2(r)~'(A) D [0,1] =
 0 and hence p,r(S2(r)~'(,4)) = 0 since spt p,r C [0,1], It follows \ir(A ) =
 {\/2^r{Sx{r)-\A)) = (\/2^r{rA). Simüarly ^(^) = (1/2K(^). If =
 p,s = p., say, it follows p,(.&4 ~ rA) = 0. Choosing A = [0,1 — s), this contra
 dicts spt p. = [0,1].

 4.5. Different sets of similitudes generating the same set. For I a finite
 set as in 2.1(6), let yt = {S„:a G /}. Then \y,\ = {/cp : ß G /}, as follows
 by applying 3.1(3)(iii), (iv) to yr From 2.1(8)(i), 7=7 iff I is secure. Thus
 \yt\ = |^| if 7 is secure, and if the coordinate map w is one-one, then
 \y,\ = \y\ iff I is secure. A similar result was first shown in [OP].
 Let p(0,1) be given by p/«i1 ip)) = p(/',) • ... • p(/p). Then if / is

 tight, by using 2.1(8)(ii) one can check V p.(a) = 1, and furthermore
 ŒI

 \\y„Pl\\ = \\yp\\ as follows from 4.4(4) and 3.1(3). Finally, if it is one-one,
 then ||^,pj = \\yp\\ iff /is tight.

 5. Similitudes.

 5.1. Self-similar sets. We continue the notation of §3 and §4.

 (1) Definition. K is self-similar (with respect to y) if
 (1) K is invariant with respect to y and
 (ii) ßrk(K) > 0, yk{Ki D Kj) = 0 for i ^ j, where k = dim K.
 Thus (ii) is a kind of ' 'minimal overlap' ' condition, and rules out the examples

 in 3.3(1) with 1/2 <r< 1. However, it is still rather weak. For example,
 ify= {S,,S2}, S,:R2 —> R2, S,(re'e) = (21/2)-'re,<8-'/4)and S2(l + re'9) =
 1 + (21/2)~'re'(e+,r/4), then \y\ is a continuous image of [0,1] with a dense
 set of self-intersections, see [OP,D = 2,L = 0] or [LP, Figure 3]. In [LP,
 page 374] it is shown ff1{\y\) = 1/4, and so dim \y\ = 2 and \y\ is
 self-similar in the above sense by (4)(ii).

 A more useful notion of self-similarity may be a condition analogous to
 the open set condition below, which we will see implies | y | is self-similar,
 but allows us to "separate out" the components \y\r

 (2) Convention. For the rest of this section we restrict to the case y
 is a family of similitudes. (X,D) will be R" with the Euclidean metric, although
 other conditions suffice. is Hausdorff k-dimensional measure. Lip(S,) = rr

 N

 Let 7 (0=7 r / • Then 7(0) = N and 7(t) | 0 as t —> 00, and hence there
 *~it=\
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 N

 is a unique D such that ^ r, = 1.

 (3) Definition. If ^ rf = 1, D is called the similarity dimension of y
 We will see in 5.3(1) that D often equals the Hausdorff dimension of|^ |.
 For the rest of this section p= {p,,...^} where p, = rf, and so p is

 determined by y. We write \\y\\ for \\yp\\, and often write K for \y\ and
 M- for \\y\\.

 Note that ^ • ... ■ ^ = 1, a fact we use frequently.
 Finally we take r, < r2 < ... < rN, so that r, = min (r,. : 1 < i < N), rN =

 max (r,. : 1 < / < N}.

 (4) Proposition. Let K = | y |, dim K = k. Then
 (i) yD(K) < oo and so k < D (this is true for arbitrary contractions S,).
 (U) 0 < JFk(K) < oo implies (K is self-similar iff k — D).

 Proof. (i)K= U«ndX . (dam^... )" = J . <•
 f-tip i\,-..,ip

 ... • rf (diam K)° = (diam K)D. Since diam Kh ... , < r"N diam K-* 0 as
 p —* oo, we are done.

 (ii) Suppose 0 < yk(K) < oo and K is self-similar, so that
 ßPk(K, n K.) = 0 if /V j. Then ßPk(K) = Y * 4r*(jr.) = Y " rk^k(K), 1 ^1 = 1

 hence ^ r* = 1, hence D = k.

 Conversely, suppose 0 < < oo. Then < V JFD(Ki) =
 1 = 1

 Y* rf 3Fd(K). Since Y* rf = 1, ^°(AT) = Y* JTD(Ki) and so it
 ■*-"/= 1 +^i=\ -^i=l

 is standard measure theory that <%'D(Ki n fC) = 0 if /V j■ □

 5.2. Open set condition. Recall convention 5.1(2).

 (1) Definition, y satisfies the open set condition if there exists a non-empty
 open set O such that

 N

 (1) (J S,O C O,

 (ii) 5~Ô n SjO = 0 if i ^ j.

 (2) Examples, (a) Suppose we already have a non-empty closed set C
 satisfying (i) and (ii) of (1) with O replaced by C. Let d = min rf(S,C,S C),

 <v/

 and select e so r,.e < d/2 for / = 1, ..., N. Then y satisfies the open set

 condition with O = (J B(x,e). To see this observe that
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 5,0 = U S,B(x,z)
 x6 C

 = U £(5,x,r,e)

 = U B{y>ri*)

 Hence 5,0 fl 5,0 = Ç) if / and furthermore 5,0 C O. This situation applies
 to 3.3(1), 0 < r < 1/2, with the non-empty closed set [0,1].

 (b) Suppose there is a closed set C with non-empty interior such that
 (i) 5,C C Cif I = 1, ..., N,
 (Ü) (5,C)° n (5,C)° = 0 if i

 Then the open set condition holds with O = C°. This situation applies in
 3.3(1), (2) with C the closed convex hull of \y\, i.e. C = [0,1] for 3.3(1)
 and Cis the triangle (a.,a5,a3) for 3.3(2).

 (3) Elementary consequences. Suppose y satisfies the open set condition
 with O. Note that Slt ... , commutes with the topological operators °, d, c.
 In particular (O, ...,)" = (0~)(| ... , , and so we can write Ö, ... ( unambig
 uously.

 Then

 (i) ODO, D O, , D ... D O, , ... , D ... ; \ S * 1 ■ 11 *2 '1*2 'p

 (ii) Kit ..., C Ö(| ...;
 ("0 n o,;... = q> //Un-J,) f
 (/y) // / « tight (2.1(7)), then the Oa, a EI, are mutually disjoint.
 Thus (ii) and (iii) say that O, ..., "isolates" A',, ... ipfrom the Ku ... j

 for (Ji>-Jp)^(h,...,ip)
 Proof, (i) and (ii) follow immediately from 3.1(8).

 For (iii), suppose (jx,...,jp) ? (',.•• ■»*,)■ But KJt ■■■ JpC ÖJt ... Jp, and
 O,. ... , DO, ... , = <Z> since O, ... , n O, ... , = 0. J\ Jp ll lp J\ Jp 11 'p

 For (iv), suppose I is tight, a, ß E I, and a ^ ß. Let p be the greatest
 integer (perhaps 0) for which there is a sequence (i, ip ) with {il,...,ip ) < a
 and (ix,...,ip) < ß. Since I is tight there exist ip+x^jp+x such that
 (ix,...,ip,ip+x) < a, <i, ip,jp+l) < ß- But then Oa C 0#1 ... ipip+i, Oß C
 °. ••• >pJp+x by o)»and 80

 o n o„ c s. ..., (O,. no, ) = Q>. □ « ß 'pv lP+\ JP+\'

 5.3. Existence of self-similar sets.

 (1) Theorem. Suppose y satisfies the open set condition. Then
 (i) there exist A.,, \2 such that

 0 < A., < Q?(K,k) s Q*D(K,k) < \2 < oo for all k e K,
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 (ii) 0 < ßTD(K) < oo and so K is self-similar by 5.l(4)(ii). In particular
 dim K = D,
 (Hi) || y\\ = \ß(fD(K)\ L K.
 Proof.

 (a) Lemma. Suppose 0 < c, < c2 < oo and 0 < p < oo. Let {(/,.} be a family
 of disjoint open sets. Suppose each Ui contains a ball of radius pc, and
 is contained in a ball of radius pc2. Then at most (1 + 2c2)ncj" of the Ü.
 meet B(0,p).

 For suppose Ox, ..., Ük meet B(0,p). Then each of Ot, ..., Uk is a subset
 of B(0,(1 + 2c2)p). Summing the volumes of the k corresponding disjoint balls
 of radius pc,, we see that

 koLnpnc"x < a„(l + 2c2)"p",

 and hence k < (1 + 2c2)"c7".

 (b) For the rest of the proof let O be the open set asserted to exist by
 the open set condition.

 Let p. = ||^*||. We will first prove that there exist constants k,, k2 such
 that

 0 < k, < 0*(p,A:) < e*ß(p,&) < k2 < oo
 for all k £ K.

 First note that

 n(Kti ... ,p)> Mï, ,,)
 = r^...rrpi,(Sll...i;lKii...lp)
 = r°-...r?»(K)
 D D

 = r. - ... - r. .

 Let k = kh ... I ... and consider B(k,p). Choose the leastp such that K: ... t c
 B(A:,p). Then r<( ■ ... • r, (diam J£) > pr, (recalling r, < ... < r^). Hence

 M<B(ft,p) p-C/s:,, ... )
 D D

 «£)P «Z>P

 rf ■ ... ■ rf >_U -JL
 D

 "z>P

 rf

 a„ idiam K)°

 Hence 0* ^ rf°D 1 (diam K) ß for k E K.
 We now show that 0*z>(jx,/:) is uniformly bounded away from oo for k E K.
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 Suppose O contains a ball of radius c, and is contained in a ball of
 radius c2.

 For each sequence jx ...jq ... E C(N) select the least q such that r,p <
 Oi " " rj„ — P- Let / be the set of (j\,...,jq) thus selected, and notice that
 / is tight'(2.1(7)). From 5.2(3) it follows {07i ...jq. ,uq) EI} is a
 collection of disjoint open sets. Moreover, each such CF ... ] contains a
 ball of radius ry( • ... • r^c, and hence of radius r,pc, and is contained in
 a ball of radius r,, • ... ■ ry c2 and hence of radius pc2. It follows from (a)
 that at most (1 + 2c2)"(r1c1)_" of the Öyi ... (/,,...,jq) E I, meet B(fc,p).
 Hence at most (1 + 2c2)"(r,c,) " of the KJt ...J , (jl,...,jq) E /, meet B(fc,p).

 Now spt(p,yi ...jq) = Kh ...u by 4.4(4)(ü). By 4.5

 2 PyI jq'
 J, >s/

 Finally ... Jq) = r° • ... • r° < pfl for (j\,...,jq ) E I.
 Hence

 M(*,P) (1+2c2)" PD
 ö n n D

 «ßP r|C, aoP

 (1 + 2c2)"

 It follows that 0*z>(n-,k) < (1 + 2c2)"(a0r"c")_1.
 (c) (ii) now follows from 2.6(3).
 (d) Since K is self-similar, n Kj) - 0 if i ^ j> and so

 N

 i = l

 N

 = ^r°Sl#(^DL K)
 1=1

 by 2.6(2).

 Letting t = [JPD(K)] ~SJTD L K, it follows that t = Y rf S,.#(t), and
 '= i

 that M(t) = 1. By uniqueness, t = p,, proving (iii).
 (e) From (iii), Q°(K,k) = 6*(J^D L K,k) = [^z,(/:)] -I0?(|x,it), and simi

 larly for 0*°. (i) now follows from (b). □

 (2) Remarks. Result (i) says that K is rather uniformly spread out in the
 dimension k. But on the other hand, by a result of Marstrand [MJ], the
 inequality between the upper and lower densities cannot be replaced by an
 equality if D is non-integral.
 Result (ii) is due to Moran [MP].
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 5.4. Purely unrectifiable sets. We continue our assumptions that (X,d) is
 R" with the Euclidean metric and that y is a family of similitudes.

 (1) Theorem. Suppose y satisfies the open set condition with both the
 open set O and the open set U, where Oct/. Suppose furthermore that
 whenever A is an m-dimensional affine sub space of R" for which A D Ö,y (jt>

 and A fl Öj f Q) for some i f j, then A D

 s

 u~ u ö,  f Q). Then for any

 m-dimensional C1 manifold M in R", D \y\) = 0.

 Proof We proceed in stages.
 t

 = {A : A is an m-dimensional affine space with

 A D Ö, ^ A nÖ./0 for some / ^ y'}.

 (see Figure 5.1.)
 Let g: —> (0,oo) be defined by

 g(A) = supjr: B(a,r) C (/ - (J Ö, for some a e A |.
 By the hypotheses of the theorem, 0 < g (A) < oo. We want to show that:

 g is uniformly bounded away from 0.

 To do this we define a topology on j/ and prove that .s/ is compact and
 gis lower semi-continuous (i.e. g(A0) > A implies g (.4) > A for all A sufficiently
 close to A0). The required result then follows.

 Figure 5.1
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 Let Om be the set of m-dimensional subspaces through the origin, give
 Om its usual compact topology as a subset of R"2, and let R" x Om have
 the product topology. The map (a,0)->a + 0 is a map from R" x Om onto
 the set of m-dimensional affine spaces in R", we give this set the induced
 topology. Since s# is the image of a closed bounded (hence compact) set,
 it is compact.

 Next suppose g(A0) > A., A0 E Select a0 E A0 and \0 > X such that
 N

 B(a0,\0) C U ~ |J Ö,. For all A sufficiently close to A0, d(a0,A) < \0 - A..
 1 = 1

 Select a G A such that d(a0,a) <\0- Then B(a,\) C B(a0,.\0) C

 U ~ (J Ö, Hence g (A) > Thus g is lower semi-continuous. The required
 1 = 1

 result follows.

 (b) For each e > 0, let

 ^ = {C: C is an m-dimensional C1 manifold in R",

 and for some A Ej/ there exists a C1 map

 /: A Cl U —* C such that

 (i) / is one-one,

 (ii) Lip/< 1 + e, Lip/-1 <l + e,

 (iii) d(f(x),x) < e for all x E A fl U}.

 We will show:

 there exist e > 0, 8 > 0 such that

 c n  u~ u ö,  > 8 for all CE

 Suppose by (a) that g(A) > \ > 0 for all A E Fix e so 0 < e < X./3.
 Suppose CE ^ with/and A as in the definition of ^. Select a G A such

 N

 that B(a,\) C U ~ U Ö, .

 Since d(f(a),a)<z it follows B(/(a),\ - e) C B(a,\) and hence

 B(/(a),\ - e) C U ~ (J Ö, . But one can check that/(A D B(a,X - 3e)) C C
 1=1

 fl B(/(a),X - e). It follows that

 c n

 N

 u~ u Ö,  )•!  J(f)d^n
 A n B(a,X.-3e)

 > am(\ - 3e)m(l + e)"M
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 where J(f ) is the Jacobian of/. This gives the required result.
 (c) Now assume that the hypotheses of the theorem hold and that n

 K) ^ 0 for some C1 manifold M, where K=\y\. We will deduce a
 contradiction.

 First note that Qm(M n K,k) = 1 for some k E M fl K [FH, 3.2.19] since
 M fl K is m,m)-rectifiable. Alternatively the corresponding result for 9m
 in Rm [MM, page 184] can readily be lifted back to the manifold Af by means
 of the area formula

 * (f(A )) = J(f) dJT m for C1 diffeomorphisms f:A—> R", ^ C R'

 In the following we will need to be a little careful, since due to "overlap"
 it is possible that for fixed p, an arbitrary member of K may belong to
 more than one K, 'I

 Since k is a point of non-zero m-dimensional density for M D K, it follows
 that there is a sequence kj —* k as j —* oo, k ^ kj E M n K. By passing to
 a subsequence we may suppose all ky E Kh for some which we fix. By
 passing to a subsequence again we may suppose all kf E Kiii2 for some i2
 which we also fix. Repeating this argument and then diagonalising, we extract

 a subsequence kj-* k and a sequence ... ij..., such that kj E Klf ...for
 all /. Moreover k = k. ....... .
 J ll Ij

 For each j let p(j) be the least integer p such that kj E Kh ... i ,
 kj & K', • • • 'p'p+i and notice P 01 - j. so p 0) oo as j oo.
 Now 0m(M n K,k) = 1, and %m(M,k) = 1 since Mis a C1 manifold, hence
 "(M ~ J

 We have
 0m(M ~ K,k) = 0. Select/? > diam U, sothatdiam U, ... , < Rrt ■ ... • r, V » / '1 'p(y) '1 Pij)

 (a) hrff.Dn^..,g _o
 <*m(Rri • ... ■ r, )m mK '1 PU)

 Ae.4

 *1'
 K2

 °1 °2

 Figure 5.2
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 To simplify notation we write p for p(j). See Figure 5.2.
 Now

 (M ~ K) D B(Mr,rip)
 D(M~K) n £/,, ... fp

 = MD(Uii...lp~K)
 = Arn (C/,, ) by 5.2(3)(iii)

 D M n ( t/,, ... v ~ U 0„ ... ,pQ ) by 5.2(3)(ii).

 Hence

 """ [(M~K) n B{k,Rrh • ... • r,Mn)]
 (ß)

 öl (Rfj • ... • r, )m m\ i, 'p(j)'

 m n (u, ...~ u Ö, ... V 'I 'pU) ^ '1 'p(J)

 ■ ... • '"/„ J

 y;.(M) n (t/~ u ö, * a = 1

 n ffl

 ol„R

 where = 5, ° ... ° S, is an "explosion" map. Here we are using the

 fact that Z(UU - ,PJ = U,fj(Oh ... ip(jfX) = Ö„, and f/A)) =
 r • ••• • for arbitrary A.

 But for sufficiently large j we will show that fj(M) E ^. From (b) this
 shows the expression in (ß) is bounded away from 0 for all sufficiently large
 j, contradicting (a). Thus our original assumption that ^""(M n K) =£ 0 is
 false.

 To see that fj(M) E 1?f for all sufficiently large j we first observe that
 in analogy with the definition of we have for all sufficiently large j a
 C1 map gj'.fj(T) D where

 (i) F is a fixed open neighbourhood of U,
 (ii) T is the tangent plane to M at k,
 (iii) gj is one-one,
 (iv) Lip gj< 1 + e, Lip gj1 < 1 + e,
 (v) d{gj{x),x) < e/2 for all x Efj(T) ft V.

 See for example [FH, 3.1.23]. But we do not know if fjM E jrf. However,
 we can select an affine space Af through k and kj such that for all sufficiently
 large j, D U and f/T) n V are arbitrarily close in the topology on
 affine spaces introduced in (a). In particular there will exist : fj(Aj) HI/—»
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 fj(T) fi V such that Lip i)>j = Lip i|iy. 1 = 1 and rf(*|>y(x),x) < e/2 for all x E
 fMj) n u.

 Notice that fj(Aj) Ej&, since fj(k) E fj(Aj) (~l Kip(fj+l C A C\ and
 fj(kj) BfjiAj) n Ka C A n Öa for some a ^ ip(J)+1.

 Finally fj(M) E wherein the definition of A is replaced by fj(Aj),
 f is replaced by gy ° and C is replaced by □

 (2) Remark. In the terminology of [FH, 3.2.14], K is purely (s?"",m)
 unrectifiable. In this respect the interest of the present theorem lies in the
 fact that it establishes pure unrectifiability for sets K such that
 ^""{K) = oo (provided m < D). Unlike the examples in [FH, 3.3.19, 3.3.20]
 one cannot argue by using the structure theorems for sets having finite %fm
 measure.

 (3) Example.

 (a) If K = UKt with the K, disjoint, then the hypotheses of the theorem
 are easily seen to be satisfied if m = 1, where O is as in 5.2(2)(a), and U = O.

 For A n  u~ u ö,  = 0 iff A C  u~ u ö,  = Uc U U o,.. But

 this latter cannot be true if A E since then A can be split into two disjoint
 N

 non-empty components A fl Uc and A n (J O,.

 (b) From Example 3.3(2) let O be the interior of the triangle (a,,a5,a3).
 Let U D O be a shghtly larger open set also satisfying the open set condition
 and such that SU D 60 = {a,,a5}. Suppose A E jrf where m — 1. If A fl

 u~ u ö,  = Q) then it is straightforward to show {a,,&5} C A. But then

 (a2,a4) C A, which contradicts A fl
 N

 u~ u ö, .
 i = l

 u~ u Ö,.  = Q) since (a2,a4) C

 (4) Remark. Let us strengthen the hypothesis in (1) by taking A to be
 a one-dimensional affine subspace. Then Mattila [MaP] has shown the
 existence of an e > 0, depending only on y such that for any m-dimensional
 C1 manifold M, dim (M n \y\) < m - e.

 In the same paper, Mattila also shows that under the hypotheses of 5.3(1),
 if m > D, then there are only two possibilities; either K lies in an m-dimensional
 affine subspace or 3?D(\y\ fl M) = 0 for every m-dimensional C' manifold
 M.

 5.5. Parameter space. The orthogonal group O(n) of orthonormal trans
 formations of R" is an (n(n - l)/2)-dimensional manifold [FH, 3.2.28(1)],
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 and hence the set of similitudes S = (a,r,0) in R" corresponds to an
 n(n — l)/2 + (n + 1) = ((n2 4- n + 2)/2-dimensional manifold. Thus every in
 variant set generated by some S? = ofsimilitudes in R" corresponds
 to a point in an (N(n2 + n + 2)/2)-dimensional manifold, which we call the
 parameter space. Oppenheimer [OP] has made a systematic computer analysis
 of a part of N = n = 2.

 6. Integral flat chains.

 In this section we will see how integral flat chains, which will not normally
 be rectifiable, arise naturally in the context of self-similarity. In particular,
 the Koch curve of 3.3(2) supports a 1-dimensional integral flat chain in a
 natural way, and \y\ in Example 3.3(3) supports a 2-dimensional integral
 flat chain provided D < 3 (with D defined in 6.2(2)).

 We make the convention that all currents we consider are integral flat
 chains, or chains for short.

 We need to introduce a new metric, but first we need a lemma on the
 ^"-metric.

 6.1. The ^"-metric.

 (1) Lemma. Suppose 1 < m < n - 1, T is a (not necessarily rectifiable)
 m-cycle, and -y = y(m,n) is the isoperimetric constant of 2.7(5).

 (i) If 5F (T) < y~m, T=dA + R, and (T) = M(A) + M(Ä), then R = 0.
 (ii) If ^(T) s, y-m, then T = dA for some A such that M(^4) = &(T).

 Proof, (i) We first remark that any T can be written as T = dA + R with
 JW(T) = M(i4) + M(i?), as noted in 2.7(5).

 Assume the hypotheses of (i). If R = 0 we are done, so suppose R f 0.
 Since dR = dT = 0, and MfR) < J*(T) < y~m, there is an m-cycle D
 such that R = dD and M(D) < y [MfR)] m+1/m by 2.7(5). Hence M(D) <
 M(Ä), since [M(Ä)]1/m< [^(T)]l/m < y~\ But then T=d(A + D) and

 + D) < M(^) + M(£>) < M (A) + M(/?) = J* (T), a contradiction,
 (ii) Suppose J*(T) < y~m and let T = dA + R with S?(T) = Mf4) + M(Ä).

 Then the same argument as for (i) shows that R = dD with M(Z)) < M(2?).
 Hence T= d(A + D) and M(^4 + D) < M(,4) + M(P) < M(^) + M(7?) =
 J^(T). Thus M (A + D) = J*(T), and so we are done.

 (2) We see the necessity of the condition .F(T) < y~m in the following
 example. Let Trbe a 1-cycle supported on {x: |x | = r) C R2withM(rj = 2irr.
 Let Ar be the rectifiable 2-current supported on {x: |x| s r} C R1 such that
 dAr = T and M(^4r) = irr2. Using the fact 7(1,2) = 4it [FH 4.5.14] and the
 constancy theorem [FH 4.1.7], one can show that if r < 2, then irr2 =
 M(y4r) = P(Tr). If r > 2, then again by [FH 4.1.7] dC = Tr imphes C = Ar
 and so M(C) = irr2 (unless we allow C to have non-bounded support, in
 which case M(C) = oo). But irr2 > 2irr = M(Tr) > (Tr).
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 6.2. The ^-metric.

 (1) Definition. Let B be an (m — l)-boundary, m > 1. Then r€B is the set
 of w-chain s given by

 VB= {R E^m:dR = B).

 (2) Definition. For R, S E WB let

 tf(R,S) = inf {M(^4 ) : A E Mm+i,R - S = dA}.

 We now see that % is a complete metric on rifB with the useful transformation
 result (3)(i).

 (3) Lemma. Let B be an (m - l )-boundary, m > 1.
 (i) Iff : R" —» R" is a proper Lipschitz map and Lip / = r, then (J#R,

 f#S) < rm+l %(R,S).
 (ii) JT(R,S) < &(R,S), and (R,S) = &(R,S) if^(R,S) < y~m.
 (iii) % is a complete metric on The and topologies agree on

 /z..\ tl ~ • *1 j2—1 ±z r/P / t% o\ .

 \*vJ u» i4v/ iro»(vr» v/ c/ V. j / tututuy f/ ji//hc /i v m + 1 *

 Proof, (i) is immediate from 2.7(6)(c).
 The first assertion in (ii) is immediate, and the second follows from 6. l(l)(i).
 To see that if < oo let (R,S) = A. < oo and by 2.7(6)(c) choose/ = p,r

 such that ßr(nr#R,pr#S) < y~m(ji,ris defined in 2.3). Then & (p# -R,p.,.# S) <
 y~m and so by (i) if (R,S) < r~(m '1 '-y ~m. The other properties of a metric
 are easily verified, noting in particular that if & (R,S) = 0 then J^(R,S) = 0
 and so R-S.

 The if- and ^"-topologies clearly agree on r€B. Since a sequence is iffl-Cauchy
 iff it is ^"-Cauchy, ifs is closed in in the ^"-metric, and & is a complete
 metric on &m, it follows % is a complete metric on (ifB.

 To prove (iv) suppose %(R,S) = \ and let 7) E df = R - S,
 M(77) —» X. Let B(0,r) be some ball large enough to include spt (R - S),
 and let /: R" —> B(0,r) be a retraction map with Lipschitz constant 1. Let T'j =
 f#Tj. Then spt T) C B(0,r) and M(T)) < M(7)) by 2.7(6). We can apply
 the compactness theorem of 2.7(5) to T'j - T\ and extract a convergent
 subsequence with limit, A - T[, say. From 2.7(6) it follows M(^) < X and
 hence M(,4 ) = X. Furthermore dA = R — S, and so A is the required current.

 □

 6.3. Invariant chains. Suppose y = are proper contraction
 maps on R", not necessarily similitudes.

 (1) Definition. For any fc-chain T, we let y(T) = ^ Si# (T)\ also
 y°(T) = T,y\T) = y(T), yp+\T) = y(yp(T))\îP> iT'

 From 2.7(6), y : yk -♦ yk and is a continuous linear operator which commutes
 with d.
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 jy

 (2) Suppose now that Lip 5, = rn and let D be specified by N rf = 1,
 i= 1

 as in 5.1(3), but recall that here the S, are not necessarily similitudes. Let
 m be the unique integer given by m < D < m + 1. Now suppose m > 1, B
 is an (m - l)-boundary, and y(B) = B. As examples consider 3.3(2) with
 m = 1 and B = [(1,0)]) - 1(0,0)1, or 3.3(3) with m = 2 and B = N. Finally

 N

 let 0 = rT+> and note 0 < 1

 (3) Theorem. Under the hypotheses of (2) the following hold
 (i) y is a contraction map on &B in the If-metric.
 (ii) There is a unique m-chain T E such that y (T) = T.
 (Hi) If R G fB, then yp(R)—> T in the y-metric (and f-metric).
 (iv) IfR G fBandy(R) - R = dA witha G f?m + i (which is always possible

 by 6.2(3)) then A0 = y (A) G with convergence in the
 p=i

 M-norm, and T = R + dA0.

 Proof. First note that for any D e ^m+i,

 N

 M(/(D)) = Mj St#D
 / = 1

 N

 1 = 1

 N

 <2rr'M(Z>) by 2.7(6)(c)
 i= 1

 = 0M(£>).

 We now show (i). If R G &B then y (R) £ since d(y(R)) = y(ßR) =
 y(B) = S. Next suppose by 6.2(3)(iv) that Rx — R2 = dC with &B(Rl,R2) =
 M(C). Then

 y (Ri - r2) = - ^2)

 = y(dC)

 = d(y(Q),

 and M(y(C)) < 6M(C). Hence ^B{y{R,),y{R2)) < Q^B(Kt,K2).
 (ii) and (iii) follow immediately, using 6.2(3).
 To establish (iv), suppose R E &B, R) - R = dA, A E &m+l. Then

 M(yp(A)) < eM(^"_,(i4)> and so M(yp(A)) < 0"M(^). Thus A0 =
 _ oo

 } yp(A) converges in the M-norm. Thus A0 is a chain of finite mass
 *-!p= 0
 and hence rectifiable by 2.7(4). Finally
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 dA0 = ]T dyp{A)
 p= 0

 oo

 = ^S"(bA)
 p=0

 oo

 = ^yp{y{R)-R)
 p=0

 = lim (yp(R) - R)
 p—»00

 = T-R □

 (4) We can often take particularly simple chains for R and A in (3)(iv).
 For example in 3.3(2) we can take R = Ia,,a5]] and A = ^a2,a^,aA1 to be
 the obvious oriented simplices [FH, 4.1.11].

 (5) Again taking the hypotheses of (2), let T e be given by (3).
 N N

 Now spt T= spt y(T) C (J spt Si#T C |J 5,(spt T) = y (spt T). Thus
 1=1 i=l

 yp(spt T) f as p —* 00, and since the limit in the Hausdorff metric is \y\,
 it follows spt T C \y\.

 It is easy to construct examples, where due to "cancellation," spt T ^ \y\
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