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Abstract
The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed
category D. This allows for a uniform treatment of several notions of syntactic algebras known
in the literature, including the syntactic monoids of Rabin and Scott (D “ sets), the syntactic
semirings of Polák (D “ semilattices), and the syntactic associative algebras of Reutenauer (D
= vector spaces). Assuming that D is a commutative variety of algebras, we prove that the
syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo
the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the
minimal automaton for L in D. Furthermore, in the case where the variety D is locally finite, we
characterize the regular languages as precisely the languages with finite syntactic D-monoids.

1998 ACM Subject Classification F.4.3 Formal Languages
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1 Introduction

One of the successes of the theory of coalgebras is that ideas from automata theory can be
developed at a level of abstraction where they apply uniformly to many different types of
systems. In fact, classical deterministic automata are a standard example of coalgebras for
an endofunctor. And that automata theory can be studied with coalgebraic methods rests
on the observation that formal languages form the final coalgebra.

The present paper contributes to a new category-theoretic view of algebraic automata
theory. In this theory one starts with an elegant machine-independent notion of language
recognition: a language L Ď X˚ is recognized by a monoid morphism e : X˚ Ñ M if it is
the preimage under e of some subset of M . Regular languages are then characterized as
precisely the languages recognized by finite monoids. A key concept, introduced by Rabin and
Scott [20] (and earlier in unpublished work of Myhill), is the syntactic monoid of a language
L. It serves as a canonical algebraic recognizer of L, namely the smallest X-generated monoid
recognizing L. Two standard ways to construct the syntactic monoid are:

(1) as a quotient of the free monoid X˚ modulo the syntactic congruence of L, which is a
two-sided version of the well-known Myhill-Nerode equivalence, and

(2) as the transition monoid of the minimal automaton for L.
In addition to syntactic monoids there are several related notions of syntactic algebras for
(weighted) languages in the literature, most prominently the syntactic idempotent semirings
of Polák [19] and the syntactic associative algebras of Reutenauer [21], both of which admit
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constructions similar to (1) and (2). A crucial observation is that monoids, idempotent
semirings and associative algebras are precisely the monoid objects in the categories of sets,
semilattices and vector spaces, respectively. Moreover, these three categories are symmetric
monoidal closed w.r.t. their usual tensor product.

The main goal of our paper is thus to develop a theory of algebraic recognition in a general
symmetric monoidal closed category D “ pD,b, Iq. Following Goguen [12], a language in D

is a morphism L : Xf Ñ Y where X is a fixed object of inputs, Y is a fixed object of outputs,
and Xf denotes the free D-monoid on X. And a D-automaton is given by the picture below:
it consists of an object of states Q, a morphism i representing the initial state, an output
morphism f , and a transition morphism δ which may be presented in its curried form λδ.

X bQ
δ��

I
i // Q

f
//

λδ��

Y

rX,Qs

(1)

This means that an automaton is at the same time an algebra I`XbQ ri,δs
ÝÝÑ Q for the functor

FQ “ I `X bQ, and a coalgebra Q xf,λδy
ÝÝÝÝÑ Y ˆ rX,Qs for the functor TQ “ Y ˆ rX,Qs. It

turns out that much of the classical (co-)algebraic theory of automata in the category of sets
extends to this level of generality. Thus Goguen [12] demonstrated that the initial algebra
for F coincides with the free D-monoid Xf, and that every language is accepted by a unique
minimal D-automaton. We will add to this picture the observation that the final coalgebra
for T is carried by the object of languages rXf, Y s, see Proposition 2.21.

In Section 3 we introduce the central concept of our paper, the syntactic D-monoid
of a language L : Xf Ñ Y , which by definition is the smallest X-generated D-monoid
recognizing L. Assuming that D is a commutative variety of algebras, we will show that
the above constructions (1) and (2) for the classical syntactic monoid adapt to our general
setting: the syntactic D-monoid is (1) the quotient of Xf modulo the syntactic congruence
of L (Theorem 3.14), and (2) the transition D-monoid of the minimal D-automaton for L
(Theorem 4.6). As special instances we recover the syntactic monoids of Rabin and Scott
(D “ sets), the syntactic semirings of Polák (D “ semilattices) and the syntactic associative
algebras of Reutenauer (D “ vector spaces). Furthermore, our categorical setting yields new
types of syntactic algebras “for free”. For example, we will identify monoids with zero as the
algebraic structures representing partial automata (the case D “ pointed sets), which leads
to the syntactic monoid with zero for a given language. Similarly, by taking as D the variety
of algebras with an involutive unary operation we obtain syntactic involution monoids.

Most of the results of our paper apply to arbitrary languages. In Section 5 we will
investigate D-regular languages, that is, languages accepted by D-automata with a finitely
presentable object of states. Under suitable assumptions on D, we will prove that a language
is D-regular iff its syntactic D-monoid is carried by a finitely presentable object (Theorem 5.4).
We will also derive a dual characterization of the syntactic D-monoid which is new even
in the “classical” case D “ sets: if D is a locally finite variety, and if moreover some other
locally finite variety C is dual to D on the level of finite objects, the syntactic D-monoid of
L dualizes to the local variety of languages in C generated by the reversed language of L.

Due to space limitations most proofs are omitted or sketched. See [1] for an extended
version of this paper.

Related work. Our paper gives a uniform treatment of various notions of syntactic
algebras known in the literature [19, 20, 21]. Another categorical approach to (classical)
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syntactic monoids appears in the work of Ballester-Bolinches, Cosme-Llopez and Rutten [5].
These authors consider automata in the category of sets specified by equations or dually by
coequations, which leads to a construction of the automaton underlying the syntactic monoid
of a language. The fact that it forms the transition monoid of a minimal automaton is also
interpreted in that setting. In the present paper we take a more general and conceptual
approach by studying algebraic recognition in a symmetric monoidal closed category D. One
important source of inspiration for our categorical setting was the work of Goguen [12].

In the recent papers [2, 4] we presented a categorical view of varieties of languages,
another central topic of algebraic automata theory. Building on the duality-based approach
of Gehrke, Grigorieff and Pin [11], we generalized Eilenberg’s variety theorem and its local
version to the level of an abstract (pre-)duality between algebraic categories. The idea to
replace monoids by monoid objects in a commutative variety D originates in this work.

When revising this paper we were made aware of the ongoing work of Bojanczyk [8].
He considers, in lieu of commutative varieties, categories of Eilenberg-Moore algebras for
an arbitrary monad on sorted sets, and defines syntactic congruences in this more general
setting. Our Theorem 3.14 is a special case of [8, Theorem 3.1].

2 Preliminaries

Throughout this paper we work with deterministic automata in a commutative variety D of
algebras. Recall that a variety of algebras is an equational class of algebras over a finitary
signature. It is called commutative (or entropic) if, for any two objects A and B of D, the set
DpA,Bq of all homomorphisms from A to B carries a subobject rA,Bs� B|A| of the product
of |A| copies of B. Commutative varieties are precisely the categories of Eilenberg-Moore
algebras for a commutative finitary monad on the category of sets, see [13, 16]. We fix an
object X (of inputs) and an object Y (of outputs) in D.

§ Example 2.1. 1. Set is a commutative variety with rA,Bs “ BA.
2. A pointed set pA,Kq is a set A together with a chosen point K P A. The category SetK

of pointed sets and point-preserving functions is a commutative variety. The point of
rpA,KAq, pB,KBqs is the constant function with value KB .

3. An involution algebra is a set with an involutive unary operation x ÞÑ rx, i.e. rrx “ x. We
call rx the complement of x. Morphisms are functions f with fprxq “Ćfpxq. The variety
Inv of involution algebras is commutative. Indeed, the set rA,Bs of all homomorphisms
is an involution algebra with pointwise complementation: rf sends x to Ćfpxq.

4. All other examples we treat in our paper are varieties of modules over a semiring. Given
a semiring S (with 0 and 1) we denote by ModpSq the category of all S-modules and
module homomorphisms (i.e. S-linear maps). Three interesting special cases of ModpSq
are:

a. S “ t0, 1u, the boolean semiring with 1` 1 “ 1: the category JSL0 of join-semilattices
with 0, and homomorphisms preserving joins and 0;

b. S “ Z: the category Ab of abelian groups and group homomorphisms;
c. S “ K (a field): the category VecpKq of vector spaces over K and linear maps.

§ Notation 2.2. We denote by Ψ : Set Ñ D the left adjoint to the forgetful functor
|´| : DÑ Set. Thus ΨX0 is the free object of D on the set X0.

§ Example 2.3. 1. We have ΨX0 “ X0 for D “ Set and ΨX0 “ X0 ` tKu for D “ SetK.
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2. For D “ Inv the free involution algebra on X0 is ΨX0 “ X0 ` ĂX0 where ĂX0 is a copy of
X0 (whose elements are denoted rx for x P X0). The involution swaps the copies of X0,
and the universal arrow X0 Ñ X0 ` ĂX0 is the left coproduct injection.

3. For D “ ModpSq the free module ΨX0 is the submodule of SX0 on all functions X0 Ñ S

with finite support. Equivalently, ΨX0 consists of formal linear combinations
řn
i“1 sixi

with si P S and xi P X0. In particular, ΨX0 “ PfX0 (finite subsets of X0) for D “ JSL0,
and ΨX0 is the vector space with basis X0 for D “ VecpKq.

§ Definition 2.4. Given objects A, B and C of D, a bimorphism from A, B to C is a
function f : |A| ˆ |B| Ñ |C| such that the maps fpa,´q : |B| Ñ |C| and fp´, bq : |A| Ñ |C|

carry morphisms of D for every a P |A| and b P |B|. A tensor product of A and B is a
universal bimorphism t : |A| ˆ |B| Ñ |A b B|, which means that for every bimorphism
f : |A| ˆ |B| Ñ |C| there is a unique morphism f 1 : AbB Ñ C in D with f 1 ¨ t “ f .

§ Theorem 2.5 (Banaschweski and Nelson [6]). Every commutative variety D has tensor
products, making D “ pD,b, Iq with I “ Ψ1 a symmetric monoidal closed category. That is,
we have the following bijective correspondence of morphisms, natural in A,B,C P D:

f : AbB Ñ C

λf : AÑ rB,Cs

§ Remark 2.6. Recall that a monoid pM,m, iq in a monoidal category pD,b, Iq (with tensor
product b : DˆDÑ D and tensor unit I P D) is an objectM equipped with a multiplication
m : M bM Ñ M and unit i : I Ñ M satisfying the usual associative and unit laws. Due
to b and I “ Ψ1 representing bimorphisms, this categorical definition is equivalent to the
following algebraic one in our setting: a D-monoid is a triple pM, ‚, iq where M is an object
of D and p|M |, ‚, iq is a monoid in Set with ‚ : |M | ˆ |M | Ñ |M | a bimorphism of D. A
morphism h : pM, ‚, iq Ñ pM 1, ‚1, i1q of D-monoids is a morphism h : M Ñ M 1 of D such
that |h| : |M | Ñ |M 1| is a monoid morphism in Set. We denote by MonpDq the category of
D-monoids and their homomorphisms. In the following we will freely work with D-monoids
in both categorical and algebraic disguise.

§ Example 2.7. 1. In Set the tensor product is the cartesian product, I “ t˚u, and Set-
monoids are ordinary monoids.

2. In SetK we have I “ tK, ˚u, and the tensor product of pointed sets pA,KAq and pB,KAq
is AbB “ pAztKAuq ˆ pBztKBuq ` tKu. SetK-monoids are precisely monoids with zero.
Indeed, given a SetK-monoid structure on pA,Kq we have x ‚ K “ K “ K ‚ x for all
x because ‚ is a bimorphism, i.e. K is a zero element. Morphisms of MonpSetKq are
zero-preserving monoid morphisms.

3. An Inv-monoid (also called an involution monoid) is a monoid equipped with an involution
x ÞÑ rx such that x‚ry “ rx‚y “ Ćx ‚ y. For example, for any set A the power set PA naturally
carries the structure of an involution monoid: the involution takes complements, rS “ AzS,
and the monoid multiplication is the symmetric difference S ‘ T “ pSzT q Y pT zSq.

4. JSL0-monoids are precisely idempotent semirings (with 0 and 1). Indeed, a JSL0-monoid
on a semilattice (i.e. a commutative idempotent monoid) pD,`, 0q is given by a unit 1
and a monoid multiplication that, being a bimorphism, distributes over ` and 0.

5. More generally, a ModpSq-monoid is precisely an associative algebra over S: it consists
of an S-module together with a unit 1 and a monoid multiplication that distributes over
` and 0 and moreover preserves scalar multiplication in both components.

§ Notation 2.8. We denote by Xbn (n ă ω) the n-fold tensor power of X, recursively defined
by Xb0 “ I and Xbpn`1q “ X bXbn.
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§ Proposition 2.9 (see Mac Lane [15]). The forgetful functor MonpDq Ñ D has a left adjoint
assigning to every object X the free D-monoid Xf “

š

năωX
bn. The monoid structure

pXf,mX , iXq is given by the coproduct injection iX : I “ Xb0 Ñ Xf and mX : XfbXf Ñ

Xf, where XfbXf “
š

n,kăωX
bnbXbk and mX has as its pn, kq-component the pn`kq-th

coproduct injection. The universal arrow ηX : X Ñ Xf is the first coproduct injection.

§ Proposition 2.10. The free D-monoid on X “ ΨX0 is Xf “ ΨX˚0 . Its monoid multiplica-
tion extends the concatenation of words in X˚0 , and its unit is the empty word ε.

§ Example 2.11. 1. In Set we have Xf “ X˚. In SetK with X “ ΨX0 “ X0 ` tKu we get
Xf “ X˚0 ` tKu. The product x ‚ y is concatenation for x, y P X˚0 , and otherwise K.

2. In Inv with X “ ΨX0 “ X0`ĂX0 we have Xf “ X˚0 `
ĂX˚0 . The multiplication restricted

to X˚0 is concatenation, and is otherwise determined by ru ‚ v “ Ăuv “ u ‚ rv for u, v P X˚0 .
3. In JSL0 with X “ ΨX0 “ PfX0 we have Xf “ PfX˚0 , the semiring of all finite languages

over X0. Its addition is union and its multiplication is the concatentation of languages.
4. More generally, in ModpSq with X “ ΨX0 we get Xf “ ΨX˚0 “ SrX0s, the module

of all finite S-weighted languages over the alphabet X0. Hence the elements of SrX0s

are functions c : X˚0 Ñ S with finite support, which may be expressed as polynomials
řn
i“1 cpwiqwi with wi P X˚0 and cpwiq P S. The S-algebraic structure of SrX0s is given by

the usual addition, scalar multiplication and product of polynomials.

§ Definition 2.12 (Goguen [12]). A D-automaton pQ, δ, i, fq consists of an object Q (of
states) and morphisms δ : X b Q Ñ Q, i : I Ñ Q and f : Q Ñ Y ; see Diagram (1). An
automata homomorphism h : pQ, δ, i, fq Ñ pQ1, δ1, i1, f 1q is a morphism h : QÑ Q1 preserving
transitions as well as initial states and outputs, i.e. making the following diagrams commute:

X bQ
Xbh ��

δ // Q
h��

X bQ1
δ1
// Q1

I

i1 %%
JJJJJJ

i // Q
h
��

f
// Y

Q1
f 1

99ssssss

The above definition makes sense in any monoidal category D. In our setting, since
I “ Ψ1, the morphism i chooses an initial state in |Q|. Moreover, if X “ ΨX0 for some
set X0 (of inputs), the morphism δ amounts to a choice of endomorphisms δa : QÑ Q for
a P X0, representing transitions. This follows from the bijections

ΨX0 bQÑ Q in D

ΨX0 Ñ rQ,Qs in D

X0 Ñ DpQ,Qq in Set

§ Example 2.13. 1. The classical deterministic automata are the case D “ Set and Y “
t0, 1u. Here f : QÑ t0, 1u defines the set F “ f´1r1s Ď Q of final states. For general Y
we get deterministic Moore automata with outputs in Y .

2. The setting D “ SetK with X “ X0 ` tKu and Y “ tK, 1u gives partial deterministic
automata. Indeed, the state object pQ,Kq has transitions δa : pQ,Kq Ñ pQ,Kq for
a P X0 preserving K, that is, K is a sink state. Equivalently, we may consider δa as
a partial transition map on the state set QztKu. The morphism f : pQ,Kq Ñ tK, 1u
again determines a set of final states F “ f´1r1s (in particular, K is non-final). And the
morphism i : tK, ˚u Ñ pQ,Kq determines a partial initial state: either ip˚q lies in QztKu,
or no initial state is defined.
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3. In D “ Inv let us choose X “ X0 ` ĂX0 and Y “ t0, 1u with r0 “ 1. An Inv-automaton
is a deterministic automaton with complementary states x ÞÑ rx such that (i) for every
transition p a

ÝÑ q there is a complementary transition rp
a
ÝÑ rq and (ii) a state q is final iff rq

is non-final.
4. For D “ JSL0 with X “ PfX0 and Y “ t0, 1u (the two-chain) an automaton consists

of a semilattice Q of states, transitions δa : Q Ñ Q for a P X0 preserving finite joins
(including 0), an initial state i P Q and a homomorphism f : QÑ t0, 1u which defines a
prime upset F “ f´1r1s Ď Q of final states. The latter means that a finite join of states
is final iff one of the states is. In particular, 0 is non-final.

5. More generally, automata in D “ ModpSq with X “ ΨX0 and Y “ S are S-weighted
automata. Such an automaton consists of an S-module Q of states, linear transitions
δa : QÑ Q for a P X0, an initial state i P Q and a linear output map f : QÑ S.

§ Remark 2.14. 1. An algebra for an endofunctor F of D is a pair pQ,αq of an object Q
and a morphism α : FQ Ñ Q. A homomorphism h : pQ,αq Ñ pQ1, α1q of F -algebras
is a morphism h : Q Ñ Q1 with h ¨ α “ α1 ¨ Fh. Throughout this paper we work with
the endofunctor FQ “ I ` X b Q; its algebras are denoted as triples pQ, δ, iq with
δ : X b Q Ñ Q and i : I Ñ Q. Hence D-automata are precisely F -algebras equipped
with an output morphism f : QÑ Y . Moreover, automata homomorphisms are precisely
F -algebra homomorphisms preserving outputs.

2. Analogously, a coalgebra for an endofunctor T of D is a pair pQ, γq of an object Q
and a morphism γ : Q Ñ TQ. Throughout this paper we work with the endofunctor
TQ “ Y ˆrX,Qs; its coalgebras are denoted as triples pQ, τ, fq with τ : QÑ rX,Qs and f :
QÑ Y . Hence D-automata are precisely pointed T -coalgebras, i.e. T -coalgebras equipped
with a morphism i : I Ñ Q. Indeed, given a pointed coalgebra I i

ÝÑ Q
xf,τy
ÝÝÝÑ Y ˆ rX,Qs,

the morphism Q
τ
ÝÑ rX,Qs is the curried form of a morphism Q bX

–
ÝÑ X b Q

δ
ÝÑ Q.

Automata homomorphisms are T -coalgebra homomorphisms preserving initial states.

§ Definition 2.15. Given a D-monoid pM,m, iq and a morphism e : X Ñ M of D, the
F -algebra associated to M and e has carrier M and structure

ri, δs “ pI `X bM
I`ebM
ÝÝÝÝÝÑ I `M bM

ri,ms
ÝÝÝÑMq.

In particular, the F -algebra associated to the free monoid Xf (and its universal arrow ηX) is

riX , δX s “ pI `X bX
f I`ηXbX

f

ÝÝÝÝÝÝÝÑ I `Xf bXf riX ,mX s
ÝÝÝÝÝÑ Xfq.

§ Example 2.16. In Set every monoid M together with an “input” map e : X Ñ M

determines an F -algebra with initial state i and transitions δa “ ´ ‚ epaq for all a P X. The
F -algebra associated to X˚ is the usual automaton of words: its initial state is ε and the
transitions are given by w a

ÝÑ wa for a P X.

§ Proposition 2.17 (Goguen [12]). For any symmetric monoidal closed category D with
countable coproducts, Xf is the initial algebra for F .

§ Remark 2.18. Given any F -algebra pQ, δ, iq the unique F -algebra homomorphism eQ :
Xf Ñ Q is constructed as follows: extend the morphism λδ : X Ñ rQ,Qs to a D-monoid
morphism pλδq` : Xf Ñ rQ,Qs. Then

eQ “ pX
f – Xf b I

pλδq`bi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq, (2)

where ev is the ‘evaluation morphism’, i.e. the counit of the adjunction ´bQ % rQ,´s.
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§ Notation 2.19. δf : Xf bQÑ Q denotes the uncurried form of pλδq` : Xf Ñ rQ,Qs.

§ Remark 2.20. Recall from Rutten [22] that the final coalgebra for the functor TQ “

t0, 1u ˆQX on Set is the coalgebra PX˚ – rX˚, t0, 1us of all languages over X. Given any
coalgebra Q, the unique coalgebra homomorphism from Q to PΣ˚ assigns to every state q
the language accepted by q (as an initial state). These observations generalize to our present
setting. The object rXf, Y s of D carries the following T -coalgebra structure: its transition
morphism τrXf,Y s : rXf, Y s Ñ rX, rXf, Y ss is the two-fold curryfication of

rXf, Y sbX bXf rXf,Y sbηXbX
f

ÝÝÝÝÝÝÝÝÝÝÝÑ rXf, Y sbXfbXf rXf,Y sbmX
ÝÝÝÝÝÝÝÝÑ rXf, Y sbXf ev

ÝÑ Y,

and its output morphism frXf,Y s : rXf, Y s Ñ Y is

frXf,Y s “ prX
f, Y s – rXf, Y s b I

rXf,Y sbiX
ÝÝÝÝÝÝÝÝÑ rXf, Y s bXf ev

ÝÑ Y q.

§ Proposition 2.21. rXf, Y s is the final coalgebra for T .

Proof sketch. Given any coalgebra pQ, τ, fq, let δ : X bQÑ Q be the uncurried version of
τ : QÑ rX,Qs, see Remark 2.14. Then the unique coalgebra homomorphism into rXf, Y s is
λh : QÑ rXf, Y s, where h “ pQbXf – Xf bQ

δf
ÝÝÑ Q

f
ÝÑ Y q. đ

§ Definition 2.22 (Goguen [12]). A language in D is a morphism L : Xf Ñ Y .

Note that if X “ ΨX0 (and hence Xf “ ΨX˚0 ) for some set X0, one can identify a
language L : Xf “ ΨX˚0 Ñ Y in D with its adjoint transpose rL : X˚0 Ñ |Y |, via the
adjunction Ψ % |´| : D Ñ Set. In the case where |Y | is a two-element set, rL is the
characteristic function of a “classical” language L0 Ď X˚0 .

§ Example 2.23. 1. In D “ Set (with Xf “ X˚ and Y “ t0, 1u) one represents L0 Ď X˚

by its characteristic function L : X˚ Ñ t0, 1u.
2. In D “ SetK (with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u) one represents

L0 Ď X˚0 by its extended characteristic function L : X˚0 ` tKu Ñ tK, 1u where LpKq “ K.
3. In D “ Inv (with X “ X0`ĂX0, Xf “ X˚0 `

ĂX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : X˚0 ` ĂX˚0 Ñ t0, 1u where Lpwq “ 1 iff w P L0 and Lp rwq “ 1 iff w R L0 for all
words w P X˚0 .

4. In D “ JSL0 (with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u) one represents L0 Ď X˚0
by L : PfX˚0 Ñ t0, 1u where LpUq “ 1 iff U X L0 ‰ ∅.

5. In D “ ModpSq (with X “ ΨX0, Xf “ SrX0s and Y “ S) an S-weighted language
L0 : X˚0 Ñ S is represented by its free extension to a module homomorphism

L : SrX˚0 s Ñ S, L

˜

n
ÿ

i“1
cpwiqwi

¸

“

n
ÿ

i“1
cpwiqL0pwiq.

§ Definition 2.24 (Goguen [12]). The language accepted by a D-automaton pQ, δ, i, fq is
LQ “ pX

f
eQ
ÝÝÑ Q

f
ÝÑ Y q, where eQ is the F -algebra homomorphism of Remark 2.18.

§ Example 2.25. 1. In D “ Set with Y “ t0, 1u, the homomorphism eQ : X˚ Ñ Q assigns
to every word w the state it computes in Q, i.e. the state the automaton reaches on
input w. Thus LQpwq “ 1 iff Q terminates in a final state on input w, which is precisely
the standard definition of the accepted language of an automaton. For general Y , the
function LQ : X˚ Ñ Y is the behavior of the Moore automaton Q, i.e. LQpwq is the
output of the last state in the computation of w.



8 Syntactic Monoids in a Category

2. For D “ SetK with X “ X0 ` tKu and Y “ tK, 1u, we have eQ : X˚0 ` tKu Ñ pQ,Kq

sending K to K, and sending a word in X˚0 to the state it computes (if any), and to
K otherwise. Hence LQ : X˚0 ` tKu Ñ tK, 1u defines (via the preimage of 1) the usual
language accepted by a partial automaton.

3. In D “ Inv with X “ X0 ` ĂX0 and Y “ t0, 1u, the map LQ : X˚0 ` ĂX˚0 Ñ t0, 1u sends
w P X˚0 to 1 iff w computes a final state, and it sends rw P ĂX˚0 to 1 iff w computes a
non-final state.

4. In D “ JSL0 with X “ PfX0 and Y “ t0, 1u, the map LQ : PX˚0 Ñ t0, 1u assigns to
U P PfX˚0 the value 1 iff the computation of at least one word in U ends in a final state.

5. In D “ ModpSq with X “ ΨX0 and Y “ S, the map LQ : SrX˚0 s Ñ S assigns to
řn
i“1 cpwiqwi the value

řn
i“1 cpwiqyi, where yi is the output of the state Q reaches on

input wi. Taking Q “ Sn for some natural number n yields a classical n-state weighted
automaton, and in this case one can show that the restriction of LQ to X˚0 is is the usual
language of a weighted automaton.

§ Remark 2.26. By Remark 2.14 every D-automaton pQ, δ, i, fq is an F -algebra as well
as a T -coalgebra. Our above definition of LQ was purely algebraic. The corresponding
coalgebraic definition uses the unique coalgebra homomorphism cQ : QÑ rXf, Y s into the
final T -coalgebra and precomposes with i : I Ñ Q to get a morphism cQ ¨ i : I Ñ rXf, Y s

(choosing a language, i.e. an element of rXf, Y s). Unsurprisingly, the results are equal:

§ Proposition 2.27. The language LQ : Xf Ñ Y of an automaton pQ, δ, i, fq is the uncurried
form of the morphism cQ ¨ i : I Ñ rXf, Y s.

3 Algebraic Recognition and Syntactic D-Monoids

In classical algebraic automata theory one considers recognition of languages by (ordinary)
monoids in lieu of automata. One key concept is the syntactic monoid which is characterized
as the smallest monoid recognizing a given language. There are also related concepts of
canonical algebraic recognizers in the literature, e.g. the syntactic idempotent semiring
and the syntactic associative algebra. In this section we will give a uniform account of
algebraic language recognition in our categorical setting. Our main result is the definition
and construction of a minimal algebraic recognizer, the syntactic D-monoid of a language.

§ Definition 3.1. A D-monoid morphism e : Xf ÑM recognizes the language L : Xf Ñ Y

if there exists a morphism f : M Ñ Y of D with L “ f ¨ e.

§ Example 3.2. We use the notation of Example 2.23.

1. D “ Set with Xf “ X˚ and Y “ t0, 1u: given a monoid M , a function f : M Ñ t0, 1u
defines a subset F “ f´1r1s Ď M . Hence a monoid morphism e : X˚ Ñ M recognizes
L via f (i.e. L “ f ¨ e) iff L0 “ e´1rF s. This is the classical notion of recognition of a
language L0 Ď X˚ by a monoid, see e.g. Pin [18].

2. D “ SetK with X “ X0 ` tKu, Xf “ X˚0 ` tKu and Y “ tK, 1u: given a monoid with
zero M , a SetK-morphism f : M Ñ tK, 1u defines a subset F “ f´1r1s of Mzt0u. A
zero-preserving monoid morphism e : X˚0 ` tKu ÑM recognizes L via f iff L0 “ e´1rF s.

3. D “ Inv with X “ X0 ` ĂX0, Xf “ X˚0 `
ĂX˚0 and Y “ t0, 1u: for an involution monoid

M to give a morphism f : M Ñ t0, 1u means to give a subset F “ f´1r1s ĎM satisfying
m P F iff rm R F . Then L is recognized by e : X˚0 ` ĂX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
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4. D “ JSL0 with X “ PfX0, Xf “ PfX˚0 and Y “ t0, 1u: for an idempotent semiring M
a morphism f : M Ñ Y defines a prime upset F “ f´1r1s, see Example 2.13. Hence L
is recognized by a semiring homomorphism e : PfX˚0 ÑM via f iff L0 “ X˚0 X e

´1rF s.
Here we identify X˚0 with the set of all singleton languages twu, w P X˚0 . This is the
concept of language recognition introduced by Polák [19] (except that he puts F “ f´1r0s,
so 0 and 1 must be swapped, as well as F and MzF ).

5. D “ ModpSq with X “ ΨX0, Xf “ SrX0s and Y “ S: given an associative algebra M ,
the language L is recognized by e : SrX0s ÑM via f : M Ñ S iff L “ f ¨ e. For the case
where the semiring S is a ring, this notion of recognition is due to Reutenauer [21].

§ Remark 3.3. 1. Since D and MonpDq are varieties, we have the usual factorization system
of regular epimorphisms (“ surjective homomorphisms) and monomorphisms (“ injective
homomorphisms). Quotients and subobjects are understood w.r.t. this system.

2. By an X-generated D-monoid we mean a quotient e : Xf � M in MonpDq. For two
such quotients ei : Xf �Mi, i “ 1, 2, we say, as usual, that e1 is smaller or equal to e2
(notation: e1 ď e2) if e1 factorizes through e2. Note that if X “ ΨX0, the free D-monoid
Xf “ ΨX˚0 on X is also the free D-monoid on the set X0 (w.r.t. the forgetful functor
MonpDq Ñ Set), see Proposition 2.10.In this case, to give a quotient e : Xf � M is
equivalent to giving a set of generators for the D-monoid M indexed by X0 – which is
why M may also be called an X0-generated D-monoid.

3. Let e : Xf �M be an X-generated D-monoid with unit i : I ÑM and multiplication
m : M bM Ñ M . Recall that ηX : X Ñ Xf denotes the universal morphism of the
free D-monoid on X and consider the F -algebra associated to M and X ηX

ÝÝÑ Xf e
ÝÑM

(see Definition 2.15). Thus, together with a given f : M Ñ Y an X-generated D-monoid
induces an automaton pM, δ, i, fq called the derived automaton.

§ Lemma 3.4. The language recognized by an X-generated D-monoid e : Xf � M via
f : M Ñ Y is the language accepted by its derived automaton.

We are now ready to give an abstract account of syntactic algebras in our setting. In
classical algebraic automata theory the syntactic monoid of a language is characterized as
the smallest monoid recognizing that language. We will use this property as our definition of
the syntactic D-monoid.

§ Definition 3.5. The syntactic D-monoid of language L : Xf Ñ Y , denoted by SynpLq, is
the smallest X-generated monoid recognizing L.

In more detail, the syntactic D-monoid is an X-generated D-monoid eL : Xf � SynpLq
together with a morphism fL : SynpLq Ñ Y of D such that (i) eL recognizes L via fL, and
(ii) for every X-generated D-monoid e : Xf � M recognizing L via f : M Ñ Y we have
eL ď e, that is, the left-hand triangle below commutes for some D-monoid morphism h:

Xf e // //

eL
(( ((QQQQQ M

h����

f
// Y

SynpLq fL

77nnnnnn

Note that the right-hand triangle also commutes since e is epimorphic and f ¨ e “ L “ fL ¨ eL.
The universal property determines SynpLq, eL and fL uniquely up to isomorphism. A
construction of SynpLq is given below (Construction 3.13). We first consider a special case:

§ Example 3.6. In D “ Set with Y “ t0, 1u, the syntactic monoid of a language L Ď X˚

can be constructed as the quotient of X˚ modulo the syntactic congruence, see e.g. [18]:

SynpLq “ X˚{„, where u „ v iff for all x, y P X˚: xuy P L ðñ xvy P L.
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We aim to generalize this construction to our categorical setting. First note the following

§ Lemma 3.7. Let D be any symmetric monoidal closed category with countable coproducts.
Then the forgetful functor MonpDq Ñ D preserves reflexive coequalizers.

§ Notation 3.8. Let pM,m, iq be a D-monoid and x : I ÑM . We write x ‚ ´ and ´ ‚ x for
the following morphisms, respectively:

M – I bM
xbM
ÝÝÝÑM bM

m
ÝÑM and M –M b I

Mbx
ÝÝÝÑM bM

m
ÝÑM.

Recall that in our setting, where D is a commutative variety, we have I “ Ψ1 and so the
morphism x is the adjoint transpose of an element of M (see Remark 2.6). In the following
we shall often write x ‚ y, identifying x, y : I ÑM with their corresponding elements of M .

§ Definition 3.9. The syntactic congruence of a language L : Xf Ñ Y is the following
relation on the underlying set of Xf:

E “ tpu, vq P Xf ˆXf | @x, y P Xf : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yqu

The projection maps are denoted by l, r : E Ñ Xf.

§ Lemma 3.10. The set E carries a canonical D-algebraic structure making it a D-object.

Proof sketch. Just observe that E “
Ş

Ex,y where for fixed x, y P Xf the object Ex,y is

the kernel of the D-morphism Xf
x‚´
//Xf

´‚y
//Xf L //Y . đ

That the name syntactic congruence makes sense follows from Lemma 3.11 below. First recall
that a D-monoid congruence on a given D-monoid M is an equivalence relation in MonpDq,
that is, a jointly monic pair c1, c2 : C Ñ M of D-monoid morphisms (equivalently a D-
submonoid xc1, c2y : C �M ˆM) which is reflexive, symmetric and transitive. Congruences
on M are ordered as subobjects of M ˆM , i.e. via inclusion.

§ Lemma 3.11. E is a D-monoid congruence on Xf.

We can give an alternative, more conceptual, description of E:

§ Lemma 3.12. Let l0, r0 : K Ñ Xf be the kernel pair of L : Xf Ñ Y in D. Then
l, r : E Ñ Xf is the largest D-monoid congruence contained in K.

§ Construction 3.13. Let L : Xf Ñ Y be a language and l, r : E Ñ Xf its syntactic
congruence. We construct the D-monoid SynpLq as the coequalizer of l and r in MonpDq:

E
l //

r
// Xf

eL // // SynpLq.

We need to show that SynpLq has the universal property of Definition 3.5, which first
requires to define the morphism fL : SynpLq Ñ Y with L “ fL ¨ eL. To this end consider the
diagram below, where l0, r0 is the kernel pair of L and m witnesses that E is contained in
K, i.e. l “ l0 ¨m and r “ r0 ¨m (see Lemma 3.12).

K
l0 //

r0
// Xf

eL ## ##GGGGGGGGG
L // Y

E

m

OO

l

>>|||||||| r

>>||||||||
SynpLq

fL

OO�
�
�

By Lemma 3.7 the morphism eL is also a coequalizer of l and r in D. Since L ¨ l “ L ¨ r by
the above diagram, this yields a unique fL : SynpLq Ñ Y with L “ fL ¨ eL. In other words,
SynpLq recognizes L via fL.
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§ Theorem 3.14. SynpLq together with eL and fL forms the syntactic D-monoid of L.

Proof sketch. This follows from the correspondence between kernel pairs and regular quo-
tients: since l, r : E Ñ Xf is the largest congruence contained in the kernel pair of L by
Lemma 3.12, the coequalizer eL of l, r is the smallest quotient of Xf recognizing L. đ

§ Remark 3.15. Our proof of Theorem 3.14 is quite conceptual and works in a general
symmetric monoidal closed category D with enough structure. On this level of generality
one would use Lemma 3.12 to define the syntactic congruence E as the largest D-monoid
congruence contained in the kernel of L : Xf Ñ Y . However, it is unclear whether such
a congruence exists in this generality and so its existence might have to be taken as an
assumption. Hence we restricted ourselves to the setting of a commutative variety D.

§ Example 3.16. Using the notation of Example 2.23 we obtain the following concrete
syntactic algebras:

1. In SetK with X “ X0`tKu and Y “ tK, 1u the syntactic monoid with zero of a language
L0 Ď X˚0 is pX˚0 ` tKuq{„ where, for all u, v P X˚0 ` tKu,

u „ v iff for all x, y P X˚0 : xuy P L0 ô xvy P L0.

The zero element is the congruence class of K.
2. In Inv with X “ X0 ` ĂX0 and Y “ t0, 1u the syntactic involution monoid of a language

L0 Ď X˚0 is the quotient of X0` ĂX˚0 modulo the congruence „ defined for words u, v P X˚0
as follows:
(i) u „ v iff ru „ rv iff for all x, y P X˚0 : xuy P L0 ðñ xvy P L0;
(ii) u „ rv iff ru „ v iff for all x, y P X˚0 : xuy P L0 ðñ xvy R L0.

3. In ModpSq with X “ ΨX0 and Y “ S the syntactic associative S-algebra of a weighted
language L0 : X˚0 Ñ S is the quotient of SrX0s modulo the congruence defined for
U, V P SrX0s as follows:

U „ V iff for all x, y P X˚0 : LpxUyq “ LpxV yq (3)

Indeed, since L : SrX0s Ñ S is linear, (3) implies LpPUQq “ LpPV Qq for all P,Q P SrX0s,
which is the syntactic congruence of Definition 3.9.

4. In particular, for D “ JSL0 with X “ PfX0 and Y “ t0, 1u, we get the syntactic
(idempotent) semiring of a language L0 Ď X˚0 introduced by Polák [19]: it is the quotient
PfX˚0 {„ where for U, V P PfX˚0 we have

U „ V iff for all x, y P X˚0 : pxUyq X L0 ‰ ∅ ðñ xV y X L0 ‰ ∅.

5. For D “ VecpKq with X “ ΨX0 and Y “ K, the syntactic K-algebra of a K-weighted
language L0 : X˚0 Ñ K is the quotient KrX0s{I of the K-algebra of finite weighted
languages modulo the ideal

I “ tV P KrX0s | for all x, y P X˚0 : LpxV yq “ 0u.

Indeed, the congruence this ideal I generates (U „ V iff U ´ V P I) is precisely (3).
Syntactic K-algebras were studied by Reutenauer [21].

6. Analogously, for D “ Ab with X “ ΨX0 and Y “ Z, the syntactic ring of a Z-weighted
language L0 : X˚0 Ñ Z is the quotient ZrX0s{I, where I is the ideal of all V P ZrX0s

with LpxV yq “ 0 for all x, y P X˚0 .
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4 Transition D-Monoids

Here we present another construction of the syntactic D-monoid of a language: it is the
transition D-monoid of the minimal D-automaton for this language. Recall that for any object
Q of a closed monoidal category D, the object rQ,Qs forms a D-monoid w.r.t. composition.
§ Definition 4.1. The transition D-monoid TpQq of an F -algebra pQ, δ, iq is the image of
the D-monoid morphism pλδq` : Xf Ñ rQ,Qs extending λδ : X Ñ rQ,Qs:

Xf

eTpQq
## ##GGGG
pλδq`

// rQ,Qs

TpQq
99mTpQq

99sss

§ Example 4.2. 1. In Set the transition monoid of an F -algebra Q (i.e. an automaton
without final states) is the monoid of all extended transition maps δw “ δan

¨ ¨ ¨ ¨ ¨ δa1 :
QÑ Q for w “ a1 ¨ ¨ ¨ an P X

˚, with unit idQ “ δε and composition as multiplication.
2. In SetK with X “ X0`tKu (the setting for partial automata) this is completely analogous,

except that we add the constant endomap of Q with value K.
3. In Inv with X “ X0`ĂX0 we get the involution monoid of all δw and Ăδw. Again the unit is

δε, and the multiplication is determined by composition plus the equations xry “ Ăxy “ rxy.
4. In JSL0 with X “ PfX0 the transition semiring consists of all finite joins of extended

transitions, i.e. all semilattice homomorphisms of the form δw1_¨ ¨ ¨_δwn
for tw1, . . . , wnu P

PfX˚0 . The transition semiring was introduced by Polák [19].
5. In ModpSq with X “ ΨX0 the associative transition algebra consists of all linear maps

of the form
řn
i“1 siδwi

with si P S and wi P X˚0 .
Recall from Definition 2.12 that a D-automaton is an F -algebra Q together with an output

morphism f : QÑ Y . Hence we can speak of the transition D-monoid of a D-automaton.
§ Proposition 4.3. The language accepted by a D-automaton pQ, δ, f, iq is recognized by the
D-monoid morphism eTpQq : Xf � TpQq.
Proof sketch. The desired morphism fTpQq : TpQq Ñ Y with LQ “ fTpQq ¨ eTpQq is

fTpQq “ pTpQq
mTpQq
ÝÝÝÝÑ rQ,Qs – rQ,Qs b I

rQ,Qsbi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Q

f
ÝÑ Y q. đ

§ Definition 4.4. A D-automaton pQ, δ, i, fq is called minimal iff it is
(a) reachable: the unique F -algebra homomorphism Xf Ñ Q is surjective;
(b) simple: the unique T -coalgebra homomorphism QÑ rXf, Y s is injective.
§ Theorem 4.5 (Goguen [12]). Every language L : Xf Ñ Y is accepted by a minimal D-
automaton MinpLq, unique up to isomorphism. Given any reachable automaton Q accepting
L, there is a unique surjective automata homomorphism from Q into MinpLq.

This leads to the announced construction of syntacticD-monoids via transitionD-monoids.
The case D “ Set is a standard result of algebraic automata theory (see e.g. Pin [18]), and
the case D “ JSL0 is due to Polák [19].
§ Theorem 4.6. The syntactic D-monoid of a language L : Xf Ñ Y is isomorphic to the
transition D-monoid of its minimal D-automaton:

SynpLq – TpMinpLqq.

Proof sketch. Using reachability and simplicity of MinpLq, one proves that the quotients
eL : Xf � SynpLq and eTpMinpLqq : Xf � TpMinpLqq have the same kernel pair, namely the
syntactic congruence of L. This implies the statement of the theorem. đ
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5 D-Regular Languages

Our results so far apply to arbitrary languages in D. In the present section we focus on
regular languages, which in D “ Set are the languages accepted by finite automata, or
equivalently the languages recognized by finite monoids. For arbitrary D the role of finite
sets is taken over by finitely presentable objects. Recall that an object D of D is finitely
presentable if the hom-functor DpD,´q : DÑ Set preserves filtered colimits. Equivalently,
D is an algebra presentable with finitely many generators and relations.

§ Definition 5.1. A language L : Xf Ñ Y is called D-regular if it is accepted by some
D-automaton with a finitely presentable object of states.

To work with this definition, we need the following

§ Assumptions 5.2. We assume that the full subcategory Df of finitely presentable objects
of D is closed under subobjects, strong quotients and finite products.

§ Example 5.3. 1. Recall that a variety is locally finite if all finitely presentable algebras
(equivalently all finitely generated free algebras) are finite. Every locally finite variety
satisfies the above assumptions. This includes our examples Set, SetK, Inv and JSL0.

2. A semiring S is called Noetherian if all submodules of finitely generated S-modules are
finitely generated. In this case, as shown in [10], the category ModpSq satisfies our
assumptions. Every field is Noetherian, as is every finitely generated commutative ring,
so VecpKq and Ab “ ModpZq are special instances.

§ Theorem 5.4. For any language L : Xf Ñ Y the following statements are equivalent:

(a) L is D-regular.
(b) The minimal D-automaton MinpLq has finitely presentable carrier.
(c) L is recognized by some D-monoid with finitely presentable carrier.
(d) The syntactic D-monoid SynpLq has finitely presentable carrier.

Proof sketch. This follows immediately from the universal properties of SynpLq and MinpLq
and the assumed closure properties of Df . đ

Just as the collection of all languages is internalized by the final coalgebra rXf, Y s, see
Proposition 2.21, we can internalize the regular languages by means of the rational coalgebra.

§ Definition 5.5. The rational coalgebra %T for T is the colimit (taken in the category of
T -coalgebras and homomorphisms) of all T -coalgebras with finitely presentable carrier.

§ Proposition 5.6. There is a one-to-one correspondence between D-regular languages and
elements I Ñ %T of the rational coalgebra.

We conclude this section with an interesting dual perspective on syntactic monoids, based
on our previous work [2, 4]. For lack of space we restrict to the case D “ Set. This category
is predual to the category BA of boolean algebras in the sense that the full subcategories
of finite sets and finite boolean algebras are dually equivalent. Indeed, this is a restriction
of the well-known Stone duality: the dual equivalence functor assigns to a finite boolean
algebra B the set AtpBq of its atoms, and to a boolean homomorphism h : AÑ B the map
Atphq : AtpBq Ñ AtpAq sending b P AtpBq to the unique atom a P AtpAq with ha ě b.

How do the concepts we investigated in Set – languages, automata and monoids – dualize
to BA? Observe that RegpXq, the boolean algebra of regular languages over the alphabet
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X, can be viewed as a deterministic automaton: its final states are the regular languages
containing the empty word, and the transitions are given by L a

ÝÑ a´1L for a P X, where
a´1L “ tw P X˚ : aw P Lu is the left derivative of L w.r.t. the letter a. (Similarly, the right
derivative of L w.r.t. a is La´1 “ tw P X˚ : wa P Lu.) This makes RegpXq a coalgebra for
the endofunctor T “ t0, 1uˆIdX on BA. Since the two-chain t0, 1u is dual to the singleton set
1, finite coalgebras for T dualize to finite algebras for the functor F “ 1`Xˆ Id – 1`

š

X Id
on Set. Based on this, we proved in [2] that further (i) finite T -subcoalgebras of RegpXq
dualize to finite quotient algebras of the initial F -algebra X˚, and (ii) finite local varieties
of languages (i.e. finite T -subcoalgebras of RegpXq closed under right derivatives) dualize
to those F -algebras associated to X-generated monoids, see Definition 2.15. For a regular
language L Ď X˚ the F -algebras associated to the minimal automaton MinpLq and the
syntactic monoid SynpLq are finite. Their dual T -coalgebras are characterized as follows:

§ Theorem 5.7. Let L Ď X˚ be a regular language, and Lrev its reversed language.

(a) MinpLq is dual to the smallest subcoalgebra of RegpXq containing Lrev.
(b) SynpLq is dual to the smallest local variety of languages containing Lrev.

Part (a) of this theorem adds to the recently developed dual view of minimal automata,
see [7] and also [17, 3]. All the above considerations generalize from BA{Set to arbitrary
pairs C{D of predual locally finite varieties of algebras. Examples include the self-predual
varieties C “ D “ JSL0 and C “ D “ VecpKq for a finite field K.

6 Conclusions and Future Work

We proposed the first steps of a categorical theory of algebraic language recognition. Despite
our assumption that D is a commutative variety, the bulk of our definitions, constructions
and proofs works in any symmetric monoidal closed category with enough structure. However,
the construction of the syntactic monoid via the syntactic congruence, and the proof that
it coincides with a transition monoid, required the concrete algebraic setting. It remains
an open problem to develop a genuinely abstract framework for our theory. In particular,
such a generalized setting should provide the means for incorporating ordered algebras, e.g.
the syntactic ordered monoids of Pin [18]. We expect this can be achieved by working with
(order-)enriched categories, where the coequalizer in our construction of the syntactic monoid
is replaced by a coinserter. A more general theory of recognition might also open the door to
treating algebraic recognizers for additional types of behaviors, including Wilke algebras [23]
(representing ω-languages) and forest algebras [9] (representing tree and forest languages).

One of the leading themes of algebraic automata theory is the classification of languages
in terms of their syntactic algebras. For instance, by Schützenberger’s theorem a language
is star-free iff its syntactic monoid is aperiodic. We hope that our conceptual view of
syntactic monoids (notably their dual characterization in Theorem 5.7) can contribute to a
duality-based approach to such results, leading to generalizations and new proof techniques.
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A Proofs

This Appendix contains all proofs and additional details we omitted due to space limitations.

Details for Example 2.1.4.
A semiring S “ pS,`, ¨, 0, 1q consists of a commutative monoid pS,`, 0q and a monoid pS, ¨, 1q
such that

0x “ x0 “ 0, xpy ` zq “ xy ` xz and px` yqz “ xy ` yz.

A module over a semiring S is a commutative monoid pM,`, 0q together with a scalar
multiplication ¨ : S ˆM ÑM such that the following laws hold:

pr ` sqa “ ra` sa, rpa` bq “ ra` rb, prsqa “ rpsaq,

0a “ 0, 1a “ 1, r0 “ 0.

Proof of Proposition 2.10
A constructive proof can be found in [2]. Here we give a more conceptual argument, using
the universal property of the tensor product. Observe that the functor Ψ : Set Ñ D is
strongly monoidal, i.e., it preserves the unit and tensor product up to natural isomorphism.
Indeed, we have Ψ1 “ I by definition. To see that ΨpAˆBq – ΨAbΨB for all sets A and
B, consider the following bijections (natural in D):

DpΨpAˆBq, Dq – SetpAˆB, |D|q
– SetpA, |D|Bq
– DpΨA,DBq

– DpΨA, rΨB,Dsq
– DpΨAbΨB,Dq.

This implies ΨpAˆBq – ΨAbΨB by the Yoneda lemma. Using the fact that Ψ preserves
coproducts, being a left adjoint, we conclude

Xf –
ž

năω

Xbn –
ž

năω

ΨXn
0 – Ψp

ž

năω

Xn
0 q “ ΨX˚0 .

Alternatively one can show that the right adjoint |´| : DÑ Set is a monoidal functor. This
implies that Ψ preserves free monoids.

Details for Remark 2.18
First we recall the D-monoid structure on rQ,Qs. Let ι1Q : Q Ñ I b Q be the left unit
isomorphism. Then the unit j : I Ñ rQ,Qs and multiplication m : rQ,Qs b rQ,Qs Ñ rQ,Qs

are the unique morphisms making the following diagram commutative, respectively:

rQ,Qs bQ
ev // Q

I bQ

jbQ

OO

ι1Q

::uuuuuuuuuu

rQ,Qs bQ
ev // Q

rQ,Qs b rQ,Qs bQ

mbQ

OO

rQ,Qsbev
// rQ,Qs bQ

ev

OO
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Now all we have to show is that the morphism in (2) is an F -algebra homomorphism. It
then follows that it is the unique one eQ. Indeed, the diagram below commutes:

X bXf
ηXbX

f

//

XbιXf

��

Xf bXf
mX //

XfbιXf
��

Xf

ιXf

��

I
iXoo

ιI

��

ED

BC
i

oo

X bXf b I
ηXbX

f

//

Xbpλδq`bi

��

Xf bXf b I
mXbI //

pλδq`bpλδq`bi

��

Xf b I

pλδq`bi

��

I b I
iXbIoo

Ibi

��

X b rQ,Qs bQ
λδbrQ,QsbQ

//

Xbev
��

rQ,Qs b rQ,Qs bQ
mbQ

//

rQ,Qsbev
��

rQ,Qs bQ

ev
��

I bQ
jbQ

oo

ι1Q
vvmmmmmmmmmmmmmmm

X bQ
λδbQ

// rQ,Qs bQ
ev // QBCOO@A

δ

Proof of Proposition 2.21

Given any coalgebra pQ, τ, fq, consider the morphism δ “ pX bQ
–
ÝÑ QbX

β
ÝÑ Qq where β

is the uncurried form of τ : QÑ rX,Qs, and denote by δf : Xf bQÑ Q the extension of
δ as in Remark 2.18. We claim that the unique coalgebra homomorphism into rXf, Y s is
λh : QÑ rXf, Y s, where

h “ pQbXf – Xf bQ
δf
ÝÝÑ Q

f
ÝÑ Y q.

Let us first prove that h is indeed a coalgebra homomorphism. Preservation of outputs is
shown by the following commutative diagram:

Q

–

""EEEEEEEEEEEEEEEEEEEEE
–

))RRRRRRRRRRRRRRRRR

λh

��

Q
f

// Y

I bQ
iXbQ // Xf bQ

δf

OO

Qb I
QbiX

//

λhbI

��

–

OO

QbXf

λhbXf

))SSSSSSSSSSSSSS

h

;;wwwwwwwwwwwwwwwwwwwwww
–

OO

rXf, Y s
–

// rXf, Y s b I
rXf,Y sbiX

// rXf, Y s bXf

ev

OO

For preservation of transitions it suffices to show that the following diagram commutes, where
τ : rXf, Y s bX Ñ rXf, Y s is the uncurried coalgebra structure of rXf, Y s:

QbX

λhbX

��

β
// Q

λh

��

rXf, Y s bX
τ
// rXf, Y s
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But the above diagram is precisely the curried version of the following one (where we omit
writing b for space reasons):

QXXf

p˚q

βXf
//

QηXX
f

!!DDDDDDDDDDDDDDDDDDDD

λhXXf

��

QXf

–

{{wwwwwwwww

h

��

XfQ

δf

��

QXfXf

λhXfXf

��

QmX // QXf

h

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

λhXf

��

– // XfQ
δf // Q

f

##GGGGGGGGGG

rXf, Y sXXf rX
f
,Y
sη

X
X
f

// rXf, Y sXfXf
rX
f ,
Y
sm

X

// rXf, Y sXf

ev
// Y

The part p˚q follows easily from the definition of δf, and the other parts are clear. Now
suppose that any coalgebra homomorphism of λh : Q Ñ rXf, Y s is given. We show that
h : QbXf Ñ Y is determined by the composites pQbXbn Qbin

ÝÝÝÑ QbXf h
ÝÑ Y q, n ă ω,

where in : Xbn Ñ Xf is the n-th coproduct injection. This proves the uniqueness of λh:
since b preserves coproducts, the morphisms pQ b inqnăω form a coproduct cocone. For
n “ 0, the claim is proved by the diagram

Qb I

Qbi0

��

– //

λhbI

''OOOOOOOOOOO Q

f

��

λh

{{xxxxxxxxx

rXf, Y s b I
– //

rXf,Y sbi0
��

rXf, Y s
–

oo

f
rXf,Y s

��
4444444444444444

rXf, Y s bXf

ev
**UUUUUUUUUUUUUUUUUUUUU

QbXf

h
//

λhbXf
77ooooooooooo

Y

And the following diagram shows that h ¨ pQb in`1q is determined by h ¨ pQb inq (again we
omit b, in particular we write Xn for Xbn):

QXXn

βXn

��

Qin`1
//

λhXXn

''NNNNNNNNNNN QXf h //

λhXf

��

Y

rXf, Y sXXn

τXn

��

rXf,Y sin`1
//

rXf,Y sXin

((PPPPPPPPPPPP
rXf, Y sXf

ev

55kkkkkkkkkkkkkkkkk

rXf, Y sXXf
rX
f ,Y

sηX
X
f

//

τXf ((QQQQQQQQQQQQ
rXf, Y sXfXf

rXf,Y smX

OO

p˚q

rXf, Y sXn

rXf,Y sin

// rXf, Y sXf

ev

AA�����������������������������

QXn

λhXn

77ppppppppppp

Qin

// QXf

λhXf
iiSSSSSSSSSSSSSSS

h

OO
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Note that part p˚q commutes by the definition of the coalgebra structure on rXf, Y s and all
other parts are easy to see.

Proof of Proposition 2.27

Recall from the proof of Proposition 2.21 that the uncurried version of cQ is the morphism

QbXf – Xf bQ
δf
ÝÝÑ Q

f
ÝÑ Y.

Hence cQ ¨ i : I Ñ rXf, Y s determines the language

Xf – Xf b I
Xfbi
ÝÝÝÝÑ Xf bQ

δf
ÝÝÑ Q

f
ÝÑ Y,

and this is precisely LQ, as shown by the diagram below (where rX is the F -algebra structure
of Xf):

Xf

GF ED
id

��
– // Xf b I

XfbiX //

Xfbi ((QQQQQQQQQQQQQ Xf bXf

XfbeQ

��

rf
X // Xf

eQ

��

LQ
// Y

Xf bQ
δf

// Q

f

88rrrrrrrrrrrr

This completes the proof.

Proof of Lemma 3.4

Let e : Xf �M be an X-generated D-monoid and let f : M Ñ Y . Then this recognizes the
language L “ f ¨ e. We are done once we prove that e is the unique F -algebra morphism from
Xf to the F -algebra associated toM and e¨ηX (cf. Remark 3.3). Recall from Proposition 2.17
that the initial F -algebra is the F -algebra associated to the free D-monoid Xf and ηX . Then
the following diagram clearly commutes since e is a D-monoid morphism:

FXf “ I `X bXf
I`ηXbX

f

//

Fe“I`Xbe

��

I `Xf bXf
riX ,mX s

//

I`ebe

��

Xf

e

��

FM “ I `X bM
I`pe¨ηXqbM

// I `M bM
ri,ms

// M

This completes the proof.

Proof of Lemma 3.7

First of all we know from Lack [14, Theorem 2] that the forgetful functor U : MonpDq Ñ D

is monadic, and by Proposition 2.9 the monad is Idf “
š

năω Idbn. It suffices to show that
Idf preserves reflexive coequalizers: it then follows that U preserves (in fact, creates) them.
For that it is sufficient to prove that each Idbn preserves reflexive coequalizers. This follows
from (the proof of) [14, Lemma 1] using that in our setting both X b´ and ´bX preserve
all colimits (being left-adjoints).
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Proof of Lemma 3.10
Observe that E “

Ş

Ex,y where for fixed x, y P Xf, Ex,y is the kernel of the D-morphism

Xf
x‚´
//Xf

´‚y
//Xf L //Y . (4)

Since all limits in D (and in particular, kernels and intersections) are created by the forgetful
functor |´| : DÑ Set we see that E has a canonical structure of a D-object as desired.

Proof of Lemma 3.11
It suffices to prove that pairs in E are closed under the monoid operation of Xf. Clearly
pε, εq P E, where ε : 1 Ñ Xf is the adjoint transpose of the unit I “ Ψ1 Ñ Xf of the free
D-monoid on X. Given pu, vq and pu1, v1q in E we show that pu ‚ u1, v ‚ v1q is in E, too.
Indeed, we have for all x, y P Xf that

Lpx ‚ u ‚ u1 ‚ yq “ Lpx ‚ v ‚ u1 ‚ yq “ Lpx ‚ v ‚ v1 ‚ yq.

Proof of Lemma 3.12
To see that E from Definition 3.9 satisfies this property let l1, r1 : E1 Ñ Xf be any D-monoid
congruence contained in K via m1 : E1 � K with l0 ¨ m

1 “ l1 and r0 ¨ m
1 “ r1. Since l1

is a D-monoid morphism it is easy to see that for every x : I Ñ Xf the following square
commutes (note that px, xq P E1 since E1 is reflexive):

E1

l1

��

px,xq‚´
// E1

l1

��

Xf

x‚´
// Xf

and similarly for r1 in lieu of l1 and/or ´ ‚ y in lieu of x ‚ ´. It follows that the morphism
(4) in the proof of Lemma 3.10 merges l1 and r1:

L ¨ p´ ‚ yq ¨ px ‚ ´q ¨ l1 “ L ¨ l1 ¨ p´ ‚ py, yq ¨ ppx, xq ‚ ´q

“ L ¨ l0 ¨m
1 ¨ p´ ‚ py, yqq ¨ ppx, xq ‚ ´q

“ L ¨ r0 ¨m
1 ¨ p´ ‚ py, yqq ¨ ppx, xq ‚ ´q

“ L ¨ r1 ¨ p´ ‚ py, yqq ¨ ppx, xq ‚ ´q

“ L ¨ p´ ‚ yq ¨ px ‚ ´q ¨ r1

Hence E1 is contained in any Ex,y, and therefore it is contained in their intersection E.

Proof of Theorem 3.14
Suppose that we have an X-generated D-monoid e : Xf �M and a morphism f : M Ñ Y

recognizing L, i.e. such that L “ f ¨ e. Let l0, r0 : K Ñ Xf be the kernel pair of L as in
Lemma 3.12 and take the kernel pair lM , rM : KM Ñ Xf of e. Now clearly we have

L ¨ lM “ f ¨ e ¨ lM “ f ¨ e ¨ rM “ L ¨ rM .

Hence, there is a unique n : KM Ñ K such that l0 ¨ n “ lM and r0 ¨ n “ rM . It follows
that n is monomorphic and so KM is a D-monoid congruence contained in K. Consequently
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KM is contained in E (the largest D-monoid congruence contained K by Lemma 3.12) via
o : KM � E with lM “ l ¨ o and rM “ r ¨ o. Then we obtain that

eL ¨ lM “ eL ¨ l ¨ o “ eL ¨ r ¨ o “ eL ¨ rM .

Thus, using that e : Xf ÑM is the coequalizer of its kernel pair lM , rM we obtain a unique
h : M Ñ SynpLq with eL “ h ¨ e, as desired.

Proof of Proposition 4.3

Let pQ, δ, i, fq be a D-automaton. By definition it accepts the language LQ “ pXf
eQ
ÝÝÑ Q

f
ÝÑ

Y q where eQ is the unique F -algebra morphism. Consider the morphism that evaluates any
endomorphism of Q at the initial state:

evi “ prQ,Qs – rQ,Qs b I
rQ,Qsbi
ÝÝÝÝÝÑ rQ,Qs bQ

ev
ÝÑ Qq.

Now let

fTpQq “ pTpQq
mTpQq
ÝÝÝÝÑ rQ,Qs

evi
ÝÝÑ Q

f
ÝÑ Y q.

With this morphism TpQq recognizes L; indeed, using the canonical isomorphism ιZ : Z Ñ
Z b I we compute:

LQ “ f ¨ eQ

“ f ¨ ev ¨ ppλδq` b iq ¨ ιXf (see Remark 2.18)
“ f ¨ evi ¨ ι´1

rQ,Qs ¨ ppλδq
` b Iq ¨ ιXf (def. of evi)

“ f ¨ evi ¨ pλδq` (naturality of ι)
“ f ¨ evi ¨mTpQq ¨ eTpQq (see Definition 4.1)
“ fTpQq ¨ eTpQq (def. of fTpQq)

This completes the proof.

Proof of Theorem 4.6
Let MinpLq “ pQ, δ, i, fq, and write δx : QÑ Q for eTpQqpxq (x P Xf). Note that δx‚y “ δy ¨δx
for all x, y P Xf since eTpQq is a D-monoid morphism. Observe also that the unique F -algebra
homomorphism eQ : Xf Ñ Q assigns to x P Xf the element δx ¨ i : I Ñ Q, and the unique
T -coalgebra homomorphism mQ : Q Ñ rXf, Y s assigns to a state q : I Ñ Q the language
x ÞÑ f ¨ δx ¨ q. It suffices to show that the kernel of eTpQq is the syntactic congruence of L,
that is, for all u, v P Xf one has

δu “ δv iff @x, y P Xf : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yq.

To see this, we reason as follows:

δu “ δv ô @x : δu ¨ eQpxq “ δv ¨ eQpxq (eQ surjective)
ô @x : δu ¨ δx ¨ i “ δv ¨ δx ¨ i (def. eQ)
ô @x : mQ ¨ δu ¨ δx ¨ i “ mQ ¨ δv ¨ δx ¨ i (mQ injective)
ô @x, y : f ¨ δy ¨ δu ¨ δx ¨ i “ f ¨ δy ¨ δv ¨ δx ¨ i (def. mQ)
ô @x, y : f ¨ δx‚u‚y ¨ i “ f ¨ δx‚v‚y ¨ i (def. δp´q)
ô @x, y : f ¨ eQpx ‚ u ‚ yq “ f ¨ eQpx ‚ v ‚ zq (def. eQ)
ô @x, y : Lpx ‚ u ‚ yq “ Lpx ‚ v ‚ yq (L “ LQ)
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Proof of Theorem 5.4
Remark.

1. The functor FQ “ I `X b Q preserves strong epimorphisms because the left adjoint
X b ´ does and strong epimorphisms are closed under coproducts. Therefore every
F -algebra homomorphism factorizes into a surjective homomorphism (carried by a strong
epimorphism in D) and an injective one (carried by a monomorphism in D). By the
reachable part Qr of an automaton pQ, δ, f, iq we mean the image of the initial F -algebra
homomorphism, i.e., eQ “ pXf

er // // Qr //
mr // Qq. Putting fr :“ f ¨mr : Qr Ñ Y , the

F -algebra Qr becomes an automaton, and mr an automata homomorphism. đ

2. In the following automata, (co-)algebras and monoids with finitely presentable carrier are
referred to as fp-automata, fp-(co-)algebras and fp-monoids, respectively.

Now for the proof of the theorem. (a)ô(b) follows from Theorem 4.5 and the closure of
Df under subobjects and strong quotients. Similarly, pcq ô pdq follows from the universal
property of the syntactic monoid (see Definition 3.5) and again closure of Df under subobjects
and strong quotients. (c)ñ(a) is a consequence of Lemma 3.4. To prove (a)ñ(c), let Q be any
fp-automaton accepting L. Then by Proposition 4.3 the transition monoid TpQq� rQ,Qs

recognizes L, so by closure of Df under subobjects it suffices to show that rQ,Qs is a finitely
presentable object of D. Assuming that Q has n generators as an algebra of D, the map
rQ,Qs Ñ Qn defined by restriction to the set of generators is an injective D-morphism.
Since Df is closed under subobjects and finite products, it follows that rQ,Qs is finitely
presentable.

Proof of Proposition 5.6
We describe mutually inverse maps

pI
x
ÝÑ %T q ÞÑ pXf Lx

ÝÝÑ Y q and pXf L
ÝÑ Y q ÞÑ pI

xL
ÝÝÑ %T q

between the elements of %T and the D-regular languages. Let hQ : QÑ %T be the injections
of the colimit %T , where Q “ pQ, δQ, fQq ranges over all fp-coalgebras. Note that this colimit
is filtered since Df is closed under finite colimits. Moreover, since colimits of coalgebras
are formed in the underlying category, the morphisms hQ also form a colimit cocone in
D. Given an element I x

ÝÑ %T of the rational coalgebra we define a D-regular language
Lx : Xf Ñ Y as follows: since I “ Ψ1 is finitely presentable, there exists an fp-coalgebra Q
and a morphism iQ : I Ñ Q such that x “ hQ ¨ iQ. For the F -algebra pQ, δQ, iQq we have
the unique F -algebra homomorphism eQ : Xf Ñ Q, and we put Lx :“ fQ ¨ eQ.

We need to show that Lx is well-defined, that is, for any other factorization x “ hQ1 ¨iQ1 we
have fQ ¨ eQ “ fQ1 ¨ eQ1 . Given such a factorization, since the hQ form a filtered colimit, there
exists an fp-coalgebra Q2 “ pQ2, δQ2 , fQ2q and coalgebra homomorphisms hQQ1 : QÑ Q1 and
hQ1Q2 : Q1 Ñ Q2 with hQQ1 ¨ iQ “ hQ1Q2 ¨ iQ1 “: iQ2 . Then for the F -algebra pQ2, δQ2 , iQ2q
we have the unique homomorphism eQ2 : Xf Ñ Q2. Moreover, hQQ1 and hQ1Q2 are also
homomorphisms of F -algebras. If follows that

fQ ¨ eQ “ fQ2 ¨ hQQ2 ¨ eQ (hQQ2 coalgebra homomorphism)
“ fQ2 ¨ eQ2 (hQQ2 F -algebra hom., Xf initial)

and analogously fQ1 ¨ eQ1 “ fQ2 ¨ eQ2 . Hence fQ ¨ eQ “ fQ1 ¨ eQ1 , as claimed.
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Conversely, let L : Xf Ñ Y be a D-regular language. Then there exists an fp-automaton
pQ, δQ, iQ, fQq with L “ fQ ¨ eQ. Put xL :“ hQ ¨ iQ : I Ñ %T . To prove the well-definedness
of xL, consider the automata homomorphisms

Q Qroo
moo e // //___ MinpLq

of Theorem 4.5. Then

hQ ¨ iQ “ hQ ¨m ¨ iQr (m algebra hom.)
“ hQr

¨ iQr
(phQq cocone and m coalgebra hom.)

“ hMinpLq ¨ e ¨ iQr
(phQq cocone and e coalgebra hom.)

“ hMinpLq ¨ iMinpLq (e algebra hom.)

Hence xL “ hQ ¨ iQ is independent of the choice of Q. It now follows immediately from
the definitions that x ÞÑ Lx and L ÞÑ xL are mutually inverse and hence define the desired
bijective correspondence.

B Dual Characterization of Syntactic Monoids

Here we give a more detailed account of the dual view of syntactic monoids indicated in
Section 5. This section are largely based on results from our papers [2, 4] where a categorical
generalization of Eilenberg’s variety theorem was proved. We work with the following

§ Assumptions B.1. From now on D is a locally finite entropic variety whose epimorphisms
are surjective. Moreover, we assume that there is another locally finite variety C such that
the full subcategories Cf and Df of finite algebras are dually equivalent. (Two such varieties
C and D are called predual.)

The action of the equivalence functor Copf
»
ÝÑ Df on objects and morphisms is written

Q ÞÑ pQ and f ÞÑ pf . Letting I P Cf denote the free one-generated object of C we choose the
output object Y P Df to be the dual object of I. Moreover, let Y P Cf be the dual object of
I P Df , the free one-generated object of D. Finally, we put X “ ΨX0 for a finite alphabet
X0. Note that the underlying sets of Y and Y are isomorphic:

|Y | – CpI, Y q – DpI, Y q – |Y |.

To simplify the presentation, we will assume in the following that Y and Y have a two-element
underlying set t0, 1u. This is, however, inessential – see Remark B.14 at the end of this
section.

§ Example B.2. The categories C and D in the table below satisfy our assumptions.

C D

BA Set
BR SetK
JSL0 JSL0

VecpZ2q VecpZ2q

The case BA/Set is a restriction of Stone duality: the dual equivalence functor BAop
f

»
ÝÑ Setf

assigns to a finite boolean algebra B the set AtpBq of its atoms, and to a homomorphism
h : AÑ B the map Atphq : AtpBq Ñ AtpAq sending b P AtpBq to the unique atom a P AtpAq
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with ha ě b. Using a similar Stone-type duality, we proved in [4] that the the category BR
of non-unital boolean rings (i.e., rings without 1 satisfying the equation x ¨ x “ x) is predual
to SetK. The other two examples above correspond to the well-known self-duality of finite
semilattices and finite-dimensional vector spaces, respectively. We refer to [4] for details.

On C we consider the endofunctor TQ “ YˆQX0 . Its coalgebras are precisely deterministic
automata in C without an initial state, represented as triples pQ, γa, fq with transition
morphisms γa : QÑ Q (a P X0) and an output morphism f : QÑ Y .

§ Example B.3. In C “ BA a T -coalgebra is a deterministic automaton with a boolean
algebra Q of states, boolean transitions morphisms γa, and an output map f : QÑ t0, 1u
which specifies (via the preimage of 1) an ultrafilter F Ď Q of final states.

The rational coalgebra %T of T (i.e., the colimit of all finite T -coalgebras) has as states the
regular languages over X0. The final state predicate f : %T Ñ Y “ t0, 1u sends a language
to 1 iff it contains the empty word ε, and the transitions γa : %T Ñ %T for a P X0 are given
by γapLq “ a´1L. Here a´1L “ tw P X˚0 : aw P Lu denotes the left derivative of L w.r.t.
the letter a. Similarly, the right derivatives of L are defined by La´1 “ tw P X˚0 : wa P Lu
for a P X0.

§ Example B.4. In C “ BA the rational T -coalgebra is the boolean algebra of all regular
languages over X0 (w.r.t. union, intersection and complement), equipped with the above
transitions and final states. Note that the transition map a´1p´q is indeed a boolean
homomorphism because left derivatives preserve all boolean operations. Moreover, the final
states – viz. the set of all regular languages containing the empty word – form a (principal)
ultrafilter.

The coalgebra %T is characterized by a universal property: every finite T -coalgebra has a
unique coalgebra homomorphism into it (which sends a state to the language it accepts in
the classical sense of automata theory). A finite T -coalgebra is called a subcoalgebra of %T if
this unique morphism is injective, i.e., distinct states accept distinct languages. In [2] we
related finite T -coalgebras in C to finite F -algebras in the predual category D. Note that
X “ ΨX0 implies FA “ I `X b A – I `

š

X0
A, so F -algebras F -algebras pA, δq can be

represented as triples pA, δa, iq with δa : AÑ A (a P X0) and i : I Ñ A. They correspond to
automata in D with inputs from the alphabet X0 and without final states.

§ Proposition B.5 (see [2]). (a) The categories of finite T -coalgebras and finite F -algebras
are dually equivalent. The equivalence maps any finite T -coalgebra Q “ pQ, γa, fq to its
dual F -algebra pQ “ p pQ,xγa, pfq:

pY
f
ÐÝ Q

γa
ÝÑ Qq ÞÑ pI

pf
ÝÑ pQ

xγa
ÐÝ pQq.

(b) A finite T -coalgebra Q is a subcoalgebra of %T iff its dual F -algebra pQ is a quotient of
the initial F -algebra Xf.

§ Example B.6. For a finite T -coalgebra pQ, γa, fq in BA the dual F -algebra pQ has as states
the atoms of Q, and the initial state is the unique atomic final state of Q. Moreover, there is
a transition z a

ÝÑ z1 for a P X0 in pQ iff z1 is the unique atom with γapz1q ě z in Q.

By a local variety of languages over X0 in C we mean a subcoalgebra V of %T closed
under right derivatives (i.e. L P |V | implies La´1 P |V | for all a P X0). Note that a local
variety is also closed under the C-algebraic operations of %T , being a subalgebra of %T in C,
and under left derivatives, being a subcoalgebra of %T .
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§ Example B.7. A local variety of languages in BA is a set of regular languages over X0
closed under the boolean operations (union, intersection and complement) as well as left and
right derivatives. This concept was introduced by Gehrke, Grigorieff and Pin [11].

In the following proposition recall that every X0-generated D-monoid defines an F -algebra,
see Definition 2.15.

§ Proposition B.8 (see [2]). A finite subcoalgebra V of %T is a local variety iff its dual
F -algebra pV is derived from an X0-generated D-monoid.

In other words, given a finite local variety V � %T in C, there exists a unique D-monoid
structure on pV making the unique (surjective) F -algebra homomorphism e

pV : Xf Ñ pV is D-
monoid morphism. Hence the monoid multiplication on pV is (well-)defined by e

pV pxq‚e pV pyq :“
e
pV px ‚ yq for all x, y P X

f, and the unit it the initial state of the F -algebra pV .

§ Remark B.9. A pointed T -coalgebra is a T -coalgebra pQ, γa, fq equipped with an initial
state i : I Ñ Q. Observe that every finite pointed T -coalgebra pQ, γa, f, iq dualizes to a finite
D-automaton p pQ, pγa, pf,piq. The language of pQ, δa, f, iq is the function

LQ : X˚0 Ñ |Y |, a1 . . . an ÞÑ f ¨ δan ¨ . . . ¨ δa1 ¨ i.

Letting mQ : Q Ñ %T denote the unique coalgebra homomorphism, LQ is precisely the
element of %T determined by I i

ÝÑ Q
mQ
ÝÝÑ %T . Since |Y | “ |Y | and Xf “ ΨX˚0 , the function

LQ : X˚0 Ñ |Y | can be identified with its adjoint transpose L@
Q : Xf Ñ Y , i.e., with a

language in D. The reversal of a language L : Xf Ñ Y in D is Lrev “ L ¨ rev : Xf Ñ Y ,
where rev : Xf Ñ Xf denotes the unique morphism of D extending the function X˚0 Ñ X˚0
that reverses words.

§ Proposition B.10 (see [4]). The language accepted by a finite pointed T -coalgebra is the
reversal of the language accepted by its dual D-automaton .

If a finite X0-generated D-monoid e : Xf Ñ M recognizes a language L : Xf Ñ

Y via f : M Ñ Y , i.e., L “ p Xf e // // M
f
// Y q, we dually get the morphism

I
i // V //

m // %T (where V is the local variety dual to M , i is the dual morphism
of f and m is the unique coalgebra homomorphism) choosing the element Lrev of %T . Now
suppose that L is a regular language, and let VL be the finite local variety of languages dual
to the syntactic D monoid SynpLq, see Proposition B.8. The universal property of SynpLq in
Definition 3.5 then dualizes as follows: VL is (i) a local variety containing Lrev, and (ii) for
every local variety V � %T containing Lrev, the local variety VL is contained in V . In other
words, VL is the smallest local variety containing Lrev.

%T Voooo Ioo

����������

VL

``

``AAAAAAA
OO

OO�
�
�

In summary, we have proved following dual characterization of syntactic D-monoids:

§ Theorem B.11. For every regular language L the syntactic D-monoid SynpLq is dual to
the smallest local variety of languages over X0 in C containing Lrev.

§ Example B.12. For C “ BA and D “ Set the previous theorem gives the following
construction of the syntactic monoid of a regular language L Ď X˚:
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1. Form the smallest local variety of languages VL Ď %T containing Lrev. Hence VL is the
closure of the (finite) set of all both-sided derivatives u´1Lrevv´1 “ tw P X˚ : uwv P Lrevu

(u, v P X˚) under union, intersection and complement.
2. Compute the F -algebra xVL dual to the coalgebra VL. The states of xVL are the atoms of

VL, and the initial state is the unique atom i P VL containing the empty word. Given
atoms z, z1 P VL and a P X, there is a transition z a

ÝÑ z1 in xVL iff z1 is the (unique) atom
with z Ď a´1z1.

3. Define a monoid multiplication on xVL as follows: given states z, z1 P xVL, choose words
w,w1 P X˚ with i w

ÝÑ z and i w1
ÝÑ z1 in xVL. Then z ‚ z1 is the state reached on input ww1,

i.e., i ww1
ÝÝÑ z ‚ z1. The resulting monoid (with multiplication ‚ and unit i) is SynpLq.

By dropping right derivatives and using the correspondence between finite subcoalgebras
of %T and finite quotient algebras of Xf, one also gets the following dual characterization of
minimal D-automata:

§ Theorem B.13. For every regular language L the minimal D-automaton for L is dual to
the smallest subcoalgebra of %T containing Lrev

§ Remark B.14. Our above assumption that Y and Y have two elements is inessential.
Without this assumption, the rational coalgebra %T is not carried by regular languages, but
more generally by regular behaviors, i.e, functions b : X˚0 Ñ |Y | realized by finite Moore
automata with output set |Y |. The coalgebra structure is given by the output map b ÞÑ bpεq,
and transitions b a

ÝÑ a´1b for a P X0, where a´1b is the (generalized) left derivative of b
defined by a´1bpwq “ bpawq. (Right derivatives are defined analogously.) A local variety of
behaviors over X0 in C is a subcoalgebra of %T closed under right derivatives. All results of
this section hold for this more general setting, see Section 5 of [4] for details. In particular,
this allows us to cover the case C “ D “ VecpKq for an arbitrary finite field K. In this case
Theorem 5.7 states that the syntactic associative algebra of a rational weighted language
L : X˚0 Ñ K dualizes to the smallest set of rational weighted languages that contains Lrev

and is closed under scalar multiplication, addition and left and right derivatives.
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