
CMM vs. CMMI: From Conventional to Modern
Software Management

by Walker Royce

Vice President and General Manager
Strategic Services
Rational Software Corporation

This article summarizes some thoughts on
making the transition from conventional
software management techniques to
modern ones. In particular, I want to
endorse the improvements in the
Software Engineering Institute's new
CMMI (Capability Maturity Model
Integration)1 approach and motivate
development organizations to apply the
approach correctly. Although I have
always been a supporter of the spirit
behind the original Capability Maturity
Model (CMM), in practice, it has been
misused and misinterpreted too much for
my liking. Based on my twenty-five years
of experience with many of the world's
leading software development
organizations engaged in process
improvement, I am convinced that most
organizations using the CMM are still entrenched in a default waterfall model
mentality. I won't lay blame on the model itself, for I am aware of some
process improvements made within a CMM context that were very much
based on a modern, iterative approach to development. But this enlightened
interpretation is not the norm.

CMM Overview

The CMM defines five levels of software process maturity, based on an
organization's support for certain key process areas (KPAs). Level 1 (initial)
describes an organization with an immature or undefined process. Level 2
(repeatable), Level 3 (defined), Level 4 (managed), and Level 5
(optimizing), respectively, describe organizations with successively higher
levels of software process maturity.

jprince
Copyright Rational Software 2002

jprince
http://www.therationaledge.com/content/feb_02/f_conventionalToModern_wr.html

The associated KPAs for these levels are:

● Level 2: requirements management; software project planning;
software project tracking and oversight; software subcontract
management; software quality assurance; software configuration
management

● Level 3: organizational process focus, organizational process
definition, training program, integrated software management,
software product engineering, intergroup coordination, peer reviews

● Level 4: process measurement and analysis; quality management;
defect prevention

● Level 5: technology innovation, process change management

The primary goal for most organizations is to achieve a Level 3 maturity.
One instrument for assessing an organization's current maturity level is a
software capability evaluation (SCE), which determines whether the
organization "says what it does and does what it says" by evaluating its
software process (usually in the form of policy statements) and project
practices. The organization's process captures the "say what you do," and
project implementations (specific tailorings and interpretations of this
process) should demonstrate the "do what you say."

Issues with the CMM

One of the key issues I have encountered with the CMM is that the KPAs
focus mostly on activities and supporting artifacts associated with a
conventional waterfall process: requirements specifications, documented
plans, quality assurance audits and inspections, and documented processes
and procedures. Very few of the KPAs address the evolving results (i.e., the
software product) and associated engineering artifacts (use-case models,
design models, source code, or executable code) that capture the real target
product. Also, there is no emphasis on the architecting/design process,
assessment process, or deployment process, all of which have proven to be
key discriminators for project success.

The CMM also overemphasizes peer reviews, inspections, and traditional
Quality Assurance "policing" methods. Although manual reviews and
inspections may be capable of uncovering sixty percent of errors, they
rarely, if ever, uncover the architecturally significant flaws that plague most
conventionally managed software projects. And I have never encountered an
architect, lead designer, lead tester, or project manager who said
inspections and peer reviews were the critical discriminators for success.

Another issue is that most implementations of the CMM drive organizations
to produce more documents, more checkpoints, more artifacts, more
traceability, more reviews, and more plans. Furthermore, thicker
documents, more detailed information, and longer meetings are considered
to be better. This flies in the face of the primary technique for improving
software economics: reducing complexity and the volume of human-
generated "stuff." In reality, the widespread belief that "more artifacts and
more precise artifacts correlate to more progress" is not the CMM's fault, but

the CMM does not motivate organizations to behave otherwise.

Getting an accurate measure of an organization's current maturity level is
also an issue. The CMM takes an activity-based approach to measuring
maturity; if you do the prescribed set of foundation project activities, you
are Level 2. If you then do a prescribed set of activities as an organization,
you are Level 3. And so on. There is nothing that characterizes or quantifies
whether you do these activities well enough to deliver the intended results. I
prefer a more results-driven measurement scheme: If you can repeat the
process on several projects with predictable cost, quality, and schedule, then
you are Level 2. If you can improve one dimension of cost, quality, or
schedule on subsequent projects, then you are Level 3. Improvements along
multiple dimensions will get you to higher levels. In reality, however, neither
an activity-based perspective nor a results-driven perspective alone is
sufficient; we need to combine these two approaches to measure maturity
accurately.

A default practice we see too often is that organizations define their process
based strictly on traceability to the CMM, so that they will have a very clear
mapping for assessment. The waterfall model's requirements-driven
practices lead organizations down a similar path by making traceability of
requirements specifications to design elements a more important measure of
design quality than meeting the needs of the user (which are often poorly
represented by conventional requirements specifications). Organizations
concerned about real improvement -- as opposed to simply passing an audit -
- focus on achieving a process that produces improved business results. A
complete assessment framework, therefore, should also measure real
improvement along project performance dimensions such as estimated time
to market, probable cost to complete, and predicted quality of product.
Software development standards (like the RUP or ISO 12207), frameworks
designed to help organizations decide how to do things and what to produce,
can lay the groundwork for accurate assessments. Unfortunately, default
practice in many organizations is to apply the CMM as both a development
standard and an assessment standard.

CMMI Overview

The initial Capability Maturity Model (CMM v1.0) was developed by the
Software Engineering Institute and specifically addressed software process
maturity. It was first released in 1990, and after its successful adoption and
usage in many domains, other CMMs were developed for other disciplines
and functions such as Systems Engineering, people, integrated product
development, software acquisition, and others. Although many organizations
found these models to be useful, they also struggled with problems caused
by overlap, inconsistencies, and integration. Many organizations also
confronted conflicting demands between these models and ISO 9001 audits
or other process improvement programs.

The CMM Integration (CMMI) Project was conceived as an initiative to
integrate the various CMMs into a set of integrated models. The source
models that served as the basis for the CMMI include: CMM for Software
V2.0 (Draft C), EIA-731 Systems Engineering, and IPD CMM (IPD) V0.98a.

The CMMI, like its predecessor, describes five distinct levels of maturity:

1. Level 1 (initial) represents a process maturity characterized by
unpredictable results. Ad hoc approaches, methods, notations, tools,
and reactive management translate into a process dependent
predominantly on the skills of the team to succeed.

2. Level 2 (managed) represents a process maturity characterized by
repeatable project performance. The organization uses foundation
disciplines for requirements management; project planning; project
monitoring and control; supplier agreement management; product
and process quality assurance; configuration management and
measurement/analysis. For Level 2, the key process focus is on
project-level activities and practices.

3. Level 3 (defined) represents a process maturity characterized by
improving project performance within an organization. Consistent,
cross-project disciplines for Level 2 key process areas are emphasized
to establish organization-level activities and practices. Additional
organizational process areas include:

❍ Requirements development: multi-stakeholder requirements
evolution.

❍ Technical solution: evolutionary design and quality engineering.

❍ Product integration: continuous integration, interface control,
change management.

❍ Verification: assessment techniques to ensure that the product
is built correctly.

❍ Validation: assessment techniques to ensure that the right
product is built.

❍ Risk management: detection, prioritization, and resolution of
relevant issues and contingencies.

❍ Organizational training: establishing mechanisms for
developing more proficient people.

❍ Organizational process focus: establishing an organizational
framework for project process definition.

❍ Decision analysis and resolution: systematic alternative
assessment.

❍ Organizational process definition: treatment of process as a
persistent, evolving asset of an organization.

❍ Integrated project management: methods for unifying the
various teams and stakeholders within a project.

4. Level 4 (quantitatively managed) represents a process maturity
characterized by improving organizational performance. Historical
results for Level 3 projects can be exploited to make trade offs, with
predictable results, among competing dimensions of business
performance (cost, quality, timeliness). Additional Level 4 process
areas include:

❍ Organizational process performance: setting norms and

benchmarks for process performance.

❍ Quantitative project management: executing projects based on
statistical quality-control methods.

5. Level 5 (optimized) represents a process maturity characterized by
rapidly reconfigurable organizational performance as well as
quantitative, continuous process improvement. Additional Level 5
process areas include:

❍ Causal analysis and resolution: proactive fault avoidance and
best practice reinforcement.

❍ Organizational innovation and deployment: establishing a
learning organization that organically adapts and improves.

Is the CMM Obsolete?

Some issues associated with the practice of the CMM are also recurring
symptoms of traditional waterfall approaches and overly process-based
management. The CMM's activity-based measurement approach is very
much in alignment with the sequential, activity-based management
paradigm of the waterfall process (i.e., do requirements activities, then
design activities, then coding activities, then unit testing activities, then
integration activities, then system acceptance testing). This probably
explains why many organizations' perspectives on the CMM are anchored in
the waterfall mentality.

Alternatively, iterative development techniques, software industry best
practices, and economic motivations drive organizations to take a more
results-based approach: Develop the business case, vision, and prototype
solution; elaborate into a baseline architecture; elaborate into usable
releases; and then finalize into fieldable releases. Although the CMMI
remains an activity-based approach (and this is a fundamental flaw), it does
integrate many of the industry's modern best practices, and it discourages
much of the default alignment with the waterfall mentality.

One way to analyze CMM and CMMI alignment with the waterfall model and
iterative development, respectively, is to look at whether each model's KPAs
motivate sound software management principles for these two different
development approaches. First, we will define those software management
principles. Over the last ten years, I have compiled two sets: one for
succeeding with the conventional, waterfall approach and one for succeeding
with a modern, iterative approach. Admittedly, these "Top Ten Principles"
have no scientific basis and provide only a coarse description of patterns for
success with their respective management approaches. Nevertheless, they
do provide a suitable framework for my view that the CMM is aligned with
the waterfall mentality, whereas the CMMI is more aligned with an iterative
mentality.

Top Ten Principles of Conventional (Waterfall) Software
Management

1. Freeze requirements before design. This is the essence of a

requirements-first process: The project team strives to provide a
precise requirements definition and then implement exactly those
requirements. Changing requirements can cause significant breakage
in the code and test phases; consequently, requirements must be
completely and unambiguously specified before the team makes
major investments in other design and development activities.

2. Avoid coding prior to detailed design review. Again, because
design changes can also cause significant breakage in the code and
test phases, the team needs to ensure that the whole design is
mature and complete before beginning the coding phase, when there
will be much more resistance to change.

3. Use a higher-order programming language. Higher-order
programming languages avoid a substantial set of error sources
(through advanced data typing, interface separation, and packaging
and programming constructs) and permit the software solution to be
"programmed" in fewer lines of human-generated code.

4. Complete unit testing before integration. Whereas the design
flows "top down," the test process flows "bottom-up": The smallest
units are completely tested prior to delivery for integration testing.
This sequencing constraint is an attempt to capture more bugs at the
unit level, prior to integration, when they can cause substantially
more scrap and rework.

5. Maintain detailed traceability among all artifacts. To ensure that
program completeness and consistency can be maintained at each
stage, the requirements artifacts need to be traced to design artifacts
and test artifacts. When changes are proposed or identified
downstream, this provides a full view of the change's actual or
potential impact for assessment.

6. Document and maintain the design. Design without
documentation is not design. In early phases, the documentation is
the design. In later phases, as code becomes the primary engineering
artifact, design artifacts must be updated to ensure consistency and
provide a basis for decision making about changes.

7. Assess quality with an independent team. To maintain a separate
reporting chain from the analysts, designers, and testers, the project
should assign to an independent team responsibility for ensuring
overall adherence to quality standards -- for both the product and the
process.

8. Inspect everything. Inspecting the detailed design and code is a
much better way to find errors than testing. Ensure that inspections
cover all requirements, design, code, and test artifacts.

9. Plan everything early with high fidelity. A complete, precise plan
down to the "inch-pebble" level that lays out detailed activities and
artifacts over the entire schedule is necessary to identify critical
paths, manage risks, and evaluate programmatic changes.

10. Control source code baselines rigorously. Once artifacts get into
the coded stage, rigorous configuration management is necessary to
maintain baseline control of formal releases in the test process, and
to transition the product to a zero-defect state suitable for release.

Top Ten Principles of Modern (Iterative) Software
Management

1. Focus the process on the architecture first. This requires a
demonstrable balance among the driving requirements, architecturally
significant design decisions, and lifecycle plans before the
organization commits sufficient resources for full-scale development.

2. Attack risks early with an iterative lifecycle. An iterative process
is required to refine understanding of the problem, and to shape an
effective solution as well as an effective plan that ensures balanced
treatment of all stakeholder objectives. Major risks need to be
addressed early to increase predictability and avoid expensive scrap
and rework later on.

3. Emphasize component-based development. To reduce the
amount of human-generated source code and custom development,
project teams must move from a line-of-code mentality to a
component-based mentality within an existing architectural
framework. A component is a cohesive set of pre-existing lines of
code, either in source or executable format, with a defined interface
and behavior.

4. Establish a change management environment. The dynamics of
iterative development include concurrent workflows, as different
teams work on shared artifacts. This calls for objectively controlled
baselines that all project members can view.

5. Enhance change freedom with tools for round-trip engineering.
Round-trip engineering provides the environment support necessary
to automate and synchronize engineering information in different
formats (e.g., requirements specifications, design models, source
code, and executable code). Without substantial use of automation, it
is difficult to reduce iteration cycles to manageable time frames that
allow and encourage change. Freedom to change artifacts is a
necessity in an iterative process, as it removes one of the
predominant sources of friction perceived by the engineering teams.

6. Use rigorous, model-based design notation. A model-based
approach (e.g., UML) supports the evolution of semantically rich
graphical and textual design notations. Visual modeling with rigorous
notations and a formal, machine-processable language permits more
objective assessment than the traditional human review and
inspection of ad hoc design representations in paper documents.

7. Instrument the process for objective quality control. Lifecycle
assessments of both the process and all intermediate products must
be tightly integrated into the process, using well-defined measures
derived directly from the evolving engineering artifacts and integrated
into all activities and teams.

8. Use demonstration-based assessment of intermediate
artifacts. Transitioning the current, state-of-the-product artifacts
(whether an early prototype, a baseline architecture, or a beta
capability) into an executable demonstration of relevant use cases
stimulates earlier convergence on integration, more tangible

understanding of design tradeoffs, and earlier elimination of
architectural defects.

9. Plan releases with evolving levels of detail. It is essential that
the software management process drive toward early and continuous
demonstrations within the operational context of the system, namely
its use cases. Each project increment and demonstration should
reflect current levels of detail for both requirements and architecture.
Use cases are the primary mechanism for organizing requirements,
defining iteration content, assessing implementations, and organizing
acceptance testing.

10. Establish a scalable, configurable process. No single process is
suitable for all software development projects. To be pragmatic, a
process framework needs to be configurable to a broad spectrum of
applications. To ensure economies of scale and return on investment,
the organization must instill a common process "spirit," so that all
projects inherit a common set of best practices, especially for project
management and context independent workflows, checkpoints,
metrics, and artifacts. It should also allow tailoring and specialization
so that each project can optimize the process implementation for the
specific context of the project.

Alignment Between CMM and Both Sets of Management
Principles

Table 1 identifies which principles in each set are directly motivated by the
KPAs of the CMM. These are my judgments; they are not based on any
science, just on anecdotal evidence, experience, and the combined opinions
of many field practitioners at Rational. Furthermore, keep in mind that many
of these principles are based as much on observations of default practices
and organizational inertia as they are on the CMM.

Table 1: How the CMM Motivates Software Management Principles

CMM Motivation for
Waterfall Principles

CMM Motivation for
Iterative Principles

COLOR KEY

● CMM directly motivates organizations to apply this principle.

● CMM is neutral; provides no direct motivation but does not de-
motivate the organization from applying this principle.

● CMM de-motivates organizations from applying this principle.

1. Freeze requirements before
design.

2. Avoid coding prior to
detailed design review.

3. Use a higher-order
programming language.

4. Complete unit testing before
integration.

5. Maintain detailed traceability
among all artifacts.

6. Document and maintain the
design.

7. Assess quality with an
independent team.

8. Inspect everything.

9. Plan everything early with
high fidelity.

10. Control source code
baselines rigorously.

1. Focus the process on the
architecture first.

2. Attack risks early with an
iterative lifecycle.

3. Emphasize component-based
development.

4. Establish a change
management environment.

5. Enhance change freedom with
tools for round-trip engineering.

6. Use rigorous, model-based
design notation.

7. Instrument the process for
objective quality control.

8. Use demonstration-based
assessment of intermediate
artifacts.

9. Plan releases with evolving
levels of detail.

10. Establish a scalable,
configurable process.

As Table 1 shows, the CMM's key process areas directly motivate most of
the conventional principles but have little influence on the modern principles.
In my opinion, a few of the modern principles are actually in conflict with the
CMM's key process areas. I am sure this table will stimulate passionate
debate among process improvement zealots, but in the end, I believe most
engineers and project managers working on the front lines of software
development projects will reach the same conclusions I have.

Alignment Between CMMI and Modern Management Principles

Now, lets take a look at the CMMI. If I do the same rough analysis, I come
up with the results in Table 2.

Note: This table uses the same color coding scheme as Table 1.

Table 2: How the CMMI Motivates Iterative Software Management Principles

CMMI Alignment with Iterative Principles

1. Focus the process on the architecture first.

2. Attack risks early with an iterative lifecycle.

3. Emphasize component-based development.

4. Establish a change management environment.

5. Enhance change freedom with round-trip engineering.

6. Use rigorous, model-based design notation.

7. Instrument the process for objective quality control.

8. Emphasize demonstration-based assessment.

9. Plan releases with evolving levels of detail.

10. Establish a scalable, configurable process.

Note that my analysis is still based on the industry's observable, default
practices rather than on the CMMI's intentions. Our ties to legacy
approaches and organizational cultures will be obstacles in achieving the
CMMI's real intentions, so I feel conservative in my judgments. Clearly, from
my perspective, the CMMI represents a major improvement.

Time to Move On

Although I have made somewhat subjective interpretations of the CMMI and
speculated on how organizations will implement various aspects of it,2 I feel
relatively comfortable that the process areas within it now motivate modern
software management best practices and align with modern iterative
development techniques. I still have concerns, however, that organizations
will focus more on activity-based assessment techniques rather than results-
based techniques.

In my view, it is time for system development organizations to phase out
the CMM and to begin their transition to the CMMI. The CMM has done the
software industry a great service by focusing more attention on software
process, but after ten years in the field, it is time for the CMM to step aside
to make way for the new, improved CMMI.

For those who would like more scientific support for this position, see Joe
Marasco's article on assessing project progress in the November 2001
Rational Edge.3 It shows us that by applying some very simple physics (S-
Curve, derivatives, Newton's F=ma), we can validate some of the notions I
have postulated in this article about modern, iterative development.

Notes

1 See http://www.sei.cmu.edu/cmmi/general/genl.html.

2 I could go through all the details of my analysis, but I doubt that would
strengthen the resolve of those who agree with me, and I doubt even more
that further rationale would sway the dissenters. Consequently, I will just
assert my position.

3 See
http://www.therationaledge.com/content/nov_01/k_projectProcess_jm.html.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided. Thank
you!

Copyright Rational Software 2002 | Privacy/Legal Information

