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Abstract. Given its readily deployable nature and broad applications for digital entertainment, 
video streaming through overlay networks has received much attention recently. While a tree 
topology is often advocated due to its scalability, it suffers from discontinuous playback under 
highly dynamic network environments. For on-demand streaming, the asynchronicity among 
client requests further aggravates the problem. On the other hand, gossip protocols using 
random message dissemination, though robust, fail to meet the real-time constraints for 
streaming applications. In this paper, we propose TAG, a Tree-Assisted Gossip protocol that 
addresses the above issues. TAG adopts a tree structure with time indexing to accommodate 
asynchronous requests, and an efficient pull-based gossip algorithm to mitigate the impact of 
network dynamicity. It seamlessly integrates these two approaches and realizes their best 
features, namely, low delay with a regular tree topology, and robust delivery with smart 
switching among multiple paths, thus making effective use of the available bandwidth in the 
network. We evaluate the performance of TAG under various settings, and the results 
demonstrate that it is quite robust in the presence of local and global bandwidth fluctuations. As 
compared to pure tree-based overlay VOD system, it achieves much lower and stable segment 
missing rates, even under highly dynamic network conditions.  
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 1. INTRODUCTION 

Recently, application-layer overlays have emerged as a readily deployable and thus promising 

alternative to IP multicast for multi-point video distribution [1-14]. An overlay network is built out 

of unicast tunnels across cooperative nodes with certain buffering capabilities. Each overlay node 

acts as an application-layer proxy, and caches a certain amount of the data it receives; the data are 

then relayed among the active nodes in the overlay to realize multicasting. As an application-layer 

solution, it largely avoids the known practical and political issues for IP multicast deployment. 

In existing overlay construction algorithms, a tree structure is often advocated for data delivering 

[18-25,29,30], which originates from and works efficiently with IP multicast. For an 

application-level overlay with dynamic nodes, it however suffers from several severe problems. In 

particular, any bandwidth fluctuation or failure at a node close to the root may cause buffer 

underflow at a large population of downstream nodes; such situations are not uncommon as each 

overlay node can join or leave at will. For on-demand streaming, the asynchronicity among client 

requests further aggravates the above problems. 

Opposite to a tree-based protocol, gossip protocols enable random data dissemination with no 

support from a regular overlay structure [15-17,28]. In a typical gossip process, a node randomly 

selects a subset of target nodes to deliver recently available data segments, and meanwhile, receives 

segments pushed from these nodes. It is known that gossip algorithms achieve highly robust data 

distribution. Nevertheless, it is not straightforward to apply gossiping in on-demand streaming, for 

it often fails to achieve a timely delivery. Furthermore, the push-based gossip could cause excessive 

data duplications, which is particularly severe for high-bandwidth videos.  

In this paper, we present TAG, a Tree-Assisted Gossip protocol for on-demand media streaming. 

TAG constructs and maintains two overlays, namely, a tree overlay and a gossip overlay, which 

collectively deliver video streams to clients. We design intelligent and efficient overlay construction 

and data delivering algorithms for this hybrid system. They seamlessly integrate the two distinct 

approaches and realize their best features: low delay with a regular tree topology, and robust 

delivery with smart switching among multiple paths, thus making effective use of the available 

bandwidth in the network. We present a timing listing that accommodates the asynchronous 

requests in an on-demand streaming system. We also substitute the push-based delivery by a pull 

process, which greatly eliminates the massive redundancy due to random disseminations. Finally, 
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we enhance the TAG system by introducing AVL tree based indexing, which facilitates 

non-sequential accesses.  

We evaluate the performance of TAG under various network configurations. The results 

demonstrate that it is highly robust when facing local and global bandwidth fluctuations. As 

compared a pure tree-based overlay VoD system, it achieves much lower and stable segment 

missing rates (<10%) under dynamic network environments. Meanwhile, its control overhead is 

kept at low levels, suggesting that TAG scales well to large overlay networks.  

The rest of the paper is organized as follows. An overview of TAG is given in Section 2, together 

with detailed protocol operations presented in Section 3. In Section 4, we further enhance TAG by 

introducing AVL tree based indexing. The performance of TAG is evaluated in Section 5. Finally, 

Section 6 concludes the paper and offers some future research directions. 

2. OVERVIEW OF TAG 

A TAG system consists of a content server, which stores a repository of media files, and a set of 

autonomous nodes, which can join or leave the system at will. We assume that the address of the 

content server is publicly available through an advertising protocol, such as SAP; thus, a node can 

always retrieve the media stream from the server; yet a scalable solution is expected given the 

limited server resources. To this end, each node in the TAG system contributes a certain buffer 

space, which caches the recently received the data at the node, and a node thus can retrieve data not 

only from the server, but also from other active nodes with expected data in their buffers.  
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Figure 1. Tree-assisted gossip overlay. 

 TAG adopts a tree assisted gossip protocol to organize the nodes, locate partners with cached 

data, and schedule the data fetching.  Fig. 1 shows such an overlay structure, where a tree 

organizes all the nodes, and these nodes also form gossip partners to exchange data with each other. 
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We divide buffer at every node i into two parts, namely, a forward buffer of size +
ib ,  and a 

backward buffer of size -
ib . A node stores data segments pre-fetched from its parent or partners in 

its forward buffer, and caches played out segments in its backward buffer, both of which can be 

used to supply its children or partners upon requests.  

We show an example the gossip partnership for node 7 in Fig. 1, and stress three salient features 

of this hybrid design: (1) Adaptive, as a receiver can intelligently switch among multiple suppliers 

(parent and gossip partners), and the fanout constraint for tree nodes can be relaxed; (2) Efficient, as 

the availability at different paths/nodes can be explored; and (3) Robust, as the bandwidth 

fluctuation or node failure at a particular path has less impact.  

Our experimental results suggest that most of these features are enabled by the gossip algorithm; 

yet the tree structure is indispensable to meet the real-time constraints. It is, however, not 

straightforward to employ a tree structure or a gossip algorithm for on-demand streaming, not to 

mention integrating them. There are several challenges to be addressed, in particular: 

1. How is a newly joined node inserted to the tree and assigned with gossip partners? Note that 

the nodes are with asynchronous join times and limited buffer spaces. Similar issues have to be 

addressed when node fail or leave the system. 

2. For each expected data segment, where and when to fetch it? There are multiple suppliers with 

non-uniform bandwidth and data availability, and the playback deadline has to be met. 

We detail the TAG operations in the next two sections, which offer efficient solutions to the 

above issues in this hybrid system.  

3. PROTOCOL OPERATIONS  

For ease of exposition, we focus on the distribution of a single video stream only, and the 

solution can be easily extended to the multi-stream case. We assume that the stream is divided into 

equal-sized data segments, each with a unit playback time. The buffer size is measured as the total 

number of segments it can accommodate. We also assume that each segment has a sequence 

number, and video playback at a node always starts from the first segment. Extensions to support 

non-sequential accesses will be addressed in the next section.  

A. Timing Condition and List 
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Due to data asynchronicity in on-demand streaming, a parent-child relationship or gossip 

partnership cannot be directly set up between any two nodes, even without the outbound bandwidth 

constraint. We now derive the conditions for two nodes to form a parent-child or gossip relation, 

which will serve as a foundation for overlay construction and maintenance.  

Fig. 2 depicts a snapshot of the buffers at nodes i and j, respectively, at time t. Suppose it - t  is 

the currently played segment for node i, which joins the system at time it ; the maximum sequence 

number of the data segments in its buffer is thus +
i it - t - b , and the minimum one is -

i it - t - b ; so 

is node j. 

Data segment sequence number

-
i it - t - b it - t +

i it - t + b

-
j jt - t - b jt - t +

j jt - t + b

i

j

 

Figure 2. Buffer status at nodes j and i at time t. 

 

From Fig. 2, the necessary condition for j being the parent of node i should be  

i j
-

i j j

t - t < t - t

t - t > t - t - b
ìïïíïïî

,                                (1) 

which is equivalent to 

-
i j j it - b < t < t .                                  (2) 

That is, the join time of node j should be earlier than that of node i, and their difference should be 

less than the draining time of the backward buffer of node j.  

Opposite to the parent-child relation, data delivery is bidirectional with a gossip partnership. 

From Fig. 2, for node i to forward data to node j, the following condition should be met: 

- +
i i j j

+
i i j

t - t - b < t - t + b
i j :

t - t + b > t - t

ìïïï® íïïïî
                       (3) 

which basically states that at least part of the buffer (backward buffer plus forward buffer) of node i 

should overlap with the forward buffer of node j. Similarly, the condition for node j to forward data 

to i is 
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ìïï® íïïî

- +
j j j i

+
j j i

t - t - b < t - t + b
j i :

t - t + b > t - t
                      (4) 

Combining Eq. (3) and (4), we have 

ìïïïïïïï« íïïïïïïïî

- +
i j j i

+
i j j

+ -
i j j i

+
i j i

t < t + b + b

t > t - b
j i :

t > t - b - b

t < t + b

                            (5) 

which follows that  

+ +
i i j i jt - b < t < t + b                               (6) 

To efficiently examine the above timing conditions in TAG, we link all the active nodes into a 

timing list, sorted according to their joining times. In this list, node j is the predecessor of node i if 

node j joined system immediately before node i, and, accordingly, i is referred to as j’s successor.  

A bidirectional link is then added between the predecessor and the successor. Fig. 3 depicts such a 

timing list structure for the nodes.  
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Figure 3. An illustration of the index list structure (dashed line), which facilitates 

 the construction of the delivery tree (solid line) and gossip partnerships. 

 

Note that, to construct and maintain the timing list, the content server needs to keep track of the 

latest joined node only. In the bootstrapping stage, the content server itself is such a node. Each 

newly joined node first contacts the content server, which then redirects the node to the existing 

latest joined node, and a predecessor and successor relation can then be formed, as will be detailed 

next. 

B. Construction of TAG Overlay 
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Table 1. Fields in each node for overlay construction. 

Parent Parent of a node in the delivery tree 

ChildrenList List of children in the delivery tree 

Predecessor Predecessor in the timing list 

Pre-Predecessor Predecessor of predecessor in the timing list 

Successor Successor in the timing list 

Suc-Successor Successor of successor in the timing list 

PartnerList List of gossip partners 

A TAG system is constructed with nodes joining the overlay asynchronously. To facilitate the 

join process, each node maintains a set of status information, as shown in Tab.1, and a new node i 

performs the following join operations:  

1)  Node i sends message Join<i> to the content server; 

2) The content server records the join time of node i, and redirects it to nodes L, which is the latest 

joined node so far, i.e., the one immediate before node i;  

3) Node L sets node i as its successor, and node i sets node L as its predecessor. The predecessor’s 

predecessor and successor’s successor relation is also set between node i and the predecessor of 

node L;  

4) Node i invokes a parent search and a partner search algorithm to locate its parent and gossip 

partners, and then sets the corresponding relations. Both algorithms rely on the timing list to 

check the timing conditions, as shown in Figs. 4 and 5, respectively.  

 

1) Traverse the timing list, staring from the predecessor of node i;  

2) Test condition (2) for each encountered node, until the second node violating 

the condition is found, or K nodes have been visited;  

3) For all the nodes that satisfy the condition, select the one with the maximum 

 bandwidth to node i as its parent.  

Figure 4.  Parent search algorithm for node i. 

 

1) Traverse the timing list, staring from the predecessor of node i;  

2) Test condition (6) for each encountered node, until the second node violating 
the condition is found, or K nodes are visited; 
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4) Among all the nodes that satisfy the condition, randomly select k nodes as 
gossip partners. 

Figure 5. Gossip partner search algorithm for node i. 

 

For both search algorithms, the number of nodes involved is bounded by O(K), and we will show 

through experiments that a relatively small K (say less than 12) is enough in most cases. The 

number of gossip partners, k , is also an important factor, whose impact will be investigated in our 

experiments as well. Note that we also make each node linked to its predecessor’s predecessor and 

successor’s successor in the timing list, which helps with recovering from node failures. The 

predecessor for the list head (the content server) and the successor for the list tail (the latest joined 

node) are two special cases, in which the predecessor and the successor are set as the head itself and 

tail itself, respectively. 

C. Maintenance of TAG Overlay 

We use a heartbeat protocol to maintain the parent-child and partner relationships. Each node 

periodically sends an Echo message to its related nodes, namely, parent, children, and partners, as 

well as successor and predecessor in the index list. The leave of a node, due either to an intended 

departure or abrupt failure, can thus be easily detected. The following failure recover operations 

will then be executed at the affected nodes: 

Predecessor/Successor: 

1) The predecessor and successor of the failed node contact each other and form a direct 

predecessor-successor relationship; this is viable because each node records its pre-predecessor 

and suc-successor as well; 

Parent/Gossip Partners: 

1) Removes the failed node from its children list or gossip partner list; 

Children: 

1) Each child invokes the parent search algorithm to locate a new parent. The starting node will be 

the predecessor of the child, or the pre-predecessor if its predecessor is just the failed node.  

In a dynamic network, the above operations can as well be periodically invoked by a node to 

refine its parent-child relationship or gossip partnership.  

D. Data Delivering 
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In TAG, a data segment could be available at multiple suppliers, and a commonly used push 

mechanism for data delivering may cause excessive redundancy. We thus resort to a pull 

mechanism, in which a node with data available first sends a Data Offer message to a target node, 

namely, a child or a gossip partner. The target node will then send back a Data Request if it decides 

to fetch a data segment.  

 

Figure 6. Fields of message Data Offer. 

The fields included in a Data Offer are shown in Fig. 6. Note that their sizes are relatively small, 

as the availability for each segment is indicated by one bit only. To further reduce the overhead, the 

data offer and request can both be piggyback by the Echo messages, and the requests for a set of 

segments from the same supplier can be batched together as well. 

Since a node will collect a set of Data Offers from its parent and gossip partners during an 

exchange period, a key issue is thus to decide which unavailable data segments should be fetched 

from which node. There are two constraints in this process: 1) each data segment should be fetched 

before its playback deadline; 2) the number of data segment fetched from a partner should be within 

its delivery capability, i.e., the outbound bandwidth.  

We have designed a heuristic algorithm that follows the above constraints and tries to maximize 

the success ratio for segment delivering. It starts from examining the segment with the earliest 

deadline, and then the second earliest, and so on. In case multiple suppliers are available for a 

segment, the algorithm selects the supplier that offers the least number of unavailable data segments. 

For example, suppose the segment has two suppliers, one offers ten unavailable segments, while the 

other does not have any other unavailable segment but the expected segment; the latter is then 

selected, because the former is more flexible in supplying data and can potentially be use to fetch 

other unavailable segments if needed. In addition, fewer suppliers also imply that the segment could 

be relatively new, and thus should be gossiped as soon as possible to minimize delay. 

4. ENHANCEMENT WITH AVL TREE BASED INDEXING 

In the basic TAG system, we assume sequential accesses that always starts playback from the 

initial segment of a stream. For implementing VCR-like operations, such as forward, backward, and 

random seek, however, non-sequential access from arbitrary starting position become necessary. In 
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this section, we present effective enhancement to the basic TAG system to support non-sequential 

accesses. 

Suppose a new node i joins the overlay at time it  with a playback offset io ; at time t, the node 

expects to play out segment ( )i it - t + o . Since the conditions to form parent/children and gossip 

partners still hold if we replace it  by ( - )i it o , a naive solution is to search the timing list until 

candidates satisfying the revised condition are found. Unfortunately, in the worse case, this may 

result in a traverse across all the nodes in the sorted timing list, yielding unacceptably high cost. 

Earlier studies on this issue [20,24,25] have suggested that a centralized server maintains a global 

tree structure for both timing and data delivering. While this solution is easy to implement, it is 

often not scalable, and the delivery tree itself is not an ideal indexing structure given that its height 

is unbounded. 

To this end, we introduce an AVL index tree to assist the search in the timing list. An AVL tree is 

a binary search tree with the following balance property: for any node in the tree, the height of the 

left and the right sub-tree can differ by at most 1. It is known that, for an AVL tree with N nodes, its 

height H satisfies 1.44 ( 2) 1.328H log N< + - . Hence, the cost of locating an proper insertion point 

is (log )O N , implying that the joining and failure recovery costs would be greatly reduced for 

non-sequential accesses. It is worth noting that the AVL indexing tree is a complement to the timing 

list, and is independent of the data delivery tree; hence, the list construction and maintenance, as 

well as the data scheduling and dissemination algorithms, remain unchanged.  

We now detailed the operations of the AVL index tree for non-sequential accesses. Tab. 2 lists 

the related information kept at each node. 

 

Table 2. Fields at each node for the AVL indexing tree. 

avlParent Parent in the AVL tree 

avlLeftChild Left child in the AVL tree 

avlRightChild Right child in the AVL tree 

avlLeftHeight Height of the left subtree in the AVL tree 

avlRightHeght Height of the right subtree in the AVL tree 

Virtual join time Value ( t - oi i ) for node i 

avlGrandParent Parent’s parent in the AVL tree 
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A. Joining Operations with Playback Offset 

The AVL index tree is constructed with the growth of the timing list. For a newly joined node 

with playback offset io , the following operations are performed:  

1) Node i sends message Join<i, io > to the content server; 

2) The content server records the virtual join time ( i it - o ) of node i, and redirects it to nodes R, 

which is the root of the AVL index tree; 

3) If the virtual join time of node i is less than that of node R, R redirects i to its left child in the 

AVL index tree, or otherwise to its right child. The above operations are repeated until the 

corresponding child is empty, and node i is then inserted to this position as a leaf node;  

4) If i is inserted as left child of its avlParent, it will be the predecessor of avlParent in the timing 

list, or else its successor. Similar operations for a new node to join the timing list and data 

delivery tree are performed (steps 3 and 4 in Section 4.B) with this insert position; 

5) Node i sets its height to 0, and sends a HeightReport message to its avlParent. Upon receiving 

the report, the parent resets its avlLeftHeigh or avlRightHeight, depending on which branch the 

report comes from, and then calculate its own height as  

max(avlLeftHeight , avlRightHeight ) + 1. 

 If the height is changed, the node reports as well to its own avlParent until the root of the AVL 

tree is reached; 

6) If unbalance is detected after update the height, a subtree rotation should be performed, and the 

root of the AVL, if updated, is then reported to the content server.  

Since the height of the AVL tree is O(logN), the cost for a joining operation is thus bounded by 

O(logN).  

B. Failure Recovery 

We assume that each node also maintains its relation with its avlParent, avlLeftChild and 

avlRightChild through the heartbeat protocol, and its failure can thus be detected by these nodes. 

The following recovery operations will then be performed (for ease of exposition, we denote the 

failed node as node F, and its predecessor and successor in the timing list as P and S, respectively): 

1) F’s avlParent removes F from its children list; F’s avlLeftChild and avlRightChild respectively 

mark their links to F as broken; 
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2) P and S respectively send a probe, which is forwarded toward the root in the AVL tree, until the 

root or a link marked as broken is encountered; 

3) Assume Wp is the last node traversed by P’s probe and Ws is that by S’s probe. There are three 

different cases to be addressed: 

Case 1: Both probes stop after encountering a broken link.  

We can prove (see Appendix) that Wp and Ws must respectively be the avlLeftChild and the 

avlRightChild of F in the AVL tree. Furthermore, S must be a leaf node or a node with only right 

child in the AVL tree. The following operations are then performed:  

a) If S has avlRightChild, it will be connected to the avlParent of S as a right child;  

b) S sets Wp as its avlLeftChild, and Ws as avlRightChild;  

c) S sets the avlGrandParent of Wp (which is S’s avlLeftChild now) as its own avlParent;  

Case 2: Only one probe stops after encountering a broken link; the other stops after reaching the 

root, or there is no probe sent in that branch at all. We can prove (see Appendix) that F must have 

either avlLeftNode or avlRightNode, while not both. This child is then directly connected to its 

avlGrandParent to substitute the failed node; 

Case 3: Neither probe encounters a broken link. We can prove (see Appendix) that F in this case 

must be a leaf node in the AVL tree, and thus no further operations are needed; 

4) Both the avlLeftChild and the avlRightChild of F report their tree height to their new avlParent, 

and, if necessary, perform re-balancing operations as in Step 4 of the joining process.  

5) The timing list is recovered following the steps described in Section 4.B.  

Fig. 7 shows an example of the recovery process for failed node 5. Suppose in the timing list its 

predecessor (P) is node 4 and successor (S) is node 6. According to the AVL tree construction 

algorithm, they should be respectively in the left subtree and the right subtree of node 5. In Step 2 

of the recovery algorithm, nodes 4 and 6 probe toward the AVL root and stop nodes 2 (Wp) and 7 

(Ws), which are respectively the avlLeftChild and the avlRightChild of failed node 5. Node 6 then 

serves as a substitute for node 5 (Fig. 7b), and a double rotation is then performed to re-balance the 

AVL index tree (Fig. 7c). 
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(a) AVL tree with node 5 failed; 
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(b) AVL tree after node substitution           (c) AVL tree after rebalancing 

Figure 7. An illustration of failure recovery (failure recovery case 1). 

5. PERFORMANCE EVALUATION 

We evaluate the performance of TAG under various network settings, with a focus on the 

following two important measures: control overhead and streaming quality, as well as their 

sensitivity to parameter settings. We also compare TAG with other overlay on-demand systems, in 

particular, oStream, a pure tree-based system. 

A. System Configurations 

Unless otherwise specified, the results presented in this section are based on the following default 

configurations; yet, similar results have been observed with other configurations, and the impact of 

several key parameters will be further investigated in the end of this section.  

The content server has 10 videos for streaming, each with 256 Kbps rate and 2-hour length. The 

length of a segment (or a time unit) is 1 second, and the buffer at a node can accommodate 1080 

segments, i.e., 15% of a video stream, which is equally split into the forward and backward buffers. 

The size of the candidate set for parent or gossip partner search is 12, and each node has 5 gossip 

partners.  

The underlying network topology is generated using the GT-ITM package [26], which emulates 

the hierarchical structure of the Internet by composing interconnected transit and stub domains. The 

network topology for the presented results consists of 10 transit domains, each with 7 transit nodes, 
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and a transit node is then connected to 6 stub domains, each with 7 stub nodes. The total number of 

nodes is thus 3010. We assume that each node represents a local area network with plenty of 

bandwidth, and routing between two nodes in the network follows the shortest path. The initial 

bandwidth assigned to the links is as follows: 1.5 Mbps between two stub nodes, 6 Mbps between a 

stub node and a transit node, and 10 Mbps between two transit nodes. We will also inject cross 

traffic in the experiments to emulate dynamic network conditions.  

To mitigate randomness, each result presented in this section is the average over 10 runs of an 

experiment.  

B. Overhead of Join and Failure Recovery  

We first consider the control overhead of TAG, in particular, the overhead for node joining, 

leaving, or failing in a dynamic overlay. We are interested in both local and global overheads and 

thus adopt two measures: the maximum node cost, which represents the maximum possible 

overhead at each node, and the overall cost, which represents the total control overhead of the 

system per operation. The costs are measured in terms of the number of messages exchanged per 

operation, thus reflecting both the bandwidth consumption and the execution time.  

Fig. 8 shows the maximum node cost for a joining operation in the three variations of TAG, 

namely, basic TAG with sequential accesses (TAG-S), basic TAG with non-sequential access 

(TAG-N), and TAG with non-sequential accesses and AVL indexing (TAG-NA). We assume that 

the content server is the only initial node in the system, and other nodes then join the system 

following a Poisson arrival with an inter-arrival time of 2 seconds. In TAG-N, the naive timing list 

searching algorithm is employed.  
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 Figure 8. Maximum node cost for node join.          Figure 9. Overall system cost for node join. 
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Intuitively, the joining node itself incurs the maximum node cost, which is mainly for joining the 

timing list and initiating the search for parent and gossip partners. As shown in Fig. 8, the cost 

monotonically increases with increasing the overlay size in the initial part, and becomes almost a 

constant when the overlay size is greater than 100 nodes. Since TAG-NA incurs extra overhead to 

maintain the AVL index tree, its maximum node cost is higher than that of the other two.  

Nevertheless, as shown in Fig. 9, the overall join cost of TAG-NA can be much lower than that 

of TAG-N. Since the overall cost is calculated across all the affected nodes in a join operation, it is 

related not only to the individual node cost but also the number of affected nodes. For TAG-N, the 

overall join cost is almost a linear function of the system size, for the number of involved nodes is 

proportional to the overlay size in the naive searching algorithm. For TAG-NA, this becomes a 

logarithmic function (note that the y-axis in Fig. 8 is log-scaled), suggesting that the joining 

operation with AVL indexing is scalable, and the cost for maintaining the AVL tree can be ignored 

for large networks. On the other hand, for TAG-S, the overhead is almost a constant, as only a 

limited number of tail nodes in the timing list are affected.  

The maximum node costs and the overall costs for a failure recovery operation are shown in Fig. 

10 and 11, respectively. The general trends are quite similar to that of joining operations, and the 

overall costs for failure recovery are slightly higher in all the three TAG variations. This is because 

more nodes are affected, in particular, all children of the failed the node have to re-locate parents. 
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Figure 10. Maximum node cost for failure recovery     Figure 11. Overall cost for failure recovery 

 

In summary, the joining/failure recovery operations are efficient for both TAG-S and TAG-NA, 

while that for TAG-N might suffer from high cost in large overlay networks. We thus focus only on 

the performance of TAG-S and TAG-NA in our following experiments.  
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C. Streaming Quality 

Given that playback continuity is critical for streaming applications, we adopt the Segment 

Missing Rate (SMR) as the major criterion for evaluating streaming quality. A data segment is 

considered missing if it is not available at a node till the play-out time, and the SMR for the whole 

system is the average ratio of the missed segments at all the participating nodes during the 

simulation time. As such, it reflects two important aspects of the system performance, namely, 

delay and capacity. 

For comparison, we also simulate an existing on-demand overlay streaming system, oStream, 

with the same network and buffer settings. oStream employs a pure tree structure, in which each 

node caches played out data and relays to its children of asynchronous playback times. A 

centralized directory server is used to maintain the global information of the overlay, and facilitates 

node join or failure recovery. Detailed about oStream can found in [20]. 

C.1. Streaming Quality with Bandwidth Fluctuations 

We first investigate the performance of TAG under dynamic network environments with local 

and global bandwidth fluctuations.  

To emulate local bandwidth fluctuations, we randomly inject traffic to the network links such that 

the available bandwidth at each link various over time, yet the total available bandwidth of the 

network remains constant, which is 0.8 of the base setting (with no cross traffic).  
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Figure 12. Quality with local bandwidth fluctuations. Figure 13. Quality with different overall network bandwidths. 

 

Fig. 12 shows the segment loss rates (SMRs) for TAG and oStream over time. It can be seen that 

the loss rate of TAG is not only lower than oStream, but also quite stable, which is generally around 



17 

0.05 to 0.1. From a video decoding point of view, such a loss can be effectively masked by 

interleaving or error-concealment techniques. On the other hand, the loss rate of oStream greatly 

fluctuates over time, and the peak value can be as high as 0.7, resulting in poor video quality. This 

is because oStream relies on a specific tree structure for streaming, and the bandwidth reduction at 

an internal link of the tree, especially those close to the root, could result in the loss multiplicity 

problem. 

It is known that not only the available bandwidth of local links dynamically changes, but also the 

overall available bandwidth of a network changes over time on an hour or daily basis, e.g., working 

and sleeping hours, working days and weekends. Hence, in the second set of experiments, we 

compare the performance of TAG and oStream under different global network bandwidths. Their 

segment loss rates are depicted in Fig. 13, where the overall available bandwidth of the network is 

gradually reduced from 100% to 60% of the base setting. 

Not surprisingly, for both TAG and oStream, SMR increases with decreasing the overall 

bandwidth. However, the increasing rate for TAG is generally lower than that of oStream, 

especially when the reduction is less than 25%. As an example, for a reduction of 25%, the SMR of 

oStream has reached 0.35, or 35% of the segments are lost or missed the playback deadline; yet the 

SMR of TAG is still close to 0.1. This is because oStream explores the available bandwidth at a 

small subset of network links only, i.e., those tree links, while TAG makes more effective use of the 

available bandwidth across much more paths. In addition, as explained before, once a segment is 

lost at a high level node in an oStream tree, it will be lost at all downstream nodes. This is, however, 

not the case in TAG for each segment has multiple potential suppliers. As a matter of fact, we have 

observed that over 90% of the data segments are delivered through the gossip process in our 

experiments, which confirms our intuition that gossip greatly enhances the robustness of the system.  

C.2. Streaming Quality with Node Failures 

In this set of experiments, we consider dynamic node failures. We assume that there is no global 

bandwidth reduction, so as to focus on the impact of node failures. Fig. 14 presents the segment 

missing rates as a function of node failure rate for oStream, TAG-S, and TAG-NA. It can be seen 

that, when there is no failed node, all the systems work well in this stable scenario. For TAG-S, the 

segment missing rates slightly increase with increasing the failure rate, but are generally less than 
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6%. The missing rate of TAG-NA is only a little higher than that of TAG-S. On the other hand, 

when 10% nodes fail, the segment missing rate for oStream can be as high as 25%. 
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Figure 14. Segment missing rate vs. node failure rate. 

 

We next investigate the effect of random seeking, a key operation toward supporting interactive 

streaming. For both oStream and TAG-NA, random seeking can be implemented by letting the node 

leave the system and then re-join with the new playback offset. Fig. 15 compares the streaming 

quality of oStream and TAG-NA in this scenario. Obviously, the tree-assisted gossip enables a quite 

robust delivering structure, making the re-seeking operation in TAG-NA much smoother than that 

in oStream. When 10% nodes perform reseeking, the SMR of TAG-NA is still lower than 10%, 

while that of oStream has reached 35%, which is difficult to mask at the receiver’s end.  
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Figure 15. Streaming quality as a function of position reseeking rate. 

 

D. Sensitivity to Parameter Settings 

In the last set of experiments, we study the sensitivities of the key parameters in the TAG system, 

in particular, the number of gossip partners, the size of candidate set, and the size of buffers.  
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 Fig. 16 depicts the streaming quality as a function of number of gossip partners for TAG-S and 

TAG-NA under different system bandwidths. It can be seen that the segment missing rate reduces 

when increasing the number of gossip partners. This is consistent with our intuition that the system 

is more robust when increasing the number of suppliers. However, the improvement with over 5 

partners is marginal. Since the computation and transmission overhead of maintaining a large 

number of partners can be excessive, we believe that 5 is a reasonable choice, which is used in our 

default setting. Similarly, from Fig. 17, we choose 12 as the default value for K, the size of the 

candidate set in parent or gossip partner searching. As shown in our previous results, these default 

settings lead to reasonably low control overhead and quite good streaming quality under various 

network configurations. 
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Figure 16. Segment loss rate as a function of the     Figure 17. Segment loss rate as a function of   

number of gossip partners.                         the candidate set size. 

 

Regarding buffer size, though it would be desirable if every overlay node caches all the video 

streams, it is often impractical given the large size of video streams. The choice of buffer size is 

also closely related to the number of active nodes in the overlay. As shown in Fig. 18, when there 

are enough active nodes, even a small buffer can enable reasonably good streaming quality with 

node collaborations. Considering these factors, we set the buffer size as 20% of the video stream 

size in our experiments, which is sufficient to achieve low segment loss rates and, with this setting, 

the computation time for the scheduling algorithm is less than 20 ms, which is suitable for real-time 

streaming.  
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Figure 18. Segment loss rate as a function of buffer size under different overlay sizes 

(Normalized buffer size = buffer size / video length). 

6. CONCLUSION AND FUTURE WORK 

In this paper, we have presented TAG, a tree-assisted gossip protocol for on-demand streaming. 

TAG has combined the best features of tree structure and random message dissemination: low delay 

with a regular tree topology, and robust delivery with random switching among multiple paths, 

which make effective use of the available bandwidth in the network. The performance of TAG has 

been extensively evaluated under various network configurations. The results demonstrated that it is 

highly robust in the presence of local and global bandwidth fluctuations. As compared pure 

tree-based overlay VOD system, TAG achieves much lower and stable segment missing rates, even 

under highly dynamic network environments. Possible further research avenues for TAG include 

optimizing the scheduling algorithm and overlay organization, dealing effectively with failure of 

multiple related nodes, and incorporating advanced coding techniques, such as layered or 

multiple-description coding.  

APPENDIX  

In the failure recovery algorithm for AVL index tree, assume that the predecessor and successor 

in the timing list for the failed node F are P and S, respectively, and WP is the last node traversed by 

P’s probe and WS is that by S’s probe. We have the following observations: 

 Case 1: Both probe stop after encountering a broken links. In the AVL index tree, WP and WS 

must be the avlLeftChild and the avlRightChild of F, respectively. Furthermore, S must be a leaf 

node or a node with only the right child in the AVL tree.  
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Case2: Only one probe stops after encountering a broken link; the other stops after reaching the 

root, or there is no probe message sent in that branch at all. In this case, F must have either 

avlLeftChild or avlRightChild, while not both; 

Case 3: Neither reaches a broken link. The failed node in this case must be a leaf node in the 

AVL tree. 

Proof: 

Case 1: In this case, obviously, both the P and S are non-empty. Moreover, according to the AVL 

tree construction algorithm, the P must be in the left subtree of F, and S in the right subtree. It 

follows that, in the AVL index tree, WP and WS must respectively be the avlLeftChild and the 

avlRightChild of F, the failed node.  

Suppose S has a left child, whose virtual join time should be less than that of S, but greater than 

that of F. That is, in the timing list, this left child should be the successor of F, which contradicts 

the fact that S is the successor. Hence, S must be a leaf node or a node with only the right child; 

Case 2: We first assume that only P’s probe reaches a node with a broken link, which must be 

the avlLeftChild of the failed in the AVL tree, as proved in case 1.  

In this case, if F’s successor S is empty, i.e., there is no probe sent in the right branch at all, F 

cannot have a right child in the AVL tree; otherwise, one of the nodes in F’s right subtree will 

become its successor in the timing list. 

On the other hand, suppose S is non-empty and F has a right child. Since S’s probe does not reach 

the avlRightChild of F, S cannot be in the right subtree of F. Assume R is the root of the minimum 

subtree that covers both F and S. Then, S must be in the left subtree of R, while F must be either R 

itself or a node in the right subtree of R; otherwise, S’s probe will reach a broken link as well. It 

follows that the right child of F has a virtual join time greater than that of F, but less than that of S. 

This contradicts our assumption that S is the successor of F, and hence, the failed node F does not 

have right child.  

Similarly, we can prove that F does not have a left child if only S’s probe reaches a broken link 

(Note that, we can ignore the case that P is empty in the proof given that content server persists). In 

summary, the failed node has a single child in this case; 
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Case 3: Suppose F has a non-empty avlRightChild. Since the virtual join time of this 

avlRightChild is greater than that of F, F must have a non-empty successor according to the AVL 

tree construction algorithm. As proved in Case 2, if S is non-empty and F has a right child, S must 

be in the right subtree of F. Hence, S’s probe will encounter the broken link in the right branch, 

which contracts the fact that no broken link is encountered. Similarly, we can prove that F does not 

have a left child, and it thus must be a leaf node. 
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