
requestStorageAccessFor
Chris Fredrickson 

Aaron Selya

https://pad.w3.org/p/tpac-rsafor



The problemrSAFor is solving

● Similarities to the use case for Storage Access API (SAA)
○ Embedded sites have no ability to control what site they are embedded in
○ To enable user functionality that uses shared cross-site information, the embed must be 

granted access to unpartitioned cookies.

● Problem that rSAFor specifically addresses
○ SAA only works if you have at least one visible iframe that can execute JS

■ Not all subresource and pages that need cookies can execute JS



Current State of the Art

Browser vendors are working on this problem:

● Mozilla proposed Top Level Storage Access API
● Google Chrome proposed requestStorageAccessFor

○ Currently limited to sites in Related Website Sets (RWS)
■ Limited to 5 sites
■ Requires the developer to adopt and maintain a related website set

https://github.com/bvandersloot-mozilla/top-level-storage-access
https://github.com/privacycg/requestStorageAccessFor


Why limit rSAFor to within RWS in Chrome?

● A prompt could be interpreted to mean that the embedder endorses the 
embedded site.

○ => Potential for a reputation attack
● Prompt spam

Open Question: To enable rSAFor w/o RWS, could we show a prompt?

https://github.com/WebKit/standards-positions/issues/125#issuecomment-1422944814


What a solution should address

● Websites should be able to allow showing a prompt on specific other sites
○ Without browser involvement 
○ No reliance on an outside dependency (such as RWS)

● A low barrier for adoption
● Cross-browser compatible



Solution 1: Well-known file

Sites can publish a well-known file that contains a list of the sites that they would 
allow for a prompt to be displayed when requestStorageAccessFor is called on 
them

○ Pros
■ This allows sites to control where prompts are shown
■ Owners of other sites will know ahead of time if their requests will result in prompting or 

be automatically rejected
■ Lack of a file present, will default to no permission ensuring that existing behavior is 

preserved
○ Cons

■ It’s public which might not be ideal for all sites
■ Would require the caller to ingest and process the entire list which could be expensive
■ Static, no capacity for dynamic decisions



Solution 2: API endpoint

Sites can create an endpoint that responds if requestStorageAccessFor should be 
automatically rejected

○ Pros
■ This allows sites to control where prompts are shown
■ Callers won’t have to ingest the whole list
■ Lack of an endpoint will default to no permission ensuring that existing behavior is 

preserved
■ Sites can make dynamic decisions

○ Cons
■ Other sites won’t know ahead of time if their requests might be granted
■ It’s not private
■ Higher adoption cost than a plain text file



Other solutions considered

Lightweight FedCM

● It can provide the same cross-site cookie access as rSAFor
○ It offers a different set of tradeoffs and requirements which may not be preferable for a 

given site

Storage Access Headers

● Still requires at least one iframe w/ JS execution, at some point


