
Fenced frames
Local unpartitioned data access
One year update

TPAC 2024
Shivani Sharma, Andrew Verge (Google Privacy Sandbox)

9/25/2024

Topics and Goals

● Provide a one-year update on the unpartitioned data access functionality in fenced frames
● Goals: Communicate the progress and demo the functionality

Notes will be taken here: https://pad.w3.org/p/FencedFramesBreakoutNotes

Please sign yourself in the notes, add in the queue heading for questions

Github session issue: https://github.com/w3c/tpac2024-breakouts/issues/40

Meeting details: https://www.w3.org/events/meetings/26d68797-a5ab-45f4-b8fa-d0b3fa5a50f5/

https://pad.w3.org/p/FencedFramesBreakoutNotes
https://github.com/w3c/tpac2024-breakouts/issues/40
https://www.w3.org/events/meetings/26d68797-a5ab-45f4-b8fa-d0b3fa5a50f5/

Overview of progress

● Last TPAC’s presentation talked about the goals and high level design

● Followed by publishing the explainer in Q4 2023

● Intent to prototype on blink-dev

● Implementation behind a disabled flag close to completion

● We will be presenting a demo in today’s session

https://docs.google.com/presentation/d/1TqtFtK4x3TMd96JEvkbApUaYVdIaUz9uz3wNGPTuqdU/edit?usp=sharing
https://github.com/WICG/fenced-frame/blob/master/explainer/fenced_frames_with_local_unpartitioned_data_access.md
https://groups.google.com/a/chromium.org/g/blink-dev/c/ofii__csdOY/m/_D6eDRq7AAAJ

Fenced frames: Problem & Vision

▪ Problem:

↳ In a web that has its cookies and storage partitioned by top-frame site, there
are occasions when it would be useful to display content from different
partitions in the same page.

↳ This can only be allowed if the documents that contain data from different
partitions are isolated from each other such that they're visually composed on
the page, but unable to communicate with each other, arbitrarily.

↳ Iframes do not suit this purpose since they have many communication channels
with their embedding frame (e.g., postMessage, programmatic focus etc.).

Fenced frames: Problem & Vision

▪ Vision:

↳ A new HTML element, fenced frames, that allows embedding documents on a page, that
explicitly prevents arbitrary communication between the embedder and the frame.

Fenced frames and privacy information flows

▪ Fenced frames’ privacy information flows are determined by the consumer APIs’/ use cases privacy flows

↳ They provide an isolated context which has limited/controlled ways to communicate with the embedding context,

→ E.g., no postMessage

→ Unique, ephemeral partitioned storage, cookies

→ window.top points to the FF root and not the primary top-level page, etc.

→ Explainer goes into them in detail

↳ Additionally, fenced frames provide the primitives, e.g. to disallow network access, opaque source URL, and the
consumer APIs determine their privacy information flow and which primitives best suit their privacy guarantees.

https://github.com/WICG/fenced-frame/blob/master/explainer/integration_with_web_platform.md

Fenced frames and privacy information flows

▪ FencedFrameConfig provides a way to make certain properties of the document loaded in a FF,
opaque to the embedding context

↳ Notably, the source URL of the document, e.g. return value of runAdAuction or selectURL

▪ FencedFrameConfig could also be created by the embedding context providing the source URL, in
which case the source is not opaque

↳ Example use case: personalized payment button

https://github.com/WICG/turtledove/blob/main/FLEDGE.md#:~:text=const%20result%20%3D%20await-,navigator.runAdAuction,-(myAuctionConfig)%3B%0A%0A//%20If%20%60result
https://github.com/WICG/shared-storage#:~:text=fencedFrameConfig%20%3D%20await%20window.-,sharedStorage.selectURL,-(%0A%20%20%27select%2Durl%2Dfor%2Dexperiment
https://github.com/WICG/fenced-frame/blob/master/explainer/fenced_frames_with_local_unpartitioned_data_access.md#code-example:~:text=new%20FencedFrameConfig(%27https%3A//examplepay.com/button.html%3F%3Carbitrary%20bits%3E%27)

Fenced frames and privacy information flows

▪ Do not allow unrestricted network access if the FF has access to both embedding page’s data as
well as cross-site data,

↳ Such a use case needs to invoke window.fence.disableUntrustedNetwork() primitive
before accessing cross-site data

End-to-end flow for unpartitioned access use case:
personalized payment buttons

▪ Guard: Note that this will be gated behind a UX setting which the user can disable
this functionality with.

▪ Same as today: User visits the payment provider’s site as a first party and enter their
payment details

↳ Unrelated to the personalized button

▪ New: The payment provider decides what all is needed to render in the
personalized button and writes it to unpartitioned storage (Shared Storage)

window.sharedStorage.set(“last-4-digits”, value)

End-to-end flow

▪ Same as today: User visits the merchant’s site and payment provider’s script decides to create
a button

↳ This script runs in the merchant’s page

▪ New: The payment provider script creates a fenced frame instead of an iframe

End-to-end flow

Embedding page

1. fenced_frame = new
FencedFrameConfig(https://pay.ex
ample.com/button.html?<arbitrary
bits>)

2. Retrieve static (non-
personalized) content from
the network

State 1: No unpartitioned data
access and unrestricted
network access

Fenced frame

End-to-end flow

Embedding page Fenced frame

3. window.fence.disableUntrustedNetwork()

State 2: Network access revoked, allow
unpartitioned data access (via Shared
Storage)

4. sharedStorage.get(“last-4-digits”)
Display the data

Example Pay | 1759

End-to-end flow

● Same as today: User clicks on the button

○ New: Click listener on the payment provider’s script listens for the click

○ It opens up a PaymentHandler context or a top-level page and the

transaction proceeds

New API surfaces

▪ Constructor FencedFrameConfig(src url)

▪ This is a scenario where the src url is not opaque to the embedding context

▪ The src url could contain any arbitrary bits

↳ That’s ok for privacy because the FF either does not have cross-site data to join it with (state 1)

↳ It can be joined with cross-site data in state 2, but at that point there is no exfiltration (network is revoked)

window.fence.disableUntrustedNetwork()

▪ Fenced frame can voluntarily give up its network access, which includes revoking

↳ Subresource fetches

↳ Initiating any navigations, including for top-level context or new tabs etc.

↳ Pre*: Prefetch, preload …

↳ Alternate network APIs like WebSockets, Direct Sockets, and WebRTC etc.

↳ Fetches from workers

↳ Others…

window.fence.disableUntrustedNetwork()

▪ Chromium implementation makes use of the Network Isolation Key’s nonce

↳ Already uniquely identifies all network requests from a given fenced frame tree

↳ The original purpose of the nonce was to create a ephemeral and unique network partition

↳ Being reused now for network revocation as well

▪ Requests that don’t carry that nonce e.g. top-level navigations are blocked separately

https://source.chromium.org/chromium/chromium/src/+/main:net/base/isolation_info.h;l=214?q=network_isolation&ss=chromium

window.fence.disableUntrustedNetwork()

▪ Nested iframes

↳ Any network is also revoked in all the nested iframes

▪ Nested fenced frames

↳ The call will not resolve until all nested fenced frames have also revoked their network by
invoking window.fence.disableUntrustedNetwork()

▪ In progress requests

↳ All in-progress network requests would be cancelled (except the top-level navigation
that have already been initiated)

window.fence.disableUntrustedNetwork()

▪ Why “untrusted”

↳ Some forms of network that cannot exfiltrate cross-site data can be allowed, e.g.

↳ Private Aggregation API which allows aggregated data to be sent out on the
network as that inherently disallows any arbitrary data exfiltration.

https://developers.google.com/privacy-sandbox/private-advertising/private-aggregation#what-is-the-private-aggregation-api

window.sharedStorage.get()

▪ Why Shared Storage

↳ API simplicity: no new API, existing get() will need to be exposed in a new context

↳ Shared Storage is, by definition, unpartitioned data, vs cookies/local storage

↳ Javascript only, vs. cookies which also go with network requests

↳ Defined in terms of output gates in addition to origin vs. cookies/local storage that
are defined in terms of only hostname/origin

window.sharedStorage.get()

▪ Guards:

↳ disableUntrustedNetwork() successfully resolved

↳ Permissions Policy

↳ User has not disabled the feature via UX

↳ Privacy Sandbox’s attestation

https://github.com/privacysandbox/attestation

window.fence.notifyEvent(Event e)

● Called by JS running in the fenced frame, ideally within an event listener for e.
● The argument e must:

● Be a DOM Event object
● have isTrusted = true
● have eventPhase != NONE (currently dispatching)
● Currently, have type = “click”

● When called with a valid event object, a corresponding event w/ type fencedtreeclick fires in the embedding document.
● fencedtreeclick event objects contain no contextual info like mouse coordinates or timestamps

● The fenced frame must have transient activation, which will be consumed and applied to the embedder instead.
● Allows embedder to open new windows, use the Payment Request API, etc.

Sample code
● Consider ecommerce site fancystore.com, and payments provider examplepay.com
● First, the user visits examplepay.com in a first-party context to register their card info:

Sample code cont.

● Then, the user visits fancystore.com to buy something.
○ At checkout, the examplepay.com API loads the payment button in a fenced frame.

● In examplePayAPI.createButton():

Sample code cont.

● Finally, inside the examplepay.com/make_button fenced frame:

Demo

● Payments provider: https://demo-payments-provider.glitch.me

● Merchant: https://demo-merchant.glitch.me

● To try for yourself, run Chromium/Chrome with the following flags:
○ --enable-features=FencedFramesDefaultMode,FencedFramesLocalUnpartitionedDataAc

cess
○ --disable-features=EnforcePrivacySandboxAttestations

● Works on Chrome Canary and Beta

https://demo-payments-provider.glitch.me
https://demo-merchant.glitch.me

Privacy Considerations

● Clicks as a communication vector from fenced frame -> embedder.

● Scenarios

● A single click on one frame: 1 bit

● Multiple clicks on one frame: >1 bit

● Loading n coordinating fenced frames, but only clicking on one: Log2(n) bits

● Clicks across different browsing contexts over time

● Mitigation: Rate Limiting

● Only allow n related (same-origin/same-site/?) frames per page load

● Discussion ongoing as to specific details

Thank you!

Questions?

