
Resource Management in Aurora Serverless
Bradley Barnhart
Amazon Web Services
brabarnh@amazon.com

Marc Brooker
Amazon Web Services
mbrooker@amazon.com

Daniil Chinenkov
Amazon Web Services
daniichi@amazon.com

Tony Hooper
Amazon Web Services
thoop@amazon.com

Jihoun Im
Amazon Web Services
ijihoun@amazon.com

Prakash Chandra Jha
Amazon Web Services
jhapraks@amazon.com

Tim Kraska
Amazon Web Services and

MIT
timkrask@amazon.com

Ashok Kurakula
Amazon Web Services
ashkur@amazon.com

Alexey Kuznetsov
Amazon Web Services
alexey@amazon.com

Grant McAlister
Amazon Web Services
grant@amazon.com

Arjun Muthukrishnan
Amazon Web Services
mutarjun@amazon.com

Aravinthan Narayanan
Amazon Web Services
aravnar@amazon.com

Douglas Terry
Amazon Web Services
terdoug@amazon.com

Bhuvan Urgaonkar
Amazon Web Services and

Penn State
urgaonkb@amazon.com

Jiaming Yan
Amazon Web Services
jiamingy@amazon.com

ABSTRACT
Amazon Aurora Serverless is an on-demand, autoscaling configura-
tion for Amazon Aurora with full MySQL and PostgreSQL compati-
bility. It automatically offers capacity scale-up/down (i.e., vertical
scaling) based on a customer database application’s needs. For
customers with time-varying workloads, it offers cost savings com-
pared to provisioned Aurora or other alternatives due to its agile and
granular scaling and its usage-based charging model. This paper de-
scribes the key ideas underlying Aurora Serverless’s resource man-
agement. To help meet its goals, Aurora Serverless adapts and fine
tunes well-established ideas related to resource over-subscription;
reactive control informed by recent measurements; distributed & hi-
erarchical decision-making; and innovations in the DB engine, OS,
and hypervisor for efficiency. Perhaps the most challenging goal is
to offer a consistent resource elasticity experience while operating
hosts at high degrees of utilization. Aurora Serverless implements
several novel ideas for striking a balance between these opposing
needs. Its technique for mapping workloads to hosts ensures that,
in the common case, there is adequate spare capacity within a host
to support fast scale-up for a workload. In the rare event this is
not so, it live migrates workloads to ensure seamless scale-up. Its
load distribution strategy is characterized by "unbalancing" of load
across hosts to enable agile live migrations. Finally, it employs a to-
ken bucket-based rate regulation mechanism to prevent a growing
workload from saturating its host faster than live migration-based
remedial actions.

PVLDB Reference Format:
Bradley Barnhart, Marc Brooker, Daniil Chinenkov, Tony Hooper, Jihoun
Im, Prakash Chandra Jha, Tim Kraska, Ashok Kurakula, Alexey Kuznetsov,
Grant McAlister, Arjun Muthukrishnan, Aravinthan Narayanan, Douglas
Terry, Bhuvan Urgaonkar, and Jiaming Yan. Resource Management in
Aurora Serverless. PVLDB, 17(12): 4038 - 4050, 2024.
doi:10.14778/3685800.3685825

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

1 INTRODUCTION AND MOTIVATION
Amazon Aurora [2] is a modern relational database service that
offers performance and high availability guarantees at scale for fully
open-sourceMySQL- and PostgreSQL-compatible editions [37]. The
original provisionedAurora offering, which came out in 2014, allows
the customers to choose on-demand instances (virtual machines)
and pay for their database (DB) by the hour with no long-term
commitments or upfront fees, or choose reserved instances for
additional savings [3]. More recently, Amazon has started offering
Aurora Serverless [4], an on-demand, autoscaling configuration for
Amazon Aurora. The autoscaling capability offered by Aurora is
scale-up/down (i.e., "vertical" scaling of the resources allocated to a
single DB instance) as opposed to scale-out ("horizontal" scaling)
offered by some other systems. Aurora Serverless aims to to scale
DB workloads fast, from hundreds to hundreds-of-thousands of
transactions per second. The first Aurora Serverless offering (ASv1)
came out in Aug. 2018 while the latest offering (ASv2) was released
in Apr. 2022.
Why Aurora Serverless? The key selling point of Aurora Server-
less is that it largely relieves the customers of having tomanage how
the resource capacity of their DBs varies in response to dynamic
workloads. Instead of choosing a particular instance size or config-
uration up front, customers only specify DB capacity in units called
Aurora Capacity Units (ACUs) [5]. Each ACU is a combination of 2
GB of memory, corresponding CPU, networking, and block device
I/O throughput. Aurora Serverless scales each writer or reader in
the customer’s DB cluster within the customer-specified (minimum,

this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685825

4038

https://doi.org/10.14778/3685800.3685825
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685825


(a) Throughput (QPS) (b) ACU allocation (c) P95 query latency

Figure 1: A comparison of Aurora provisioned and ASv2 for a dynamic workload.

maximum) ACU range continually and automatically based on ap-
plication demand.1 Aurora Serverless is appealing to a diversity of
customers vs. provisioned Aurora or other alternatives due to the
cost savings and convenience resulting from the following reasons:

(1) It reduces the effort for planning DB instance sizes and
resizing DB instances as the workload changes.

(2) It helps customers avoid over-provisioning DB instances. It
adds resources in granular increments when DB instances
scale up. The customer pays only for used DB resources.

(3) It scales compute and memory capacity as needed, with no
disruption to client transactions or overall workload.

(4) It relieves the customers from having to manage virtual
machine types, which is necessary due to deprecations, ca-
pacity constraints, lack of support for older types in new
AWS regions, etc. It also removes the need to commit to
a certain instance type, which is often necessary for dis-
counted pricing.

Generally speaking, customers that find Aurora Serverless appeal-
ing include: (i) workloads with high temporal variability (either
predictable with patterns like time-of-day effects [11, 12] or unpre-
dictable); and (ii) new applications with as-yet-unknown needs.

To illustrate the capabilities of Aurora Serverless, in Figure 1, we
compare a dynamic workload using provisioned vs. Aurora Server-
less v2 (ASv2). Our workload is based on a read-only configuration
of the sysbench benchmark [9] with maximum and minimum ca-
pacities of 128 and 0.5 ACUs for the serverless scenarios and 128
ACU for provisioned. Figure 1(a) shows the highly dynamic nature
of our workload with the throughput in queries per sec (QPS) vary-
ing in the range of close to 0 to more than 200,000 with multiple
scale-ups and downs. In Figure 1(b), we show how ASv2 varies its
ACU allocations (strictly speaking a quantity called the "reserved
ACU" which we will describe later in the paper) in response to
workload dynamism. Finally, in Figure 1(c), we compare the query
latency (specifically P95 of latency measured over 10 sec windows)
across the 2 configurations.

We find the following observations noteworthy. With provi-
sioned our workload incurs the cost of 128 ACUs throughout - even
outside of peak times. ASv2 tracks the workload closely and is able
to allocate enough to handle spikes, gradually grow in lockstep with
the workload and then similarly track workload on its way down.

1With Aurora Serverless, as with provisioned clusters, storage capacity and compute
capacity are separate. When we refer to Aurora Serverless capacity and scaling, it’s
always compute capacity that’s increasing or decreasing.

Finally, ASv2 is able to match the latency offered by provisioned to
a large extent (the biggest deviations are during periods when the
ACU allocations drop to their smallest values) while only needing
54.9% of the total ACU-hours allocated in the provisioned scenario.
Generally, ASv2’s latency gap vs. provisioned is the highest when
our instance’s ACU allocation has been scaled down to less than
about 50% of its maximum - these are operating regimes where
resource contention with other co-located instances has a relatively
larger effect on the performance of our instance.
Contributions: Our goal in this paper is to describe the current
state of Aurora Serverless’s resource management strategies that
allow it to offer its customers the resource elasticity illustrated
above. We also wish to highlight salient lessons learnt during our
progress from ASv1 to ASv2. This journey has involved carefully
combining existing best practices with new ideas. We describe how
our strategies were informed by our evolving understanding of
the needs and behavior of our customers. Finally, our experience
so far suggests some promising future directions which the paper
also discusses. Our paper touches upon the following aspects of
resource management in Aurora Serverless:

• Capacity Bounds: Aurora Serverless allows its customers to
specify minimum and maximum bounds on their needs in
terms of ACUs. Aurora Serverless guarantees that the re-
source allocation for a customer varies within these bounds
in response to its dynamically evolving needs and that the
customer experiences a predictable scale-up experience and
usage-based pricing within these bounds.

• Resource Over-subscription and Over-provisioning: Aurora
Serverless employs both over subscription and over provi-
sioning of the resources on its hosts for different reasons.
The number of vCPUs on a host may exceed the capac-
ity of the physical CPUs they are mapped to for statistical
multiplexing benefits. Similarly, memory capacity is over-
subscribed in terms of the customer-specified max ACUs
of the instances on a host. Doing so involves a complex
trade-off between its own cost/utilization, on the one hand,
and customer experience (resource contention among co-
located instances and limits on scaling up), on the other
hand. At the same time, the ACU allocations for instances
are typically kept slightly higher than their current usage -
this "scaling band" enables quick detection and meeting of
scaling up needs while the allocations are being adjusted.

4039



• Dynamic instance packing via live migration: Aurora Server-
less uses live migration of instances to ensure that hosts
have enough spare capacity to accommodate the scale up
events of their instances - if a host starts to become highly
utilized ("hot"), instance(s) are moved away from it to cre-
ate more room. Determining the criteria for initiating such
migrations, which instance to migrate and where are highly
complex decisions and Aurora Serverless makes novel con-
tributions in this area. Notably, its load distribution strat-
egy is characterized by a limited form of "unbalancing"
of load across hosts - a departure from conventional load
balancing-oriented techniques - to leave enough lightly
loaded hosts that can accommodate migrations. Its instance
packing strategy ensures that, in the common case, instance
scale up can be realized completely locally within a host
("in-place scaling") without resorting to live migrations.

• Scale up rate regulation: There is a fundamental tension
between allowing fast scale-up and operating hosts at high
utilization levels. Aurora Serverless employs token bucket
based regulation of instance growth to complement its pack-
ing and migration strategies. Such regulation helps prevent
situations wherein a fast-growing instance causes its host’s
utilization to saturate leading to poor performance for itself
and other co-located instances; the bounded growth rate (it-
self carefully tuned along with other system characteristics
such as live migration times) allows Aurora Serverless to
live migrate suitable instance(s) out of the affected host in
time to avoid undesirably high utilization levels with high
probability.2 An important novel contribution is configur-
ing target host utilization levels jointly with token bucket
parameters based on extensive characterization of instance
growth scenarios and migration times.

• Distributed reactive control:Aurora Serverless resource man-
agement spans two spatio-temporal scales: across a clus-
ter ("fleet") and within a host. The fleet-wide control pro-
cures/releases hosts and determines instance-to-host map-
pings (including viamigrations) while the intra-host control
uses OS mechanisms for ensuring instances resource needs
are adequately met. It uses a reactive style of control for
its simplicity and ease of implementation. It also keeps the
two control levels largely independent (i.e., loosely coupled).
These choices allow its control to be scalable. Even though
its intra-host scaling is reactive, the reaction starts well
before the last bit of RAM is used up - this is achieved by
maintaining a small band of capacity beyond the immediate
needs to detect and accommodate short-term growth.

• Systems mechanisms for efficiency: Aurora Serverless imple-
ments a number of innovative systems mechanisms across
the software stack in support of its operational goals: the
Nitro hypervisor (security and isolation comparable to pro-
visioned Aurora); an enhanced Linux kernel (frugality in
instances’ use of memory); and Aurora DB engines (rele-
vant metrics that help Aurora Serverless with its host-level

2Despite careful tuning, occasionally live migration based remediation is outpaced by
the growth in instance needs on a hot host. On such occasions, instances are prevented
from scaling up for a duration of time required to created adequate spare capacity on
the host.

resource allocation and fleet-wide packing decisions.) In
particular, it introduces a metric in the engine to estimate
the size of the working set in the buffer cache. This metric
allows an estimation of how much memory can be released
back to the service without impacting customer experience.

Outline: The rest of this paper is organized as follows. In Section 2,
we provide a background including the journey from ASv1 to ASv2.
In Section 3, we provide an overview of ASv2 resource management
with details of its inter- and intra-host levels in Sections 4 and 5,
respectively. We present some empirical observations in Section 6.
Finally, we discuss related work in Section 7, describe key lessons
learnt in Section 8, and conclude in Section 9.

2 BACKGROUND
2.1 Challenges and a Key Design Principle
To offer customers the resource elasticity described above at high
levels of efficiency, Aurora Serverless needed to address a number
of challenges. These included policy issues such as: (i) how to
define "heat" (i.e., resource usage features on which to base decision-
making)? when to deem an instance "hot" (i.e., needing remedial
actions)? when to deem a host hot? when to deem heat as having
been remediated? (ii) on which host to place a new instance? how
to carry out dynamic mapping of existing instances to hosts using
live migration? and (iii) how to strike the right trade-off between
utilization and scaling up rates? Questions of mechanism included:
(i) what is the right virtualization solution? and (ii) what is needed
within and outside the VM to seamlessly scale the DB engine?

Given the pioneering nature of Aurora Serverless, at the outset
we had to make these choices without the benefit of large-scale
field data. We wanted to avoid the risk of optimizing for a small
exotic user-base which may have precluded other types of users
from adopting the product. Therefore, a general design principle
throughout Aurora Serverless’s evolution has been to start off with
minimal assumptions about our workloads and incorporate speci-
ficity only once we have seen enough evidence for it in our datasets.
Some examples of this approach may be seen in the capacity bounds
we allow customers to specify; the transition from ASv1 to ASv2;
our initial choice of conservative utilization targets and scale-up
rates; and our choice of reactive as opposed to predictive mecha-
nisms. In some cases (e.g., capacity bounds), the initial choice has
stood the test of time; in some others (e.g., ASv1 to ASv2, increase
in our utilization levels) we have been able to incorporate lessons
from our operation to refine our solution; and in yet others (e.g.,
exploiting predictability in workloads), we have ongoing work on
incorporating such lessons into our approach.

2.2 The Aurora Serverless Capacity Bounds
Aurora Serverless offers its customers feature paritywith theAurora
provisioned product while ensuring resource elasticity. The unit
of resource capacity/ measure for Aurora Serverless is the Aurora
Capacity Unit (ACU). Each ACU is a combination of 2 GB of memory,
corresponding CPU (currently 0.25 vCPU3), networking, and block
device IO throughput. For a cluster using single-master replication,

3Subject to change based on new generation of hardware offering CPUs with improved
characteristics.

4040



the customer can create up to 15 read-only Aurora Replicas ("reader
instances"). The customer defines a capacity range: the minimum
and maximum capacity values (𝑐𝑚𝑎𝑥

𝑖
and 𝑐𝑚𝑎𝑥

𝑖
, resp., for instance

𝑖) that each writer or reader can scale between. The capacity range
is the same for each writer or reader in a DB cluster. The largest
allowed value for 𝑐𝑖𝑚𝑎𝑥 is 128 while the smallest allowed value for
𝑐𝑚𝑖𝑛
𝑖

is 0.5. The charges for Aurora Serverless capacity are measured
in terms of ACU-hours accounted at 1-second granularity [3].

While crafting our capacity bounds, besides ease-of-use, we had
to consider the following factors: (i) how close to a fully pay-as-
you-go experience can we offer the customer? (ii) how efficiently
and quickly can we resume a customer that returns after a period
of inactivity? and (iii) at how high a utilization level can we operate
our infrastructure? There is an inherent tension between these
concerns. For example, if we let min ACU be 0 and actually remove
a customer’s resources after some idleness, we risk doing poorly
on (ii). To do well on (ii), we would need to be able to predict well
periods of idless so that paused DBs can be restored ahead of their
next periods of activity. Setting the minimum capacity to a small
number (as low as 0.5 ACU) lets lightly loaded DB clusters consume
minimal compute resources. At the same time, they stay ready to
accept connections immediately and scale up when they become
busy. Aurora Serverless recommends setting the minimum to a
value that allows each DB writer or reader to hold the working set
of the application in the buffer pool. That way, the contents of the
buffer pool aren’t discarded during idle periods.

2.3 From ASv1 to ASv2
The journey from Aurora Serverless v1 to v2 exemplifies our ap-
proach of starting simpler and then adding more specificity based
on operational experience. ASv1 was launched in August 2018. The
most important difference was that, unlike using live migration as
its resource management building block, it used a much simpler
session transfer functionality. To scale up a database, the database
would be relaunched. For this, ASv1 implemented support within
database engines to allow interruption of service and session trans-
fer from one backend to the other. ASv1 implemented amulti-tenant
proxy frontend securely accessible from customers’ VPCs via VPC
Endpoints, which allowed the service to identify target database
destination without relying on unique naming of the databases,
user names or credentials.

Our team thought that a combination of these capabilities would
allow database backends to scale in accordance with the work-
load and be completely released when idle. However, a number of
limitations of ASv1’s design soon became apparent. The scale-up ap-
proach required finding quiet points when session transfers would
not disrupt customer performance; however, we found that this was
not always possible for many of our customer workloads. Not all
types of session state (e.g., temporary tables) were transferrable to
a different backend. It became apparent that the burden of porting
session transfer code into new versions of database engines was
high since the service did not have full control of features added
to both database products. ASv1’s reliance on its session trans-
fer protocol dictated other architectural decisions of ASv1 which
would only be justifiable in a context of database instances rapidly
swapped for instances of another capacity. However, having to

swap instances of different sizes led to other customer experience
issues: scaling was only possible in large increments (up or down
by factor of 2). This also led to our scaling policy triggering scaling
up or scaling down too late to be a cost-efficient solution. Recall
these limitations of ASv1 that were illustrated in Figure 1(b). It was
not possible to offer more precise workload tracking due to this
scaling "see-saw problem" stemming from coarse-grained capacity
increments. Despite these shortcomings, the popular adoption of
ASv1 offered our team a number of useful operational and busi-
ness insights. These allowed the service to reconsider the approach
given a lot of customer traction and demand for a cost-effective
and scalable serverless DB solution.

Based on our experience with ASv1, Aurora Serverless V2 was
defined from the outset as a DB product which could scale in-place.
This in itself would solve the problems created by coarse-grained
scaling by factor of 2, making ASv2 more cost-effective than ASv1.
Additionally, in-place scaling is faster in most cases than scaling
across instances, which allowed for quicker response to increasing
workloads. Such scaling can happen while SQL statements are
running and transactions are open, without the need to wait for a
quiet point. ASv2 can scale up and down faster. Scaling can change
capacity by as little as 0.5 ACUs, instead of doubling or halving
the number of ACUs. Scaling typically happens with no pause in
processing at all. Scaling does not involve an event that the customer
has to be aware of, as with ASv1. Scaling can happen while SQL
statements are running and transactions are open, without the need
to wait for a quiet point.

The ASv2 scaling would use two mechanisms: memory and
CPU hot (un)plug and live migration of instances across hosts.
Additionally, ASv2 would remove the need for a frontend proxy
layer which compounded latency and noisy neighbor problems in
ASv1. Finally, ASv2 would offer close to 100% feature parity with
Aurora Provisioned andwill bemanaged by the same systemswhich
would simplify maintaining feature parity in future and prevent
fracturing of the customer experience. This was made possible
by introduction of a new VM type which offered a memory size
scalability, an abstraction which our service has learned to deal with
in years of production experience. The approach outlined above
was made practical once operational, market and customer insights
were accumulated. In the absence of data and customer traction
with ASv1, justifying creating new building blocks necessary for
ASv2 was believed to be impossible.

In the rest of the paper, we will focus on v2 and refer to it simply
as Aurora Serverless without making the v2 explicit.

3 OVERVIEW
We will focus on resource management within a "fleet," a pool of
hosts (with accompanying storage fromAurora storage service) that
Aurora Serverless manages within an availability zone (AZ) [6].

3.1 Policies
Aurora Serverless resource management’s overall decision-making
is divided into two types of temporal/spatial granularity: (i) fleet-
wide (details in Section 4) and (ii) within a host (details in Section 5).
Figure 2 provides a high-level overview of this decision-making.

4041



Figure 2: An overview of the Aurora Serverless data plane
and control plane (including the resource management span-
ning fleet-wide and within-host decision-making). The con-
trol plane comprises a fleet manager and instance managers
(IMs), one per instance. The fleetmanager dynamically provi-
sions adequate hosts for the fleet’s needs. It obtains resource
usage statistics obtained from the IMs and stores these along
with other relevant state. It uses this information for its
decision-making which comprises recommendations about
live migrations and ACU limits (denoted ℎ𝑖,𝑡 for instance 𝑖 at
time 𝑡 ) that help alleviate heat from hosts that are found to
be experiencing (or trending towards) saturation. The figure
shows a live migration currently underway from one host to
another. The IMs collaborate with the local DB processes and
the operating systems to realize in-place scaling and bound-
ary management.

3.1.1 Within a host. The resources within a host are managed col-
lectively by the "instance managers," one per instance. The instance
manager is responsible for resource usage gathering/inference, "in-
place scaling" and "boundary management" for the instance. In-
place scaling dynamically reckons the resource needs of the in-
stance in the form of the instance’s "reserved ACU"; let us denote
this as 𝑟𝑖,𝑡 for instance 𝑖 at time 𝑡 . An instance 𝑖 is able to scale up
instantaneously in the small band (if any) between its current usage
𝑢𝑖,𝑡 and its reserved ACU 𝑟𝑖,𝑡 . See illustrations of such instantaneous
scaling bands for instance 𝑖 in Figure 3. Further scale up beyond the
reserved ACU requires "boundary adjustment," i.e., increasing the
instance’s reserved ACU. Boundary management ensures that the
instance’s reserved ACU is not wastefully overprovisioned relative
to its needs and that it does not grow at a pace that may lead to
undesirable resource contention with its co-located instances. The
instance manager polls an engine-specific agent for resource usage
information and uses this to determine how to scale the DB. It also
interacts with the guest OS to enforce resource limits based on
its observations of recent usage. In Figure 3, the instance’s usage
is 𝑢𝑖,𝑡1 and will be allowed to grow up to 𝑟𝑖,𝑡1 instantly (in-place
scaling). If the instance’s needs grow further, its reserved ACU will
also be increased but in a rate regulated manner. Keeping reserved
ACU slightly above the usage allows us to quickly detect a growing
trend in the instance’s usage.

Figure 3: An illustration of various instance-specific ACU
limits relevant to resource management. On the left, at time
𝑡1, we depict an instance on a host that is not in danger of be-
coming hot. The fleet manager sets ℎ𝑖,𝑡1 = 𝑐𝑖𝑚𝑎𝑥 . The scaling
band between 𝑟𝑖,𝑡1 and𝑢𝑖,𝑡1 allows quick detection of and reac-
tion to short-term growth in resource needs. On the right, at
time 𝑡2, the host has been deemed hot, and the fleet manager
temporarily limits the maximum capacity the instance may
grow to ℎ𝑖,𝑡2 = 𝑟𝑖,𝑡2 < 𝑐𝑚𝑎𝑥

𝑖
.

3.1.2 Fleet-wide. A service called the fleet manager modulates the
fleet size at a coarse timescale (currently weeks/months) based on
desired utilization levels and predicted demand. The fleet manager
employs live migration of instances to ensure that a host doesn’t
operate in a regime where its capacity cannot accommodate the
needs of the instances placed on it: if a subset of instances 𝐴 on
a host starts exhibiting a growing trend in its collective resource
usage that may lead to undesirable levels of resource contention
on that host, the fleet manager must be able to migrate a suitable
subset of instances 𝐵 (not necessarily same as or even intersecting
with 𝐴) away from the host in a timely manner. There are two
aspects of this problem:

(1) How to ensure that there is enough spare capacity on the
host to continue to serve any growing instance needs while
the live migration based remedial actions are being carried
out? Similarly, the host an instance is migrated to must be
able to accommodate its needs in addition to the instances
it already houses.

(2) How to ensure that growth in resource needs of instances
does not outpace live migration based remedial actions?

Aurora Serverless’s fleet manager addresses (1) by controlling
the mapping of instances to hosts which in turn determines the
distribution of spare capacity on the hosts. (2) is addressed by a
combination of fleet-wide heat management and host-level mecha-
nisms. For hosts undergoing live migrations to remediate resource
pressure ("heat"), the fleet manager may impose short-term limits
on the maximum ACUs for its instances. Denoting this fleet man-
ager prescribed max ACU limit for instance 𝑖 at time 𝑡 as ℎ𝑖,𝑡 during
a period of heat remediation, we may have ℎ𝑖,𝑡 < 𝑐𝑚𝑎𝑥

𝑖
. These

limits are lifted as soon as heat has been remediated, so in the
common case we have ℎ𝑖,𝑡 = 𝑐𝑚𝑎𝑥

𝑖
. In Figure 3, we illustrate these

scenarios for instance 𝑖 . At time 𝑡1 when the host is not deemed
hot, ℎ𝑖,𝑡1 = 𝑐𝑚𝑎𝑥

𝑖
. At time 𝑡2 the fleet manager has deemed the host

hot causing it to temporarily freeze ℎ𝑖,𝑡2 at 𝑟𝑖,𝑡2.

4042



3.2 Mechanisms
Aurora Serverless continues to use Aurora’s disaggregated storage
architecture [37] and, therefore, inherits the latter’s reliability and
durability characteristics. Aurora data is stored in the cluster vol-
ume, which is a single, virtual volume that uses solid state drives
(SSDs). The storage for each Aurora DB cluster consists of six copies
of all customer data, spread across three AZs. This built-in data
replication applies regardless of whether the DB cluster includes
any readers in addition to the writer. When data is written to the
primary DB instance, Aurora synchronously replicates the data
across AZes to the six storage nodes associated with the cluster vol-
ume. Aurora cluster volumes automatically grow as the amount of
data increases. The maximum size for an Aurora cluster volume is
128 or 64 TB, depending on the DB engine version. For its compute
layer, Aurora Serverless procures hosts comprising 256 ACUs.

Aurora Serverless leverages innovations in systems software that
we describe in Section 5.1. Briefly, it uses a new instance type based
on the Nitro system [7] that provides Nitro’s low IO latency (based
on hardware IO virtualization, exposed to the instance through
SRIOV), along with flexible CPU and memory provisioning. It relies
upon enhancements to the Linux operating system to allow the
RAM capacity of an instance to be adjusted dynamically. Aurora
Serverless relies upon mechanisms within our DB engines to pro-
vide estimates of working sets and take measures such as trading
memory from buffer cache for user-queries or selectively shed load
during transient high resource pressure scenarios. Finally, Aurora
Serverless leverages a live migration facility that allows a running
instance to be transparently moved from one host to another with
minimal disruption.

4 FLEET-WIDE RESOURCE MANAGEMENT
The fleet-wide resource management is responsible for decision-
making over the timescale of minutes to hours and larger. It relies
upon three key control knobs: (i) live migration; (ii) modulation of
a per-instance fleet manager prescribed ACU limit (ℎ𝑖,𝑡 ) that has
an impact on the boundary management within an instance; and
(iii) fleet size adjustment. A key concern is how/when we deem a
host as requiring remedial actions to relieve resource pressure on
it; we refer to such a host as having become "hot." The approach we
settled on is based on defining critical levels of utilization along one
or more of the following capacity dimensions: (i) CPU bandwidth;
(ii) allocated RAM; (iii) total network throughput; or (iv) local block
device I/O throughput (used by indexing process, sorting results,
etc.) Besides being simple, this approach also has had the advantage
that, as our mechanisms improve in their efficiency, we have been
able to raise these critical utilization thresholds.

4.1 Live Migration-Based Dynamic Instance
Re-Packing

The fleet manager periodically polls individual instance managers
to retrieve (highly granular, second-level) resource usage metrics
that it uses for its decision-making. Once every second, it carries
out the following three-step procedure to determine if any live
migrations are needed for re-packing instances.
Step 1: Which hosts need out-migrations? For every host, the
fleet manager runs a host heat aggregation task to assess if this host

needs some of its instances moved elsewhere. This assessment is
based on observing if the summation of the reserved ACUs for the
host’s instances over the last fewminutes exceeds a threshold𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 .4
Hosts where this threshold has been breached are considered as
having become hot. The fleet manager then checks if a hot host has
enough network bandwidth to sustain an out-migration. For hot
hosts that can sustain out-migrations, the fleet manager proceeds to
determining which instances to out-migrate in Step 2 below. Also,
for all hot hosts, if their usage crosses a threshold 𝜃ℎ𝑖𝑎𝑐𝑢 > 𝜃

𝑚𝑖𝑔
𝑎𝑐𝑢 , the

fleet manager prescribed max ACUs of all their instances (recall
ℎ𝑖,𝑡 for instance 𝑖 at time 𝑡 from Figure 3, Section 3) are held at
their current reserved ACU values; this has the effect of freezing
the resource allocations of the instances to their current values,
i.e., disabling further growth beyond their current allocations. The
fleet manager prescribed max ACUs for instances on these hosts
are reset to their respective customer max ACUs once their heat
has been dissipated via migrations and/or a drop in the workload
intensity of some instances.
Step 2: Which instance to migrate out of a hot host? Identify-
ing the right instance to migrate is a non-trivial decision because
there are multiple criteria that have a bearing on the quality of
the decision. E.g., consider that: (i) for the same memory size, an
instance with higher CPU or network usage may be a better candi-
date to be out-migrated; (ii) migration times are affected both by
the current memory image size and the dirtying rate during the
migration making certain instances faster to migrate than others;
and (iii) it may be desirable to have a notion of "fairness" in how
many times an instance gets migrated over a period of time. The-
oretically, this problem is a form of online bin-packing with the
added complexity of migrations and is, therefore, NP-hard [17]. The
key design challenge for Aurora Serverless was to come up with
a heuristic that was effective yet extremely fast and scalable (this
decision-making needs to occur within a few hundreds of millisec-
onds for pools of hundreds of hosts each potentially containing
tens-hundreds of instances) and could keep DB performance stable
despite migrations. The fleet manager employs a 3-stage heuristic
that we have empirically found to offer a good trade-off between
these requirements.
− Stage 2a: Certain filters for migration eligibility are applied to
reduce the number of instances to consider for out-migration (e.g.,
an instance that was recently migrated is dropped).
− Stage 2b: A preference ranking of the filtered instances is cre-
ated. Each preference score is binary and these are combined via a
weighted sum. As one example, one such score captures if an in-
stance was migrated recently. Another prefers instances that have
been heard from recently (and, so, are less likely to be unavailable).
− Stage 2c: Two rankers are used to create numeric scores, one
per instance: (i) the first ranker returns a score proportional to
the reserved ACU for the instance with the idea being to choose
an instance whose migration will relieve a larger amount of heat
(and in turn help keep the number of migrations low); and (ii)
the second ranker returns a linear combination of (roughly) the
unused fractions of the network Rx/Tx throughput, EBS throughout,
and EBS IOPS capacities available to the instance. For both these

4Specifically, high percentiles of the aggregate reserved ACU empirical distribution
are compared against the thresholds.

4043



rankers, an instance that is more desirable gets assigned a higher
score. These two scores are combined as a weighted-sum into a
single score.

The instance with the highest preference score is selected with
ties broken using the numeric score.
Step 3: Where to migrate? The fleet manager follows a 3-stage
process similar to that in Step 2.
− Stage 3a: Apply filters to ensure that the host is active, would not
exceed the heat threshold with the new instance, has bandwidth to
support the migration, and the number of instances on the host is
less than a threshold.
− Stage 3b: Create a preference ranking of hosts based on: prefer
to place instances of the same cluster on separate hosts for fault
tolerance reasons; prefer hosts that don’t have recent failures or
were involved in failed migrations.
− Stage 3c: Compute two numeric scores and then combine them
via a product (host with higher score is deemed a more desirable
destination). The first amounts to a "best-fit" like heuristic for bin-
packing and computes the score as the ratio of the heat on the host
with the new instance over 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 . Roughly, the idea is to ensure that
the load is unevely distributed among the hosts such that some hosts
have enough headroom for serving as live migration destinations.
The second computes the score as 1− ratio of ACUs corresponding
to the most utilized resource over 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 ; this score has the effect of
reducing the load imbalance across resources (i.e., CPU vs. memory
vs. network). In our evaluation in Section 6.3, we provide empirical
justification for our heuristic by comparing it with alternatives.
An illustrative example: In Figure 4, we illustrate the fleet man-
ager’s live migration decision-making by showing relevant aspects
of the state of 111 hosts within a fleet. Here, host 𝑠 has been deemed
hot based on the criteria described in Step 1 above. In this specific
case, this occurred due to instance 𝑖’s scale-up which caused the
host’s aggregate ACUs to exceed the 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 threshold. Following
this, the fleet manager chose instance 𝑖 itself for out-migration and
chose host 𝑑 as its destination. It is worth highlighting a couple of
observations. First, notice how the fleet is fairly well-balanced in
terms of the aggregate ACU load on the hosts, yet some hosts (e.g.,
host 𝑑) have been left relatively unoccupied to facilitate large-sized
migrations should there be a need. Second, notice that the desti-
nation chosen for instance 𝑖 is not the host with the most spare
capacity (e.g., compare host 𝑑 with host 𝑑′). Both of these result
from our strategy of keeping the fleet slightly unbalanced to fa-
cilitate faster/fewer live migrations than would occur in a more
balanced system.

4.2 New instance placement
The difficulty here is the lack of knowledge about the resource needs
of the new instance (in the general case). The only hints available
to the system are the customer min/max ACU limits. Aurora Server-
less uses customer min ACU as the new instance’s resource demand.
The reason is related to the much faster scale up that Aurora Server-
less supports than its scale down: in case the customer min ACU is
an underestimate, Aurora Serverless’s in-place scaling can adapt
quickly while if the customer max ACU proves an overestimate
it would lead to wasted capacity for a relatively long scale down
period. Following this, the remaining problem of determining the

host that can best accommodate this new instance is precisely the
same as that addressed by Step 3 above.

The fact that the customer does not pay more for higher max
ACU means that we encourage customers to choose peace of mind
when it comes to maximum capacity and promise to use it only if
we need to. Under these conditions it is not reasonable to place a
new instance based off a worst-case scenario where the instance
will need to serve workload at max ACU right away.

4.3 Fleet size adjustment
Given the current growing phase of Aurora Serverless the focus of
fleet sizing is on ensuring that a fleet always has adequate hosts and
additional hosts are requested with enough lead time. Generally, as
we have learned more about our customers’ workloads and as the
efficiency of our resource management techniques has improved,
we have been able to increase our desired utilization levels. The fleet
manager employs a combination of fleet-level demand prediction
and triggering additional procurement upon a fleet utilization ex-
ceeding a predetermined threshold. Employing more sophisticated
prediction and integrating fleet sizing more tightly with the rest of
the resource management is an area of future work.

A key consideration in fleet sizing are the computation and high-
frequency data gathering that the resource management system
has to do as these overheads grows with fleet size. We maintain the
fleet size below a number which allows for a locally computed fleet
health using one heat management server.

5 RESOURCE MANAGEMENTWITHIN A
HOST

Resource management within a host is carried out by instance
managers, one per instance on the host. The instance manager is a
library that encapsulates Aurora Serverless’s functionality within
an instance. Serverless capabilities are a plug-in the Aurora instance
manager whereas the rest of the functionality unrelated to resource
management is the same as regular Aurora, thereby enabling fea-
ture parity. Figure 5 summarizes the instance manager and its in-
teractions with various entities. In the following, we first describe
various enabling mechanisms for the Aurora Serverless instance
manager followed by its resource management policies.

5.1 Mechanisms
5.1.1 Data collection. The instance manager relies upon an engine-
specific agent for functionality idiosyncratic to the engine which
includes: (i) how the engine scales based on a provided amount of
buffer pool; and (ii) collecting the engine’s usage and estimate of
its desired buffer pool size. The engine employs its own internal
algorithms for estimating these quantities and writes them into a
shared memory segment from which the agent reads them.

For usage statistics of all resources other than the buffer pool, the
instance manager relies upon the guest OS. It employs a number
of "metrics fetchers" that it runs once every second to gather
resource usage information from the OS. These metrics are collected
into an in-memory scaling data report. The choice to look at per-
second data wasmade based on ensuring responsiveness to resource
usage spikes at a fine timescale. In particular, while deficit of CPU
cycles usually causes gradual degradation of experience, the lack

4044



Figure 4: An illustration of the fleet manager’s live migration related decision-making. We show the state of 111 hosts within a
fleet at a point in time when host 𝑠 has been deemed hot because the summation of reserved ACUs of its instances was found to
exceed the threshold 𝜃

𝑚𝑖𝑔
𝑎𝑐𝑢 . The y-axis represents ACUs. For each host, the reserved ACUs of its instances are depicted as the

vertical gaps between successive blue dots. Instance 𝑖 is chosen for migration and host 𝑑 is chosen as its destination.

of memory will eventually cause a crash. Therefore, we need to
approve memory increase as soon as we know more memory is
necessary if we can at all.

5.1.2 Virtualization solution. DB engines, like the MySQL and
PostgreSQL engines supported by Aurora, are complex, written
in languages that don’t provide memory safety, handle arbitrary
code and data, and even run native customer-provided code in
the form of extensions. The complexity makes DB engines vul-
nerable to classic security threats like buffer and stack overflows,
mostly caused by memory safety bugs. DB engines are not suitable
as a security boundary in a multi-tenant environment like AWS,
and need to be wrapped in a stronger isolation primitive. Since
launch, Aurora has run each database instance in its own virtual
machine (VM) secured by hardware virtualization. This provides
strong protection between DBs, and customers, against remote
code execution, side channels, and other security vulnerabilities.
Aurora Serverless needed to retain this security posture, but also
needed a solution that allowed it to dynamically scale the amount
of memory, CPU, and other resources available to each DB engine.
It initially evaluated the Firecracker VMM [10], which provides
secure, lightweight, and flexible virtualization. Firecracker was a
great fit in several ways: it meets the systems’ security needs by
using hardware virtualization for isolation, allows dynamic scaling
of memory and CPU, and has per-VM overhead as little as 5MB.
Unfortunately, it was found that the latency and CPU overhead of
userspace IO virtualization (as used in Firecracker), combined with
Aurora’s disaggregated storage design [37], lead to unacceptable
loss of performance for workloads with poor cache locality (which
are particularly sensitive to increased latency to Aurora’s storage

layer). Our team developed a new instance type based on the Nitro
system [7] that provided Nitro’s low IO latency (based on hardware
IO virtualization, exposed to the instance through SRIOV), along
with flexible CPU and memory provisioning.

5.1.3 Support for resource overbooking. The hosts have the ability
to over-subscribe (i.e., overbook) CPU and memory. Concretely,
CPU over-subscription means that the sum of the vCPUs across all
the instances within a host can exceed the total number of physical
CPUs on the host; memory over-subscription means that the total
amount of memory corresponding the customer max ACUs of the
instances can exceed the host’s physical memory.

5.1.4 Support for efficient memory scale-up. Any Aurora Server-
less instance, regardless of its actual resource needs, is of the same
instance type called db.serverless with the ability to grow up
to a size of 128 ACUs. In this sense, Aurora Serverless instances
are over-provisioned. Because of this over-provisioning, there is
a particular memory usage efficiency problem that arises in the
Aurora Serverless guest kernel. By default, the Linux kernel views
any unused memory as "wasted" and is designed to use as much
memory as it can. This is undesirable in the Aurora Serverless con-
text because the kernel will tend to keep growing its used memory
potentially all the way up to the CustomerMax ACU. Aurora Server-
less implements a few features within its guest kernel to make it
frugal in its memory usage.
− Memory offlining: The kernel implements memory offlining -
the ability to dynamically release portions of its memory to the
host. Memory offlining also helps reduce some meta-data memory
overhead - Linux maintains a 64B page struct for every 4KB page
which amounts to 2GB for a db.serverless instance.

4045



Figure 5: The Aurora Serverless instance manager and its key
interactions with entities within and outside the instance.

− Cold page identification: A kernel process called DARC [1] con-
tinuously monitors pages and identifies cold pages. It marks cold
file-based pages as free and swaps out cold anonymous pages.
− Free page reporting: Aurora Serverless introduces an explicit free
page reporting mechanism. A daemon runs within the guest look-
ing for free pages. If it finds a 2MB free block it reports it to the
hypervisor which can then reclaim it.
− Compaction: Nitro operates only at 2MB granularity to keep page
fault overheads resulting from its reclamation of free pages low.
So, Aurora Serverless guest OS employs a compaction activity to
coalesce 4KB free pages into 2MB blocks whenever possible to
increase the likelihood of them being reclaimed by the hypervisor.

5.1.5 Boundary enforcement. This involves ensuring that the in-
stance is allocated resources based on the "boundary" determined
by the scaling policies in Section 5.2. The instance manager employs
two types of mechanisms to control its instance’s CPU and memory
allocations (similar ideas apply to other resources):
− cgroup: The more fine-grained mechanism uses cgroups [8].
Broadly, the engine and instance manager processes are made part
of a group and resource allocations corresponding to local max
ACU are specified for this group. For CPU, this mechanism is espe-
cially useful for controlling allocation at the sub-ACU granularity.
Resource isolation is offered to instance manager from the data
plane processes using CPU shares and a guaranteed size for the
instance manager JVM.
− CPU and memory on/offlining: Complementing the above, vC-
PUs or memory (at the granularity of 2MB) may be added to or
removed from the guest kernel to control resource allocations for
the instance. Bringing on additional vCPUs can help mitigate the
"noisy neighbor" problem and is especially useful for ensuring good
performance when multiple small ACU instances are consolidated
together. Memory offlining offers a way to limit the memory usage
of processes that cgroups is unable to (since the latter can only
limit user-space processes).

5.2 Policies
There are two key important policy issues for the instance manager:
(i) boundary management and (ii) in-place scaling.

5.2.1 Boundary management. This aspect of the instance man-
ager’s decision-making is concerned with dynamically adjusting
the reserved ACU (i.e., the resource allocation boundary) of the
instance based on its recent usage patterns. There were two main
considerations that went into the Aurora Serverless boundary man-
agement strategy.
Agile and efficient detection of growth trends: The reserved
ACU should be chosen so it is likely to remain slightly higher
than the resource consumption in the near future. Recall from
Figure reffig:acus how this gap (i.e., the scaling band) is crucial for
quickly detecting growing resource needs; such detection allows
the instance manager to correspondingly reassess and increase the
instance’s allocation. At the same time, the scaling band should not
result in wasteful over-provisioning of resources.

The approach we found to work well was as follows. The in-
stance manager monitors the data plane memory footprint every
second and maintains a history of the instance’s estimated dynamic
memory usage. It uses the maximum memory usage over a the
last minute and converts it into ACUs to determine the instance’s
reserved ACU It goes beyond just memory. We also look at other
parameters like CPU usage and network throughput and block de-
vice IO. When any of these parameters exceed the current allowed
maximum for a given amount of ACU, the service deems this VM
as using more ACU even if other parameters are not exceeding
the quota. This leads to more resources allocated to the instance if
current ACU usage is below the customer-configured maximum.
Regulated growth: The reserved ACU should be allowed to grow
only so fast that does not create the risk of a fast-growing instance
overwhelming the fleet manager’s live migration based remedial
actions. For this, the instance manager limits the scale up rate to
give the fleet-wide resource management enough time to remediate
high heat on a host via live migrations. Specifically, the instance
manager implements a token bucket based regulator for the in-
stance’s reserved ACU (recall 𝑟𝑖,𝑡 from Section 3); therefore, as long
as an instance’s usage is below its reserved ACU it enjoys nearly
instantaneous scale up. The classical token bucket, originating in
networking [15], is characterized by two parameters: (i) a sustain-
able (or committed) rate (𝑅 bytes/s) and (ii) a bucket size (𝐵 bytes).
Conceptually, tokens arrive at a fixed rate 𝑅 into the bucket. The
policing is based on ensuring that a resource allocation request is
only satisfied when tokens equal to its size are available; the con-
tents of the bucket are adjusted to reflect this discharge of tokens.

The instance manager adapts the classical token bucket for the
ACU abstraction with the following enhancement: the token bucket
parameters are defined to be increasing functions of the current
local max ACU 𝑐 , i.e., 𝑅 = 𝑅(𝑐) ACUs/s and 𝐵 = 𝐵(𝑐) ACUs. Au-
rora Serverless has made this choice based on its own observa-
tions as well as customer demands that their workloads tend to
require higher rates of growth at higher intensities. The instance
manager token bucket parameters are informed by empirically ob-
served distributions of migration duration and workload resource
growth. At a high level, with a high probability, the heat that a
single well-chosen migration is able to dissipate should be able to
comfortably accommodate the growth allowed by the token bucket
during the migration.

Finally, Aurora Serverless also limits the scale down rate. Limit-
ing the scale down rate is an inevitable consequence of the limited

4046



scale up rate - since scale up only occurs at a deliberately controlled
rate, instance manager chooses to not scale down aggressively lest
high workload intensity return after a brief lull. The key idea is
to allow enough time of low activity elapse before commencing a
scale down.

5.2.2 In-place scaling. The core element of in-place scaling is con-
cerned with determining the ideal scaling target (i.e., resource allo-
cation level) for the engine. The instance manager takes a more
cautious approach towards scaling down than for scaling up. The
following two-step process used to determine the ideal scaling tar-
get for the engine. This decision-making runs once every second
and considers up to a few minutes worth of per-second histori-
cal usage data. The bulk of the decision-making is concerned with
resource-specific "deciders" each for estimating the instance’s needs
for a particular resource type.
Step 1: Deciders: Each decider converts its projection of its specific
resource’s needs into the common currency of the engine’s buffer
pool needs allowing for comparison across various deciders. We
describe below the decider based directly on engine buffer pool
followed by a representative non-buffer pool decider:
− Estimate the engine’s buffer pool needs. For this, it takes the
maximum buffer pool usage by the engine over the last minute as its
projected buffer pool need. The specifics of how this is decided vary
across engines and, therefore, it is obtained by the engine-specific
agent from the memory segment it shares with the engine.
− Respond to a substantial change in the recent CPU usage of the
instance. First identify the following two quantities: (i) P50 CPU
usage over the last 30 seconds; and (ii) P70 CPU usage over the
last 60 seconds. For each of these percentiles, it determines the
corresponding memory sizes (call them𝑚𝑒𝑚30𝑠 and𝑚𝑒𝑚60𝑠 , resp.)
based on the shape of an ACU. If𝑚𝑒𝑚30𝑠 exceeds the current engine
fixed memory the decider’s target engine fixed memory size is set
to𝑚𝑒𝑚30𝑠 . If, however, both𝑚𝑒𝑚30𝑠 and𝑚𝑒𝑚60𝑠 are lower than
the current engine fixed memory, the decider’s target engine fixed
memory size is set to𝑚𝑒𝑚60𝑠 . Note how a potential scale down is
considered more cautiously than a scale up.

Four additional resource-based deciders are used for network
(received and transmitted) and storage (bandwidth and IOPS) that
are conceptually similar to the one for CPU described above.
Step 2: Combining various deciders: The engine buffer pool
needs emerging from the various deciders are converted into a
single projection by taking their maximum. This ensures that a
scale up occurs if any of the deciders prescribes a capacity increase
whereas a scale down occurs only if all of them do so. The minimum
scaling granularity is 0.5 ACUs.

6 EMPIRICAL OBSERVATIONS AND
EVALUATION

In this section, we use a combination of observations from Aurora
Serverless fleets and simulations to understand the efficacy of its
resource management.

6.1 Datasets and metrics of interest
We report metrics from 2 different Postgresql fleets: (i) Fleet 1: AWS
region us-east-1 over the 17-day period 01/14/2024 - 02/01/2024; (ii)

Fleet 2: AWS region us-west-2 over the 31-day period 01/01/2024-
02/01/2024. We also use instance-level reserved ACUmeasurements
from these fleets for our simulations.

Generally, two types of metrics are of interest in evaluating the
efficacy of Aurora Serverless resourcemanagement. The first type of
metrics relate to a fleet’s operational efficiency, e.g., host utilization.
The second type of metrics relate to customer experience, e.g., the
resource elasticity offered. While we are unable to share absolute
numbers related to our fleet sizes, host utilization levels, and settings
for operational parameters such as utilization thresholds or token
bucket due to their proprietary nature, we will present the following
metrics to help understand customer experience:

• What percentage of scale up events were satisfied in-place
vs. via live migration? A smaller percentage is indicative of
the efficacy of our re-packing and placement strategies.

• What percentage of scale up events resulted in a host being
deemed hot? Recall that, for a host deemed hot, its instances
max ACU is temporarily limited to their current reserved
ACUs while remedial live migrations are being undertaken.
What is the impact on customerworkloads of these remedial
actions?

6.2 Customer experience observations
In Fleet 1, there were a total of 33,792 instances during our observa-
tion period. Collectively, these instances exhibited 16,440,024 scale-
up events. Of these, only 2,923 scale-up events needed one or more
live migrations (i.e., the 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 threshold on a host was breached)
while the vast majority (99.98%) were satisfied completely via our
in-place scaling mechanism. Of the scale-up events that couldn’t
be satisfied in-place, a majority (52%) needed only 1 live migration;
the average number of live migrations for such scale-up events was
1.68. Lastly, the number of occasions when a host breached its 𝜃ℎ𝑖𝑎𝑐𝑢
threshold was 198, i.e., for 6.77% of the scale-up events that couldn’t
be satisfied in-place, instance reserved ACUs were temporarily held
at their current allocations.

In Fleet 2, there were a total of 12,467 instances during our
observation period. Collectively, these instances incurred 8,151,229
scale-up events. Of these, only 1,214 scale-up events needed one
or more live migrations while the rest were satisfied completely
via our in-place scaling mechanism. Of the scale-up events that
couldn’t be satisfied in-place, a majority (55%) needed only 1 live
migration; the average number of live migrations for such scale-
up events was 1.56. Lastly, the number of occasions when a host
breached its 𝜃ℎ𝑖𝑎𝑐𝑢 threshold was a mere 48, i.e., for 3.95% of the
scale-up events that couldn’t be satisfied in-place, instance reserved
ACUs were temporarily held at their current allocations.

These observations indicate that the Aurora Serveless repacking
and placement strategies are effective at ensuring that a vast ma-
jority of scale-up requests are satisfied completely locally within
the current host giving the customer a seamless resource elasticity
experience. Further, even when re-packing is needed, generally
a single migration suffices to remediate which limit any adverse
restrictions on customer resource elasticity and performance.

4047



6.3 Comparison against an alternative
re-packing strategy

To illustrate how we chose specific aspects of our overall approach
vs. other natural alternatives, we compare against a baseline in
simulation that modifies Step 3 ("Where to migrate?") of our tech-
nique in Section 4.1 as follows: it picks a purely best-fit approach
instead of our approach that combines best-fit with CPU/memory
balancing. Generally, we find that our the baseline tends to con-
centrate instances onto a smaller set of hosts than our technique
causing these host to have higher utilization than occupied hosts
with our technique. Our technique maintains a few more empty or
lightly loaded hosts than the baseline which make it need fewer
migrations, on average, to alleviate heat. For Fleet 1, we find that
the total number of live migrations with baseline is 82% higher
than with our technique while the average utilization on a busy
host is about 10% higher. As an indicator of the impact of customer
experience, the total time instance ACU allocations were "frozen"
while heat was being remediated went up by about 55%. Similarly,
for Fleet 2, we find that the total number of live migrations with
baseline is about 57% higher with the average utilization of hosts
being about 12% higher. The total time instance ACU allocations
were frozen went up by 57%.

6.4 A close look at a migration-assisted scale up
Finally, we take a close look at an instance whose scaling up was
satisfied in-place due to capacity created by carrying out a live
migration of a different instance. Figure 6 shows the key events
of interest. We focus on a time-period (normalized to a (0, 100)
time units range) during which the host (labeled "source host")
housing our scaling instance ("scaling instance") became hot due to
a rapid growth in the resource needs of the scaling instance. We
depict how the aggregate reserved ACUs (normalized in a (0, 100)
range) for source host evolved over this time period. We also show
the heat contributed by scaling instance which starts to scale up
around 35 time units. At around 41 time units, the 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 threshold
was found to have been breached by the fleet manager following
which it identified an instance "migrated instance" to out-migrate.
The chosen destination was "destination host" which was much
less loaded than source host. We also show a timeline of the heat
on destination host. The migration commenced at 41 time units
and concluded at 50 time units. We see that the migration was
effective in allowing the scaling instance to meet its needs. The
aggregate heat on source host stayed below 𝜃

𝑚𝑖𝑔
𝑎𝑐𝑢 after the migration

concluded mainly because the scaling instance did not scale up any
further (it began to scale down steadily soon after peaking and is
back to its nearly 0 usage at about 66 time units). If it had needed
to scale further, the fleet manager would have initiated additional
migrations to allow such growth.

7 RELATEDWORK
There is extensive literature on resource management in clusters
and datacenter-scale systems going back to the 1990s. Aurora Server-
less adapts several ideas from this body of work and fine tunes them
for its needs. Multiples forms of complementarity in resource needs
of workloads have been exploited. Colocating CPU- vs. memory-

Figure 6: A close look at how in-place scaling was achieved
for an instance whose resource needs grew from close to 0
ACUs to a significantly larger value (we are reporting ACUs
on the y-axis normalized in a (0, 100) range since we are un-
able to reveal the actual 𝜃𝑚𝑖𝑔

𝑎𝑐𝑢 used in our system.) We show
the reserved ACUs for the instance that scaled up and a dif-
ferent instance that was migrated to allow the first instance
to continue scaling up when its needs could not be accommo-
dated locally. We also show the sum of reserved ACUs on the
source and destination hosts. The pink vertical lines show
the span of the live migration (again, we are only able to re-
port times normalized in the (0, 100) range since information
about our migration times is proprietary.) The black vertical
lines depict the period over which the scaling instance scaled
up and then scaled down.

vs. network-intensive workloads can help improve packing den-
sity [20, 24, 34, 39]. An individual workload’s peak needs may occur
rarely allowing for under-provisioning resources for it [27, 36]. The
aggregate needs of a group of workloads may exhibit a much lower
peak demand than the sum of individual peaks (because of individ-
ual peaks occurring at different times) allowing for resources to
be overbooked [13, 16, 32, 36]. While Aurora Serverless’s approach
is heavily influenced by these ideas (especially those relating to
overbooking), a distinguishing feature is that it bases its decision-
making on recently observed workload features rather than long-
term profiling and characterization. This approach is motivated,
in part, by its simplicity and by the availability of a highly agile
corrective live migration facility.

Numerous works have demonstrated the merits of combining
predictive and reactive techniques for management [25, 29, 30, 35].
Earlier work in this space used classical ideas from queueing theory
and control [14, 19, 33]. Lately there has beenmuch interest in study-
ing techniques using (deep) ML/RL for such problems [21, 22, 25].
Whereas Aurora Serverless’s reactive mechanisms have shown

4048



themselves to be effective, incorporating predictive management
for fleet-sizing and scheduling of migrations may yield further im-
provements that we are currently investigating. For example, many
Aurora Serverless workloads exhibit periodicity such as time-of-day
effects [11, 12] that lend themselves to predictive management. Our
preliminary investigation suggests that a particular weakness of
reactive mechanisms relates to releasing unused resources - recall
Aurora Serverless’s conservative scale-down. Predicting a down-
ward trends in resource needs may allow Aurora Serverless to
release idle hosts more effectively for cost savings.

While live migration as a knob for resource management has
been studied in numerous papers [18, 28, 38, 40], its use in a com-
mercial scale system is relatively uncommon due to the associ-
ated complexity. Aurora Serverless makes important contributions
in establishing live migration as an effective control knob for a
performance-sensitive and challenging class of workloads.

As a load distribution problem, our approach stands in contrast
to most clustered systems - whereas most systems attempt to keep
their system load balanced [23], Aurora Serverless falls into the less
common category of systems that deliberately keep their cluster
"unbalanced" [26, 31]. Specifically, it ensures that the fleet always
has some hosts with enough spare capacity to serve as destinations
for an instance migrated from one of the busier hosts.

8 LESSONS LEARNT AND KEY TAKEAWAYS
We highlight some salient lessons learnt during our journey devel-
oping and improving Aurora Serverless’s resource management.
• As stated at the outset, a central design principle has been to start
simpler and avoid the trap of premature optimization. This was
especially important in the field of resource management where a
vast and rich set of techniques exist. We provided several examples
of this approach where more complexity was only added based on
observing customer workload features and needs.
• Designing for a predictable resource elasticity experience has
been a second central tenet and we have co-designed our SLAs and
resource management accordingly. Specifically, any improvements
in efficiency must align with the goal of providing a consistent
performance experience. A particularly interesting design choice in
this context is to bound the growth rate allowed for an instance’s
resource allocation even if this means that, on occasion, we do not
let an instance grow as fast as the available headroom on its host
would theoretically allow.
•The decision-making in Aurora Serverless’s resourcemanagement
is predominantly reactive in nature. By this wemean that no explicit
predictions of resource needs (or any other workload features) are
employed. Resource management components employ recent data
(granularity of a minute to a few minutes) as representatives of
upcoming behavior (i.e., assume minute-scale temporal locality
in workload features), which may be viewed as a form of implicit
prediction. Clearly, exploiting predictability in workloads (e.g., time-
of-day effects [11, 12]) can help Aurora Serverless improve its costs
(e.g., by carrying out migrations well ahead of time and releasing
hosts during low workload intensity) and is indeed an important
area of ongoing research. The key merit of reactive control over
alternatives based on prediction is its simplicity. Furthermore, as

migration technology becomes more agile, the gap between reactive
and predictive management is likely to shrink.
• We found it effective to have the fleet-wide vs. host-level aspects
of resource management operate largely independently of each
other. The only interaction between them happens through an
instance-specific ℎ𝑖,𝑡 that the fleet manager lowers from its default
value of customer max ACU on a hot host. This in turn affects the
reserved ACU limit used by boundary management. This signifi-
cantly simplifies our resource management algorithms and allows
them to be more scalable than the alternative.
• Finally, Aurora Serverless evolution offers a powerful illustration
of being able to evolve hypervisors and OS kernels in ways that
make them better suited for DB workloads. This seems to be an
under-tapped area of research, and there may be a lot of opportunity
in co-designing and co-optimizing these layers.

9 CONCLUDING REMARKS
We described how resource management in the latest version of
Aurora Serverless adopts classical techniques while also contribut-
ing some novel ideas. It treats predictable resource elasticity as its
central goal. This was best exemplified by its use of token bucket
regulation for instance scale up even in regimes where faster growth
is theoretically allowed by the host’s spare capacity. It relies on
a largely reactive control based on a loose coupling between cell-
wide and host-level management informed by recent minute-level
measurements (i.e., assumption of short-term temporal locality in
workload features). Its central control knob is a live migration fa-
cility. It contributes novel heuristics for identifying instances to
migrate and their destinations that carefully balance multiple opti-
mization objectives. Its load distribution is characterized by a form
of unbalancing of load across hosts to facilitate agile live migrations.
Fine tuning these techniques is very much a continually ongo-
ing process and there are several avenues for further exploration,
most notably improvement that can result from (i) introducing pre-
dictive techniques for live migration; (ii) co-designing predictive
and reactive mechanisms so they complement each other well; (iii)
more tightly integrating fleet-wide and host-level management; (iv)
exploiting statistical multiplexing opportunities stemming from
complementary resource needs (e.g., preferentially packing CPU-
intensive and memory-intensive instances together) and (v) using
sophisticated ML/RL-based techniques for workload prediction and
decision-making.

4049



REFERENCES
[1] 2021. DAMON-based Reclamation. https://lore.kernel.org/20211019150731.

16699-16-sj@kernel.org/.
[2] 2024. Amazon Aurora. https://aws.amazon.com/rds/aurora/.
[3] 2024. Amazon Aurora Pricing. https://aws.amazon.com/rds/aurora/pricing/.
[4] 2024. Amazon Aurora Serverless. https://aws.amazon.com/rds/aurora/

serverless/.
[5] 2024. Aurora Serverless v2 Capacity. https://docs.aws.amazon.com/AmazonRDS/

latest/AuroraUserGuide/aurora-serverless-v2.how-it-works.html#aurora-
serverless-v2.how-it-works.capacity.

[6] 2024. AWS EC2 Regions and Zones. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/using-regions-availability-zones.html.

[7] 2024. AWS Nitro System: A combination of dedicated hardware and light-
weight hypervisor enabling faster innovation and enhanced security. https:
//aws.amazon.com/ec2/nitro/.

[8] 2024. Control groups. https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.
html.

[9] 2024. Scriptable database and system performance benchmark. https://github.
com/akopytov/sysbench.

[10] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf
Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Light-
weight Virtualization for Serverless Applications. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Associ-
ation, Santa Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/
presentation/agache

[11] Martin F. Arlitt and Tai Jin. 2000. A workload characterization study of the 1998
World Cup Web site. IEEE Netw. 14, 3 (2000), 30–37.

[12] Martin F. Arlitt and Carey L. Williamson. 1996. Web Server Workload Charac-
terization: The Search for Invariants. In Proceedings of the 1996 ACM SIGMET-
RICS international conference on Measurement and modeling of computer systems,
Philadelphia, Pennsylvania, USA, May 23-26, 1996, Daniel A. Reed and Blaine D.
Gaither (Eds.). ACM, 126–137.

[13] Faruk Caglar and Aniruddha S. Gokhale. 2014. iOverbook: Intelligent Resource-
Overbooking to Support Soft Real-Time Applications in the Cloud. In 2014 IEEE
7th International Conference on Cloud Computing, Anchorage, AK, USA, June 27 -
July 2, 2014. IEEE Computer Society, 538–545.

[14] Peter Desnoyers, Timothy Wood, Prashant J. Shenoy, Rahul Singh, Sangamesh-
war Patil, and Harrick M. Vin. 2012. Modellus: Automated modeling of complex
internet data center applications. ACM Trans. Web 6, 2 (2012), 8:1–8:29.

[15] J. Heinanen, T. Finland, and R. Guerin. 1999. RFC 2687: A Single Rate Three
Color Marker. https://datatracker.ietf.org/doc/html/rfc2697.

[16] David A. Hoeflin and Paul Reeser. 2012. Quantifying the performance impact of
overbooking virtualized resources. In Proceedings of IEEE International Conference
on Communications, ICC 2012, Ottawa, ON, Canada, June 10-15, 2012. IEEE, 5523–
5527.

[17] Klaus Jansen and Kim-Manuel Klein. 2013. A Robust AFPTAS for Online Bin
Packing with Polynomial Migration. CoRR abs/1302.4213 (2013). arXiv:1302.4213
http://arxiv.org/abs/1302.4213

[18] Junbin Kang, Le Cai, Feifei Li, Xingxuan Zhou, Wei Cao, Songlu Cai, and Daming
Shao. 2022. Remus: Efficient Live Migration for Distributed Databases with
Snapshot Isolation. In Proceedings of the 2022 International Conference on Manage-
ment of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing
Machinery, New York, NY, USA, 2232–2245. https://doi.org/10.1145/3514221.
3526047

[19] Sam Lightstone, Maheswaran Surendra, Yixin Diao, Sujay S. Parekh, Joseph L.
Hellerstein, Kevin Rose, Adam J. Storm, and Christian Garcia-Arellano. 2007.
Control Theory: a Foundational Technique for Self Managing Databases. In
Proceedings of the 23rd International Conference on Data Engineering Workshops,
ICDE 2007, 15-20 April 2007, Istanbul, Turkey. IEEE Computer Society, 395–403.

[20] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2016. Improving Resource Efficiency at Scale with Heracles.
ACM Trans. Comput. Syst. 34, 2 (2016), 6:1–6:33.

[21] Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, Wei Chen, Li Ma,
Yihui Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling
and Optimization for Intelligent Resource Management in Big Data Processing.
Proc. VLDB Endow. 15, 11 (2022), 3098–3111.

[22] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,
and Mohammad Alizadeh. [n.d.]. Learning scheduling algorithms for data pro-
cessing clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication, SIGCOMM 2019, Beijing, China, August 19-23, 2019, Jianping Wu and

Wendy Hall (Eds.). 270–288.
[23] Michael Mitzenmacher. 1999. On the Analysis of Randomized Load Balancing

Schemes. Theory Comput. Syst. 32, 3 (1999), 361–386.
[24] Xiao Qin, Hong Jiang, Yifeng Zhu, and David R. Swanson. 2006. Improving the

performance of I/O-intensive applications on clusters of workstations. Clust.
Comput. 9, 3 (2006), 297–311.

[25] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych, Przemys-
law Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, and John Wilkes. 2020. Autopilot: workload autoscaling at Google.
In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30,
2020. ACM, 16:1–16:16.

[26] Bianca Schroeder and Mor Harchol-Balter. 2004. Evaluation of Task Assign-
ment Policies for Supercomputing Servers: The Case for Load Unbalancing and
Fairness. Clust. Comput. 7, 2 (2004), 151–161.

[27] Haiying Shen and Liuhua Chen. 2018. Resource Demand Misalignment: An
Important Factor to Consider for Reducing Resource Over-Provisioning in Cloud
Datacenters. IEEE/ACM Trans. Netw. 26, 3 (2018), 1207–1221.

[28] Haiying Shen and Liuhua Chen. 2020. A Resource Usage Intensity Aware Load
Balancing Method for Virtual Machine Migration in Cloud Datacenters. IEEE
Trans. Cloud Comput. 8, 1 (2020), 17–31.

[29] Haiying Shen and Liuhua Chen. 2022. A Resource-Efficient Predictive Resource
Provisioning System in Cloud Systems. IEEE Trans. Parallel Distributed Syst. 33,
12 (2022), 3886–3900. https://doi.org/10.1109/TPDS.2022.3172493

[30] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: elastic resource scaling for multi-tenant cloud systems. In ACM Symposium
on Cloud Computing in conjunction with SOSP 2011, SOCC ’11, Cascais, Portugal,
October 26-28, 2011. ACM, 5.

[31] Amoghavarsha Suresh and Anshul Gandhi. 2019. FnSched: An Efficient Scheduler
for Serverless Functions. In Proceedings of the 5th International Workshop on
Serverless Computing, WOSC@Middleware 2019, Davis, CA, USA, December 09-13,
2019. ACM, 19–24.

[32] Selome Kostentinos Tesfatsion, Luis Tomás, and Johan Tordsson. [n.d.]. OptiBook:
Optimal resource booking for energy-efficient datacenters. In 25th IEEE/ACM
International Symposium on Quality of Service, IWQoS 2017, Vilanova i la Geltrú,
Spain, June 14-16, 2017.

[33] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant J. Shenoy, Mike Spreitzer, and
Asser N. Tantawi. 2005. An analytical model for multi-tier internet services and
its applications. In Proceedings of the International Conference on Measurements
and Modeling of Computer Systems, SIGMETRICS 2005, June 6-10, 2005, Banff,
Alberta, Canada. ACM, 291–302.

[34] Bhuvan Urgaonkar and Prashant J. Shenoy. 2004. Sharc: Managing CPU and
Network Bandwidth in Shared Clusters. IEEE Trans. Parallel Distributed Syst. 15,
1 (2004), 2–17.

[35] Bhuvan Urgaonkar, Prashant J. Shenoy, Abhishek Chandra, and Pawan Goyal.
2005. Dynamic Provisioning of Multi-tier Internet Applications. In Second In-
ternational Conference on Autonomic Computing (ICAC 2005), 13-16 June 2005,
Seattle, WA, USA. IEEE Computer Society, 217–228.

[36] Bhuvan Urgaonkar, Prashant J. Shenoy, and Timothy Roscoe. 2002. Resource
Overbooking and Application Profiling in Shared Hosting Platforms. In 5th
Symposium on Operating System Design and Implementation (OSDI 2002), Boston,
Massachusetts, USA, December 9-11, 2002.

[37] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data. 1041–1052.

[38] Timothy Wood, Prashant J. Shenoy, Arun Venkataramani, and Mazin S. Yousif.
2009. Sandpiper: Black-box and gray-box resource management for virtual
machines. Comput. Networks 53, 17 (2009), 2923–2938.

[39] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai, Bowen Zhou, Greg Bronevetsky,
and Saurabh Bagchi. 2018. Pythia: Improving Datacenter Utilization via Precise
Contention Prediction for Multiple Co-Located Workloads. In Proceedings of the
19th International Middleware Conference. 146–160.

[40] Kejiang Ye, Xiaohong Jiang, Dawei Huang, Jianhai Chen, and Bei Wang. 2011.
Live Migration of Multiple Virtual Machines with Resource Reservation in Cloud
Computing Environments. In IEEE International Conference on Cloud Computing,
CLOUD 2011, Washington, DC, USA, 4-9 July, 2011, Ling Liu and Manish Parashar
(Eds.). IEEE Computer Society, 267–274.

4050

https://lore.kernel.org/20211019150731.16699-16-sj@kernel.org/
https://lore.kernel.org/20211019150731.16699-16-sj@kernel.org/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/pricing/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.how-it-works.html##aurora-serverless-v2.how-it-works.capacity
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.how-it-works.html##aurora-serverless-v2.how-it-works.capacity
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless-v2.how-it-works.html##aurora-serverless-v2.how-it-works.capacity
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://datatracker.ietf.org/doc/html/rfc2697
http://arxiv.org/abs/1302.4213
https://doi.org/10.1145/3514221.3526047
https://doi.org/10.1145/3514221.3526047
https://doi.org/10.1109/TPDS.2022.3172493

	Abstract
	1 Introduction and Motivation
	2 Background
	2.1 Challenges and a Key Design Principle
	2.2 The Aurora Serverless Capacity Bounds
	2.3 From ASv1 to ASv2

	3 Overview
	3.1 Policies
	3.2 Mechanisms

	4 Fleet-Wide Resource Management
	4.1 Live Migration-Based Dynamic Instance Re-Packing
	4.2 New instance placement
	4.3 Fleet size adjustment

	5 Resource Management Within a Host
	5.1 Mechanisms
	5.2 Policies

	6 Empirical Observations and Evaluation
	6.1 Datasets and metrics of interest
	6.2 Customer experience observations
	6.3 Comparison against an alternative re-packing strategy
	6.4 A close look at a migration-assisted scale up

	7 Related Work
	8 Lessons Learnt and Key Takeaways
	9 Concluding Remarks
	References

