
A Hierarchical Grouping Algorithm for the Multi-Vehicle
Dial-a-Ride Problem

Kelin Luo
University of Bonn
Bonn, Germany

kluo@uni-bonn.de

Alexandre M. Florio
Polytechnique Montreal

Montreal, Canada
aflorio@gmail.com

Syamantak Das
Indraprastha Institute of Information Technology Delhi

Delhi, India
syamantak@iiitd.ac.in

Xiangyu Guo
University at Buffalo

Buffalo, USA
xiangyug@buffalo.edu

ABSTRACT
Ride-sharing is an essential aspect of modern urban mobility. In
this paper, we consider a classical problem in ride-sharing – the
Multi-Vehicle Dial-a-Ride Problem (Multi-Vehicle DaRP). Given a
fleet of vehicles with a fixed capacity stationed at various locations
and a set of ride requests specified by origins and destinations, the
goal is to serve all requests such that no vehicle is assigned more
passengers than its capacity at any point in its trip.

We give an algorithm HGR, which is the first non-trivial approx-
imation algorithm for the Multi-Vehicle DaRP. The main technical
contribution is to reduceMulti-Vehicle DaRP to a certain capacitated
partitioning problem, which we solve using a novel hierarchical
grouping algorithm.

Experimental results show that the vehicle routes produced by
our algorithm not only exhibit less total travel distance compared to
state-of-the-art baselines, but also enjoy a small in-transit latency,
which crucially relates to each individual rider’s traveling time.
This suggests that HGR enhances rider experience while being
energy-efficient.

PVLDB Reference Format:
Kelin Luo, Alexandre M. Florio, Syamantak Das, and Xiangyu Guo. A
Hierarchical Grouping Algorithm for the Multi-Vehicle Dial-a-Ride
Problem. PVLDB, 16(5): 1195 - 1207, 2023.
doi:10.14778/3579075.3579091

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/amflorio/hga-dial-a-ride.

1 INTRODUCTION
Over the last decade, ride-sharing has emerged as one of the most
prominent aspects of shared economy [5]. In a typical ride-sharing
scenario, riders with similar routes use a common vehicle for their
commutes. The popularity of this framework has soared in recent
years owing to the fact that all major urban taxi providers like

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579091

Uber, Lyft and Didi Chuxing have introduced a ‘carpooling’ option.
Economic benefits of ride-sharing are enjoyed by both the riders
and providers: riders pay less for the same commute compared to
hiring an individual taxi whereas the provider earns more profit in
a single ride. Perhaps even more importantly, there is a potentially
huge positive impact of ride-sharing on the environment [2]. Ride-
sharing results in overall less fuel consumption and reduces air
pollution by decreasing the number of vehicles on the road.

In order to reap the most benefit out of ride-sharing, it is essential
to determine an efficient policy of assigning riders to vehicles. Ow-
ing to the large scale of the problem and the various constraints it
might pose, there has been an increasing body of work in Computer
Science and Operations Research that targets to design efficient
algorithms to carry out such a task.

In this paper, we consider a classical problem in the area named
the Dial-a-Ride Problem (DaRP) [9]. Informally, a mobility provider
has a fleet of vehicles at their disposal, each with a certain capacity.
There is a set of ride requests specified by origins and destinations.
The algorithmic task is to assign every rider to exactly one vehicle
and determine routes for the vehicles under the constraint that
at any point during the trip, the vehicle must not accommodate
more riders than its capacity. Finally, the goal is to minimize the
total travel distance of all the vehicles. One can view this objective
function as targeted towards lower total fuel consumption and
pollution caused due to the commutes.
Heuristics for DaRP. Several heuristic approaches have been
proposed for the DaRP over the years (see, for example, the sur-
vey [18]). In recent years, the size of ride-sharing problems to be
solved has scaled almost exponentially, primarily owing to the ad-
vent of online platforms. This has attracted the attention of the data-
base/datamining community to this problem and several techniques
developed by these communities have been proven to be effective
in handling ride haring requests at a massive scale [4, 19, 37, 38].
We highlight two recent algorithms which are state-of-the-art and
have been experimentally established to be more effective than
all the popular heuristics designed previously. The first one called
pruneGDP was introduced by [37]. This is a fast algorithm that
exploits a popular approach called insertion which has been uti-
lized in solving dial-a-ride and its variants [4, 19–21, 28]. Roughly
speaking, the algorithm maintains a partial assignment of requests
(and hence routes) for each vehicle. At every iteration, the algo-
rithm determines the assignment of one unassigned request to a

1195

https://doi.org/10.14778/3579075.3579091
https://github.com/amflorio/hga-dial-a-ride
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579091
https://www.acm.org/publications/policies/artifact-review-and-badging-current

vehicle in a way that causes the minimal increment in total travel
distance. The authors give an elegant O(𝑛)-time implementation of
this subroutine and experimentally demonstrate the effectiveness
of this heuristic over several previous heuristics like [19, 28].

The second algorithm, FESI [38], is an approximation algorithm
for the somewhat complementary objective of minimizing the
makespan, that is, the maximum travel distance of any vehicle.
In fact, the authors claim through empirical evidence that FESI is
comparable to pruneGDP even for the total travel distance objective
although it does not explicitly aim to minimize this.

Although these algorithms have been experimentally demon-
strated to be effective and scalable, none of these works provide
a formal worst case performance guarantee on the objective func-
tion value of total travel distance. In fact, for both algorithms, one
can easily construct instances where their performance could be
arbitrarily bad compared to an optimal solution.
Approximation Algorithms. There has been significant interest
in the theoretical computer science community regarding DaRP.
The problem is easily seen to be NP-hard even in the special case
when every request has its origin and destination co-located – this
is the classical Travelling Salesman Problem. For the special case of
a single vehicle with capacity 𝜆 and 𝑛 riders, two independent algo-
rithms were given by Charikar and Raghavachari [3] and later on by
Gupta et al. [17] with approximation guarantees of O(

√
𝜆 log𝑛) and

O(
√
𝜆 log2 𝑛), respectively. These are the best known theoretical

guarantees so far. However, there is no approximation algorithm
reported in the literature for the case of multiple vehicle DaRP that
we consider.

The above discussion motivates the following question: Is there
an algorithm for multiple vehicle DaRP which is provably good com-

pared to the optimal solution in the worst case ? In this paper, we
give the first non-trivial approximation algorithm for the multi-
ple vehicle DaRP with an approximation ratio of O(

√
𝜆 log𝑛). Our

approximation guarantee, perhaps surprisingly, does not depend
on the number of vehicles and exactly matches the guarantee for
the single vehicle case stated above. Our technique at a high level
resembles the approach used in [17]. However, we need several non-
trivial modifications and novel ideas to handle the multi-vehicle
scenario. At the core, our algorithm uses a novel hierarchical parti-
tioning of the rider set into groups which can be routed at a “small
cost”. These groups are then carefully assigned to vehicles followed
by a routing phase for each vehicle. Whereas, for the single vehi-
cle case, such a partitioning can be found by a relatively simple
greedy approach, our algorithm needs to heavily utilize bipartite
matching and ideas from routing literature which help us to bound
from above the total travel distance of our algorithm. Our key
contributions are as follows:

• We give the first non-trivial approximation algorithm for the
multiple vehicle DaRP. We obtain an approximation factor
of O(

√
𝜆 log𝑛), where 𝜆 is the capacity of the vehicles and

𝑛 is the number of riders.
• Extensive experiments have been carried out to establish

the practical efficacy of our algorithm. We compare our
algorithm with state-of-the-art heuristics for DaRP. Our
method outperforms all these algorithms on total travel

distance by a significant margin of up to 30% on synthetic
and real-world datasets.

• Our theoretical guarantees are valid only for the objective
of minimizing the total travel time of the vehicles. However,
in our experiments, we also consider the in-transit latency of
the riders. This measures the amount of time a rider spends
in the vehicle and can be thought of as a metric of rider
experience. Empirical evidence shows that our proposed
algorithm leads to an average in-transit latency up to 50%
less than other DaRP algorithms.

2 RELATEDWORK
Dial-a-Ride. The Dial-a-Ride problem has attracted significant
attention, first from the operations research community, and later
from the algorithms and database communities of computer sci-
ence, owing to its vast application in real life. There have been
attempts to design exact algorithms for the problem as early as
2006 by Cordeau [6], who proposed a branch-and-cut framework.
This was followed up by several works that improved upon the
basic framework by utilizing hybrid techniques like combining
column-generation with dynamic programming [14]. However, as
well known, such approaches search over a massive combinato-
rial space and do not scale. More practical approaches using Tabu
Search [7], Simulated Annealing [29] and more efficient Neighbor-
hood Searches [15] have also been considered. While promising
to be more practical than the exact approaches, even the most ef-
ficient of these algorithm, ALNS [15], suffers at scale as shown
in [38]. More recently, this problem has attracted the attention of
the database/datamining community, particularly owing to the al-
most exponentially increasing demand of app-based ride-sharing.
The pruneGDP algorithm of [37] remains the most efficiently and
scalable state-of-the-art heuristic to the best of our knowledge.

None of the above approaches attempted to investigate practical
algorithms with theoretical approximation guarantees. In fact, the
literature there is surprisingly sparse. The only two algorithms
providing approximation guarantees are given by Charikar and
Raghavachari [3] and Gupta et al. [17], with approximation guar-
antees of O(

√
𝜆 log𝑛) and O(

√
𝜆 log2 𝑛), respectively. We refer the

interested reader to the excellent survey in [18] for a comprehensive
landscape of Dial-a-Ride problems.
Other Ride-Sharing Problems. Several variants of ride-sharing
problems have also been considered recently. For instance, the
works of [37, 39–41] design heuristics to maximize revenue of the
platform. The work in [38] designs approximation algorithm for
the complementary objective of minimizing the maximum service
time of individual requests. There have been interesting efforts to
optimize more complex social utilities of both the platform and
requests [4].

A slightly different, more static version of the DaRP has been
considered in [1, 25, 27]. All these papers provide approximation
algorithms to solve the problem where there are multiple vehicles
with capacities and rider requests and the task is to make a static
one-time assignment of the riders to the vehicles. However, none
of these techniques directly work for the classical DaRP problem
that we consider in this paper.

1196

3 PRELIMINARIES
Problem definition. Let (𝑉 ,𝑑) be a given metric space, 𝑅 be a set

of 𝑛 requests, where each request 𝑟𝑖 = (𝑠𝑖 , 𝑡𝑖) ∈ 𝑉 ×𝑉 consists of
a pickup location 𝑠𝑖 and a drop-off location 𝑡𝑖 . We also have a set
of𝑚 vehicles 𝐾 , where each vehicle 𝑘 ∈ 𝐾 has a depot 𝑝𝑘 and a
capacity 𝜆. Let𝑉𝐾 denote the multiset of all vehicle depot locations.
The goal is to find an assignment A from vehicles to requests. An
assignment is a collection of walks1 in𝑉 , each of which starts from
a distinct vehicle depot, and delivers a subset of requests from their
pickup locations to drop-off locations.

Definition 1 (Vehicle Walk). Given a set of requests 𝑅𝑘 assigned to

a vehicle 𝑘 ∈ 𝐾 , a vehicle walk is a sequence

walk𝑘 = ⟨ℓ0 = 𝑝𝑘 , ℓ1, ℓ2, · · · , ℓ𝑡 ⟩,

starting at the origin location of vehicle 𝑘 , where ℓ𝑖 ∈ {𝑠𝑟 : 𝑟 ∈
𝑅𝑘 } ∪ {𝑡𝑟 : 𝑟 ∈ 𝑅𝑘 }, 1 ≤ 𝑖 ≤ 𝑡 . A vehicle walk walk𝑘 is feasible
if (i) ∀𝑟 ∈ 𝑅𝑘 , 𝑠𝑟 appears before 𝑡𝑟 in walk𝑘 and (ii) at any time

point of the vehicle walk the corresponding vehicle carries at most 𝜆

requests. Further, the cost of a walkwalk𝑘 is defined as cost(walk𝑘) =∑︁𝑡−1
𝑖=0 𝑑 (ℓ𝑖 , ℓ𝑖+1).

A feasible assignment should deliver all requests, while ensuring
that all vehicle walks are feasible. The objective is to minimize the
total travel distance of all vehicle walks in a feasible assignmentA,
denoted as cost(A), i.e. min

∑︁
walk𝑘 ∈A cost(walk𝑘).

Definition 2 (Multi-Vehicle DaRP). Given a metric space (𝑉 ,𝑑), a
set of 𝑛 requests 𝑅 := {𝑠𝑖 , 𝑡𝑖 }𝑛𝑖=1 ∈ 𝑉

2
, and a set of𝑚 vehicles with lo-

cations𝑉𝐾 := {𝑝𝑘 }𝑚𝑘=1 ∈ 𝑉 and a capacity 𝜆, find a set ofminimum
length vehicle walks of the vehicles starting at {𝑝𝑘 }𝑚𝑘=1 ∈ 𝑉 that

moves each request 𝑟𝑖 from its origin 𝑠𝑖 to its destination 𝑡𝑖 such that

each vehicle carries at most 𝜆 requests at any point along the walk.

We say that a request is preempted if, after being picked up
from its origin, it is left temporarily at some vertex before being
picked-up again and delivered to its destination. In our setting this
is not allowed, as we study the non-preemptive DaRP. Finally,
when referring to set of requests, we view it both as a set of pairs
in 𝑉 ×𝑉 and as a subset of 𝑉 , where in the latter case it contains
all pickup and drop-off locations appearing in the requests. Which
viewpoint is being used should be clear from the context.

Example 1. We use Figure 1 as a running example. Given 2 vehicles
originally located at 𝑝1 and 𝑝2, and 8 customer requests 𝑟𝑖 (𝑖 ∈ [8])
where customer 𝑖 aims to travel from 𝑠𝑖 to 𝑡𝑖 ; The vehicle capacity

is 4 and the distance metric is denoted as 𝑑 . We would like to find

two vehicle walks starting at {𝑝𝑘 }2𝑘=1 that moves each 𝑟𝑖 from its

origin 𝑠𝑖 to its destination 𝑡𝑖 such that each vehicle carries at most 4
requests at any point along the walk. There are 28 possible ways to
assign the 8 requests to the two vehicles, and a vehicle can have many

different orders to serve the assigned requests. For example, if 𝑟1, 𝑟2
are assigned to vehicle 1, then there are 6 feasible walks:

⟨𝑝1, 𝑠1, 𝑡1, 𝑠2, 𝑡2⟩, ⟨𝑝1, 𝑠1, 𝑠2, 𝑡1, 𝑡2⟩, ⟨𝑝1, 𝑠1, 𝑠2, 𝑡2, 𝑡1⟩,

⟨𝑝1, 𝑠2, 𝑡2, 𝑠1, 𝑡1⟩, ⟨𝑝1, 𝑠2, 𝑠1, 𝑡2, 𝑡1⟩, ⟨𝑝1, 𝑠2, 𝑠1, 𝑡1, 𝑡2⟩.

1A walk is a finite-length sequence of vertices 𝑣1, 𝑣2, ..., 𝑣𝑁 ∈ 𝑉 for some 𝑁 , and the
cost (length) of the walk is defined as

∑︁𝑁−1
𝑖=1 𝑑 (𝑣𝑖 , 𝑣𝑖+1) .

The cost of serving requests is equal to the total length of the vehicle

walks. For example, the cost of a walk ⟨𝑝1, 𝑠1, 𝑡1, 𝑠2, 𝑡2⟩ is equal to
𝑑 (𝑝1, 𝑠1) + 𝑑 (𝑠1, 𝑡1) + 𝑑 (𝑡1, 𝑠2) + 𝑑 (𝑠2, 𝑡2). Then, the optimal solution

is the minimum length vehicle walks that serve all requests.

p1

p2

s1

s2

t1
t2

t3s3

s6

s4

t4 s5

t8
t7

t5
t6

s7

s8
🚌🚌 🧍

🧍🧍 🧍🧍 🧍🧍🧍

Figure 1: DaRP example

4 HGR: A NEW ALGORITHM FOR DARP
In this section, we introduce a novel 𝑂 (

√
𝜆 log𝑛)-approximation

algorithm, which we call Hierarchical Grouping and Routing (HGR),
for the Multi-Vehicle DaRP.

Before going in to the details of the algorithm and proof of
approximation ratio, we give some high level ideas about our main
techniques. The first idea towards designing this algorithm is to
partition the requests into disjoint groups of size at most 𝜆. The
intent is to let a vehicle start empty, and serve one group entirely
before moving on to the next one. Note that an optimal solution
to this problem does not necessarily follow this strategy. However,
the authors in [17] shows that there always exists a near-optimal

solution which follows such a strategy. The following fact makes
this formal.

Fact 1 (Solution Structure). [17] Given any DaRP instance, there

exists a feasible walk 𝜏 satisfying the following conditions:

• 𝜏 can be split into a set of segments {𝑆1, ..., 𝑆𝑡 } where each
segment 𝑆𝑖 services a set𝑂𝑖 of at most 𝜆 requests such that 𝑆𝑖
is a path that first picks up each request in 𝑂𝑖 ⊆ 𝑅 and then

drops each of them.

• The length of 𝜏 is at most 𝑂 (log𝑛) times the length of an

optimal walk.

Although the above fact has been only proven for the single-
vehicle DaRP in [17], it is not difficult to generalize this to the case
of Multi-Vehicle DaRP: the fact directly implies that for each of
the optimal vehicle walk in the Multi-Vehicle DaRP, there exists
a feasible walk 𝜏 with a length no more than 𝑂 (log𝑛) times the
optimal walk length; Since the length of the Multi-Vehicle DaRP is
the sum of the all vehicles walk lengths, Fact 1 still holds for the
Multi-Vehicle DaRP. The authors in [17] exploit this fact to design a
greedy algorithm for the single vehicle case which works roughly as
follows. The algorithm is iterative, where at each iteration, a group
of 𝜆 requests (except possibly at the last iteration which might have
less than 𝜆 requests) are formed. The criteria to form a new group is
that among the remaining requests, they can be served by travelling
the minimum total distance. A significant challenge in [17] was to
design a method to make the greedy choice in each iteration. This

1197

requires them to solve a highly non-trivial problem they call 𝜆-
forest, which is closely related to a notoriously hard problem called
the 𝜆-densest sub-graph problem. Indeed, the main contribution
of the above paper was giving a 𝑂 (

√
𝜆)-approximation algorithm

for 𝜆-forest. This was combined with a standard argument from
approximation algorithms literature to show that the overall ap-
proximation guarantee is𝑂 (𝜆 log2 𝑛). However, this approach poses
the following challenges in being effective as a practical algorithm
for the multiple-vehicle case.

(1) The algorithm they use to solve 𝜆-forest, although giving
reasonable approximation guarantees, is highly compli-
cated and not practical. In fact, we had implemented this
approach for a single vehicle and found the running time
scaling prohibitively with the number of requests (For 200
requests and capacity 16, it takes 1900 seconds, and for 500
requests and capacity 4, it takes 1500 seconds. We contrast
this with our algorithm can handle say 10k requests with
capacity 32 in about 100 seconds).

(2) It is not immediately clear how to adopt the above approach
to the multiple vehicle case. Although Fact 1 still continues
to be true, a major challenge here is to determine which
group to assign to which vehicle (note that this issue does
not exist in the single vehicle case). So, any algorithmwhich
aims to provide a theoretical guarantee needs to combine
the grouping phase and the assignment phase while not
incurring a lot of cost.

In order to overcome these two issues, we avoid the local greedy
approach of [17] and develop a novel algorithm that exploits a more
global viewpoint. Our core technical contribution is to design a hier-
archical grouping technique which avoids solving complicated prob-
lems like 𝜆-forest. Instead we use relatively simpler sub-routines
like bipartite matching and minimum spanning trees and still man-
age to obtain the same approximation ratio as [17] for the multiple
vehicle case. This not only makes our algorithm more efficient and
relatively easier to implement, we are also able to avoid the ad-
ditional log𝑛 factor incurred by [17] due to the iterative greedy
approach. Now we present the technical details of our algorithm.

As mentioned above, our main idea is to develop a hierarchical
clustering algorithm to solve the grouping problem. Indeed, we
partition requests into groups of size ≤ 𝜆 by considering the follow-
ing capacitated grouping problem (see Definition 3), and give an
approximation guarantee of 𝑂 (

√
𝜆) (see Theorem 2 in Section 5).

Definition 3 (Capacitated Grouping Problem). Given an 𝑛-vertex

metric space (𝑉 ,𝑑) and requests 𝑅 := {𝑠𝑖 , 𝑡𝑖 }𝑚𝑖=1 ∈ 𝑉
2
, find a set of

minimum length walks that serves all requests and such that each

walk covers at most 𝜆 requests.

When talking about a walk in the capacitated grouping problem,
it is always associated with the request group covered by it. A feasi-

ble partitionP of𝑅 partitions𝑅 into groups of size at most 𝜆. Awalk
covering request group 𝑃 ∈ P is a sequence w𝑃 = ⟨ℓ1, ℓ2, · · · , ℓℎ⟩
that traverses 𝑃 , where ℓ𝑖 ∈ {𝑠𝑟 : 𝑟 ∈ 𝑃} ∪ {𝑡𝑟 : 𝑟 ∈ 𝑃}, 1 ≤ 𝑖 ≤ ℎ. A
walkw𝑃 is feasible if ∀𝑟 ∈ 𝑃 , 𝑠𝑟 appears before 𝑡𝑟 inw𝑃 . The cost of
w𝑃 is denoted as cost(w𝑃) =

∑︁ℎ−1
𝑖=1 𝑑 (ℓ𝑖 , ℓ𝑖+1). The cost of partition

P is denoted as cost(P) = ∑︁
𝑃 ∈P minfeasible w𝑃 cost(w𝑃).

Our main algorithm (Algorithm 1) for DaRP first treats the input
as an instance of Capacitated Grouping Problem and solves it using
Algorithm 2 to get a partition, then builds an actual route based
on the partition. We now describe the main ideas in each step (See
Figure 2 for an example).

Algorithm 1 Hierarchical Grouping and Routing (HGR)

Input: Request set 𝑅, Vehicle locations𝑉𝐾 and capacity 𝜆
Output: A feasible assignment A
1: P ← Hierarchical Grouping(𝑅, 𝜆) // Alg. 2
2: A ← Routing(𝑅, P,𝑉𝐾) // Alg. 5
3: return A = {walk𝑘 : 𝑘 ∈ 𝐾 }

In Step 1, the Hierarchical Grouping algorithm partitions
requests into groups such that the total length of walks covering
the partition is not too large compared with the optimal solution. To
achieve this goal, we develop a non-trivial two-layer hierarchical
grouping technique: in the outer layer, iteratively combine two
clusters of requests into one cluster; inside each cluster, we form
groups to ensure that closer requests are grouped together and
far-apart requests are divided into separate groups.

In Step 2, we use the partition obtained in Step 1 to design actual
routes for all vehicles. The idea is to view each group as a single
vertex, and compute a cheap spanning forest to assign vehicles to
groups. The forest is computed such that each tree in it is rooted as
some vehicle location of 𝑉𝐾 , and this vehicle will traverse the tree
to serve its requests in a group-by-group manner. We obtain the
following result.

Theorem 1. Given a Multi-Vehicle DaRP with set of requests 𝑅

and set of vehicles 𝐾 , each with a capacity 𝜆, the HGR algorithm runs

in time O(|𝑅 |3 log 𝜆 + |𝑅 |2𝜆2 log 𝜆) and returns a set of |𝐾 | feasible
walks serving all requests in 𝑅 such that the total travel distance

is at most O(
√
𝜆 · log |𝑅 |) times that of an optimal solution to the

Muil-Vehicle DaRP.

Example 2. Figure 2 shows running HGR on the Multi-DaRP in-

stance given in Example 1 (Figure 1). HGR first invokes Hierarchical

Grouping (Alg. 2) to partition requests into groups. In the outer layer

of HG, we form clusters hierarchically. Here, there are 4 clusters in the
1st iteration: {{𝑟1, 𝑟2}}, {{𝑟3}, {𝑟4}}, {{𝑟5, 𝑟6}} and {{𝑟7, 𝑟8}}, and
2 clusters in the 2nd iteration: {{𝑟1, 𝑟2, 𝑟3}, {𝑟4}}, {{𝑟5, 𝑟6, 𝑟7, 𝑟8}}.
In the inner layer, we form groups inside each cluster based on the

requests.

• If the requests of two clusters in the previous iteration are

far-apart, although they are combined to one cluster, they are

kept in separate groups. This is the case for the two clusters

{{𝑟3}}, {{𝑟4}} from the 0th iteration, which are combined

into cluster {{𝑟3}, {𝑟4}} in the 1st iteration.
• If some requests of two clusters in the previous iteration

are close and they are combined to one cluster, then they

are grouped together. This is the case for the two clusters

{{𝑟5, 𝑟6}}, {{𝑟7, 𝑟8}} from the 1st iteration, which are com-

bined into cluster {{𝑟5, 𝑟6, 𝑟7, 𝑟8}} in the 2nd iteration in Fig-

ure 2.

After log 4 = 2 iterations, we obtain the partition of the requests:

{𝑟1, 𝑟2, 𝑟3}, {𝑟4}, {𝑟5, 𝑟6, 𝑟7, 𝑟8}.

1198

In the second step, HGR invokes Routing (Alg. 5) to build the final

route based on the obtained partition. Each request group (with no

more than 𝜆 requests) is viewed as a point, and we compute a min-

imum spanning forest over 5 points {𝑟1, 𝑟2, 𝑟3}, {𝑟4}, {𝑟5, 𝑟6, 𝑟7, 𝑟8},
𝑝1, 𝑝2 such that each tree is rooted at 𝑝1, 𝑝2. Then by traversing the

tree to serve requests in a group-by-group manner, we obtain the two

walks ⟨𝑝1, 𝑠3, 𝑠1, 𝑠2, 𝑡1, 𝑡2, 𝑡3, 𝑠4, 𝑡4⟩ and ⟨𝑝2, 𝑠5, 𝑠6, 𝑠7, 𝑡6, 𝑡5, 𝑠8, 𝑡8, 𝑡7⟩.

Request

Group

Cluster

0th

1st

2nd

Combine cluster

r1 r2 r3 r4 r5 r6 r7 r8

r1, r2
r3

r4

r5, r6
r7, r8

p1

p2

Vehicle

Request group

Hierarchical Grouping(R, 4)

Spanning forest

p1

p2

s1

s2

t1

t2

t3s3

s6

s4

t4 s5

t8
t7

t5
t6

s7

s8

Routing(R, P, VK)

Walk

🚌🚌

Figure 2: HGR for the DaRP example

We describe the HGR algorithm in more detail in Section 5 and
Section 6. Proofs omitted due to space restrictions can be found in
the full version [26].

5 PART (I): GROUPING
In this section, we present the Hierarchical Grouping (HG) algo-
rithm, and use it to give an approximation guarantee of 𝑂 (

√
𝜆) for

the capacitated grouping problem. The intuition behind HG is to
cluster requests iteratively such that in each iteration, the number
of requests clustered together is doubled, so that after log 𝜆 iter-
ations, every cluster contains 𝜆 requests. However, treating each
cluster as a single group does not necessarily give small cost (i.e.,
travel length): In fact, this can be far from optimal, where good
solutions may all use much smaller groups. Therefore, we develop
the two-layer hierarchical grouping technique: In the outer layer,
we form clusters hierarchically such that by combining 2 clusters of
the (𝑖 − 1)-th iteration, the number of requests in each cluster is 2𝑖
in the 𝑖-th iteration, until each cluster contains 𝜆 requests2; In the
inner layer, we form groups inside each cluster to ensure that closer
requests are grouped together and far-apart requests are kept in
separate groups. Notice that initially each cluster contains exactly
one request. Since each iteration doubles the number of requests in
each cluster and at the end each cluster contains no more than 𝜆
requests, the hierarchical grouping process will continue for ⌊log 𝜆⌋
iterations.
2It also works for 𝜆 which is (possibly) not exact powers of 2: for an arbitrary 𝜆 with
2𝑖 < 𝜆 < 2𝑖+1 , the process ends when each cluster contains 2𝑖 requests. It does not
affect the analysis.

The key idea is to define a suitable edge cost on a graph whose
vertices represent the clusters formed in each iteration, and each
iteration is carried out by computing a minimum-cost matching on
this graph. The design of the edge cost function of the graph needs
to be very careful, such that we can bound the cost of covering the
groups with respect to the optimal cost.

Before formally presenting the algorithm, we define the follow-
ing notations:

• (Request-) group 𝑃,𝑋 ⊆ 𝑅: a set of requests
• (Group-) cluster P,Q,X: a set of groups
• (Cluster-) collection𝔐: a set of clusters

Specifically, we use notation𝑤 (X,X′) to represent cost func-
tion on the edges (connecting two clustersX andX′) of a graph.We
first define the following notations for (request-) groups 𝑋,𝑋 ′ ⊆ 𝑅:
(1) Minimum Spanning Tree (MST) cost mst𝑠,𝑡 (𝑋): mst𝑠 (𝑋) (resp.

mst𝑡 (𝑋)) is defined to be the cost of a MST over the origins
(resp. destinations) of all requests in 𝑋 . Furthermore, we define
mst𝑠,𝑡 (𝑋) = mst𝑠 (𝑋) +mst𝑡 (𝑋).

(2) (Incremental) Cost of serving groups together:
𝑤1 (𝑋,𝑋 ′) = mst𝑠,𝑡 (𝑋 ∪ 𝑋 ′) −mst𝑠,𝑡 (𝑋) −mst𝑠,𝑡 (𝑋 ′) .

(3) Cost of serving groups separately:
𝑤2 (𝑋,𝑋 ′) = min

𝑟𝑖 ∈𝑋
𝑑 (𝑠𝑖 , 𝑡𝑖) + min

𝑟𝑖 ∈𝑋 ′
𝑑 (𝑠𝑖 , 𝑡𝑖) .

During the execution of HG, we build a larger cluster by merg-
ing smaller clusters, and we can choose to either merge the groups
within the smaller clusters or leave them separated. To guide the
choice, we define the cost function of merging two clusters as
follows: for every group pair 𝑋 ∈ X, 𝑋 ′ ∈ X′, we compare the
(incremental) cost 𝑤1 (𝑋,𝑋 ′) of serving two groups together and
the cost𝑤2 (𝑋,𝑋 ′) of serving groups separately; then, we take the
minimum as the cost of combining the two clusters (See Defini-
tion 4).

Definition 4 (Cost Function). Given two clusters X and X′, define
𝑤 (X,X′) = min

𝑋 ∈X,𝑋 ′∈X′
min{𝑤1 (𝑋,𝑋 ′),𝑤2 (𝑋,𝑋 ′)}

where𝑤1 and𝑤2 are defined as above.

We now describe the algorithm formally. In order to simplify
the description, we assume for now that 𝜆 is a power of 2. It is
straightforward to adapt the procedures for arbitrary 𝜆 with the
same approximation guarantee.

In Algorithm 2, we iteratively build larger clusters in a hierar-
chical way, until every cluster is of size 𝜆. Note that each cluster
may still contain multiple request groups. We first initialize a trivial
collection𝔐0 containing |𝑅 | clusters, where each cluster contains
one group and each group contains a distinct request (Line 1). Then,
we repeat for log 𝜆 iterations, where in each iteration we compute
a minimum weight perfect matching 3 on the current cluster collec-
tion (Line 7-8), and merge the matched clusters to form a collection
for the next iteration (Line 9-13). Therefore, after each iteration, the
number of clusters is halved, while the number of requests in each
cluster is doubled. The weight function𝑤 defined in Definition 4
3The perfect matching is a classical problem in combinatorial optimization. The fa-
mous Edmond’s algorithm [12, 36] solves the problem in polynomial-time and is
usually invoked as a blackbox. In our computational experiments, we use a modern
implementation of Edmonds’s algorithm, available at [23].

1199

is crucial for guiding the merge step (Line 9-13). When merging
two clusters, we may also merge two groups from them (Line 11),
or leave the groups untouched (Line 13), depending on whether
𝑤 achieves its value via𝑤1 or𝑤2. Finally, we “unbox” the clusters
and return all the groups formed.

Algorithm 2 Hierarchical Grouping(𝑅,𝜆)
Input: 𝑅 and 𝜆
Output: a partition P, each group 𝑃 ∈ P contains not more than 𝜆 re-

quests
1: 𝔐0 =

⋃︁
𝑟𝑖 ∈𝑅 {{{𝑟𝑖 }}}

2: ℓ = 0
3: while ℓ < log𝜆 do
4: ℓ = ℓ + 1
5: 𝔐ℓ = ∅
6: Pℓ = ∅
7: Let 𝐺ℓ ≡ (𝔐ℓ−1, 𝑒) be a complete graph with edge weights

𝑤 (Q, Q′) for any Q, Q′ ∈ 𝔐ℓ−1
8: Find a minimum weight matching𝑀ℓ in𝐺ℓ ≡ (𝔐ℓ−1, 𝑒) with total

weight 𝑤 (𝑀ℓ) =
∑︁
(Q,Q′)∈𝑀ℓ 𝑤 (Q, Q

′)
9: for (Q, Q′) ∈ 𝑀ℓ do
10: if 𝑤 (Q, Q′) = 𝑤1 (𝑃, 𝑃 ′), 𝑃 ∈ Q, 𝑃 ′ ∈ Q′ then
11: add cluster Q ∪ Q′ ∪ {𝑃 ∪ 𝑃 ′ } \ {𝑃, 𝑃 ′ } to collection 𝔐𝑖

12: else if 𝑤 (Q, Q′) = 𝑤2 (𝑃, 𝑃 ′), 𝑃 ∈ Q, 𝑃 ′ ∈ Q′ then
13: add cluster Q ∪ Q′ to collection 𝔐𝑖

14: P𝑙 ← {𝑄 ∈ Q : Q ∈ 𝔐𝑙 } for 𝑙 = 1, . . . , log𝜆
15: return 𝑤 (𝑀ℓ) for 1 ≤ ℓ ≤ log𝜆 and P = Plog𝜆

We first prove some important properties of the Hierarchical
Grouping (HG) algorithm that will help us to bound total cost of the
capacity-bounded groups. Let P𝑙 denote the 𝑙-th partition obtained
by the HGAlgorithm 2 and let P𝑙,=𝑖 ⊆ P𝑙 denote the request groups
of size 2𝑖 , i.e., P𝑙,=𝑖 = {𝑃 ∈ P𝑙 : |𝑃 | = 2𝑖 }, and let P𝑙,<𝑖 (resp. P𝑙,>𝑖)
denote the request groups of size smaller than (resp. more than) 2𝑖 ,
i.e, P𝑙,<𝑖 = {𝑃 ∈ P𝑙 : |𝑃 | < 2𝑖 }, P𝑙,>𝑖 = {𝑃 ∈ P𝑙 : |𝑃 | > 2𝑖 }. Based
on the definition of the cost function 𝑤 , we have the following
lemma by a telescope sum:

Lemma 1. For partition P𝑙 , 𝑙 ∈ [log 𝜆], obtained by Algorithm 2,

we have∑︂
𝑃 ∈P𝑙

(︃
mst𝑠,𝑡 (𝑃) + min

𝑟𝑖 ∈𝑃
𝑑 (𝑠𝑖 , 𝑡𝑖)

)︃
≤

𝑙∑︂
𝑖=1

𝑤 (𝑀𝑖) +
∑︂

𝑃 ∈P𝑙,=𝑙
min
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖)

Due to space limit, we put the proof of Lemma 1 in the full
version [26].

Next, we will bound the separate serving cost
∑︂
𝑃 ∈P

min
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖)

(see Lemma 2) and
∑︁
𝑖 𝑤 (𝑀𝑖), respectively. We further introduce

the following notations. Fix an optimal partition P∗.

Lemma 2 (The Separate Serving Cost). The costs of serving a request
separately in each group of P𝑙,=log𝜆∑︂

𝑃 ∈P𝑙,=log𝜆
min
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) ≤
∑︂
𝑃 ∈P★

max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) .

Proof. Recall P𝑙,=log𝜆 =
⋃︁
𝑃 ∈P, |𝑃 |=𝜆 𝑃 . Consider a bipartite

graph (P𝑙,=log𝜆,P★, 𝐸) where for each request 𝑟 ∈ ⋃︁
𝑃 ∈P𝑙,=log𝜆 𝑃 ,

there is an edge 𝑒 (𝑟𝑖) between vertex 𝑃 ∈ P𝑙,=log𝜆 and P★. Ac-
cording to Hall’s marriage theorem, we can find a matching 𝑀
among

⋃︁
𝑃 ∈P𝑙,=log𝜆 𝑃 and P★ that covers all P𝑙,=log𝜆 . Let 𝐸 (𝑀) be

the edges in𝑀 . We have∑︂
𝑃 ∈P𝑙,=log𝜆

min
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) ≤
∑︂

𝑒 (𝑟𝑖) ∈𝐸 (𝑀)
𝑑 (𝑠𝑖 , 𝑡𝑖) ≤

∑︂
𝑃 ∈P★

max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) .

□

Lemma 3 (The ℓ-th Grouping Cost). The grouping cost in ℓ-th

iteration is

𝑤 (𝑀𝑙) ≤
∑︂
𝑃 ∈P★

2
log𝜆−𝑙

2 mst𝑠,𝑡 (𝑃) +
∑︂
𝑃 ∈P★

max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖)

if log 𝜆 − 𝑙 is even; otherwise,

𝑤 (𝑀𝑙) ≤
3
2 ·

∑︂
𝑃 ∈P★

2
log𝜆−𝑙−1

2 mst𝑠,𝑡 (𝑃) +
∑︂
𝑃 ∈P★

max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) .

Due to space limit, we leave the proof of this lemma in the full
version of this paper [26]. Based on Lemma 3, it is easy to obtain
the following lemma:

Lemma 4 (Total Grouping Cost). The total grouping cost

log𝜆∑︂
𝑙=1

𝑤 (𝑀𝑙) ≤𝑂 (
√
𝜆)

∑︂
𝑃 ∈P★

mst𝑠,𝑡 (𝑃) + log 𝜆 ·
∑︂
𝑃 ∈P★

max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖).

Now we are ready to bound the cost of the capacity-bounded
groups:

Theorem 2. The Hierarchical Grouping algorithm runs in poly-

nomial time and outputs a feasible partition P of 𝑅, such that (1)

∀𝑃 ∈ P, |𝑃 | ≤ 𝜆; (2) cost(P) ≤ 𝑂 (
√
𝜆) · cost(P∗), where P∗ is the

partition of an optimal solution for the capacitated grouping problem;

and (3) ∀𝑃 ∈ P one can efficiently find a feasible walkw𝑃 traversing

𝑃 , such that

∑︁
𝑃 ∈P cost(w𝑃) ≤ 𝑂 (cost(P)).

Proof. First notice that, given any group of request 𝑃 , we have
the following lowerbounds for the cost of the optimal walk

w∗𝑃 := argmin
feasible w𝑃

cost(w𝑃) : mst𝑠,𝑡 (𝑃) ≤ 2cost(w∗),

min
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) ≤ max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖) ≤ cost(w∗𝑃).

Then by Lemma 1, Lemma 2, and Lemma 4, we have∑︂
𝑃 ∈P
(mst𝑠,𝑡 (𝑃) + min

𝑟𝑖 ∈𝑃
𝑑 (𝑠𝑖 , 𝑡𝑖))

≤𝑂 (
√
𝜆) ·

∑︂
𝑃 ∈P★

mst𝑠,𝑡 (𝑃) + (1 + log 𝜆) ·max
𝑟𝑖 ∈𝑃

𝑑 (𝑠𝑖 , 𝑡𝑖)

≤𝑂 (
√
𝜆) ·

∑︂
𝑃 ∈P★

cost(w∗𝑃)

=𝑂 (
√
𝜆) · cost(P∗).

In particular, the twominimum spanning trees that obtainsmst𝑠,𝑡 (𝑃)
gives a feasible walk for serving requests in 𝑃 as follows: Let (𝑠, 𝑡) =
argmin(𝑠𝑖 ,𝑡𝑖) ∈𝑃 𝑑 (𝑠𝑖 , 𝑡𝑖). Pick any 𝑠 ′ ∈ {𝑠𝑟 : 𝑟 ∈ 𝑃}, 𝑠 ′ ≠ 𝑠 , and by
the classical Christofide’s algorithmwe easily find a 𝑠 ′-𝑠 TSP path on
{𝑠𝑟 : 𝑟 ∈ 𝑃}with cost at most𝑂 (mst𝑠 (𝑃)). Similarly, we can find a 𝑡-
𝑡 ′ TSP path on {𝑡𝑟 : 𝑟 ∈ 𝑃} with cost at most𝑂 (mst𝑡 (𝑃)). By gluing

1200

the two TSP path together through (𝑠, 𝑡) we get a feasible walk,
w𝑃 , on 𝑃 with cost𝑂 (mst𝑠,𝑡 (𝑃) +min𝑟𝑖 ∈𝑃 𝑑 (𝑠𝑖 , 𝑡𝑖)). This is the w𝑃
used in the theorem statement. Since cost(P) ≤ ∑︁

𝑃 ∈P cost(w𝑃),
the existence of w𝑃 also implies cost(P) ≤ 𝑂 (

√
𝜆) · cost(P∗). □

6 PART (II): ROUTING
After invoking Algorithm 2 to get the partition P of requests, we
now describe how to find actual routes for the vehicles — the assign-
ment A. The requests will be served group-by-group, meaning that
each group is served exclusively and non-preemptively

4 by some
vehicle. Such route is of course unlikely to be optimal, nevertheless,
the previous hierarchical grouping phase provides a nice structure,
which allows us to prove a good approximation ratio.

Our routing phase consists of two steps: First we will generate a
set of graphs, specifically we call a rooted spanning forest (defined
below) F that connects each group to exactly one vehicle in 𝑉𝐾 ;
Then we design a routing plan that schedules the vehicles to serve
its connected groups along the edges of F . We now describe the
algorithm formally.

(I). Finding the rooted spanning forest F . First let us formally
define the rooted spanning forest.

Definition 5 (Rooted Spanning Forest (RSF)). Given a weighted

graph 𝐺 = (𝑉 , 𝐸) with edge cost 𝑐 : 𝐸 ↦→ R≥0 and a root set 𝑈 ⊆ 𝑉 ,
we say a set F = {𝑇𝑖 }𝑖 of (disjoint) trees is a rooted spanning forest
(RSF), if

(1) Each 𝑇𝑖 ∈ F is a tree rooted at some vertex of𝑈 ;

(2) 𝑇𝑖 ∩𝑇𝑗 = ∅ for any 𝑖 ≠ 𝑗 ;

(3) For any non-root 𝑣 ∈ 𝑉 \𝑈 , there is some 𝑇𝑖 ∈ F contains 𝑣 .

Lastly, define the cost of F as 𝑐 (F) =
∑︂
𝑇 ∈F

𝑐 (𝑇) =
∑︂
𝑇 ∈F

∑︂
𝑒∈𝑇

𝑐 (𝑒). We

say F is a Minimum Rooted Spanning Forest (MRSF) if F achieves

minimum cost among all rooted spanning forests.

Claim 1. Given 𝐺, 𝑐,𝑈 as above in Definition 5, we can find a mini-

mum rooted spanning forest (MRSF) F in polynomial time.

Proof. We first contract𝑈 to a single vertex 𝑢0. Then for any
non-root vertex 𝑣 , we merge all parallel edges between 𝑣 and 𝑢0,
and re-define the cost 𝑐 (𝑢0, 𝑣) := min𝑥 ∈𝑈 𝑐 (𝑥, 𝑣). Then we find a
minimum spanning tree 𝑇 in this contracted graph (using, e.g.,
Prim’s algorithm). Now we un-contract 𝑢0 back to 𝑈 : if a non-root
vertex 𝑣 was connected to 𝑢0 by 𝑇 , then after un-contraction it is
connected to its closest neighbor in𝑈 .

It is easy to see that after un-contraction 𝑇 becomes a rooted
spanning forest (with the same cost) in the original graph𝐺 , which
is our desired solution F . To see that F is minimum: suppose
for contradiction there is another rooted spanning forest F ′ with
smaller cost, then if we contract𝑈 , F ′ gives a spanning tree cheaper
than 𝑇 , contradicting with 𝑇 being minimum. □

We will build a minimum rooted spanning forest for the groups
P with root set 𝑉𝐾 (the vehicles). Formally, consider the complete
graph over vertices 𝑉𝐾 ∪ P, with 𝑉𝐾 being the root set. We define

4By non-preemptive, we mean a vehicle must finish serving all requests of a group
before it can start serving other groups.

the edge cost 𝑐 on this graph as follows: recall 𝑑 is the underlying
metric, and let 𝑐 be

𝑐 (𝑃, 𝑃 ′) := min
𝑟𝑖 ∈𝑃,𝑟 𝑗 ∈𝑃 ′

𝑑 (𝑠𝑖 , 𝑠 𝑗), 𝑃, 𝑃 ′ ∈ P

𝑐 (𝑢, 𝑃) := min
𝑟𝑖 ∈𝑃

𝑑 (𝑢, 𝑠𝑖), 𝑢 ∈ 𝑉𝐾 , 𝑃 ∈ P

𝑐 (𝑢, 𝑣) := 𝑑 (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉𝐾

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1)

Now, using Claim 1 we find a minimum rooted spanning forest F
w.r.t. the cost 𝑐 above. Note that each tree T ∈ F contains exactly
one vertex from 𝑉𝐾 , which we will designate as the root of T .

The above process is summarized in Algorithm 3.

Algorithm 3 MRSF(𝑉𝐾 , P)
Input: Vehicle locations𝑉𝐾 and partition P
Output: A rooted spanning forest F on𝑉𝐾 ∪ P.
1: Let 𝑐 be given as in Eq (1)
2: Find a minimum rooted spanning forest F on𝑉𝐾 ∪𝑆 with cost function
𝑑 , based on Claim 1.

3: return F

(II). DFS on F to serve all requests. For each tree T ∈ F , all
of its request will be served using only the unique vehicle that is
located at the root of T . So, now we can focus on serving a single
tree T . Roughly speaking, the vehicle leaves the root of T and
serves each group in a depth-first manner along the edges of T . But
since each group contains multiple locations, the apparent question
is, how exactly does a vehicle move?

Let 𝑆 (𝑃) denote all the pickup locations from group 𝑃 . Recall
that, by construction each edge (𝑃, 𝑃 ′) (or (𝑝𝑘 , 𝑃), 𝑝𝑘 ∈ 𝑉𝐾) in
T uniquely corresponds to an edge (𝑠, 𝑠 ′) (resp. (𝑝𝑘 , 𝑠)) for some
𝑠 ∈ 𝑆 (𝑃) and 𝑠 ′ ∈ 𝑆 (𝑃 ′), so we can think of 𝑃, 𝑃 ′ are connected via
the “portals” 𝑠, 𝑠 ′. We also denote the portal via which a group 𝑃
connects to its parent as 𝑠0 (𝑃). For ease of presentation, we also
define 𝑠0 (𝑝𝑘) := 𝑝𝑘 for all 𝑝𝑘 ∈ 𝑉𝐾 . The vehicle will always enter
𝑃 at 𝑠0 (𝑃) from its parent.

Then, let w𝑃 be the walk serving 𝑃 that is guaranteed by Theo-
rem 2, and let 𝑠1 be the starting point of w𝑃 . The vehicle will first
move to 𝑠1 from 𝑠0 (𝑃) and serve all requests of 𝑃 by following w𝑃 ,
then traverse 𝑆 (𝑃) again in the order determined byw𝑃 , serving its
children groups recursively. Finally, the vehicle move back to 𝑠0 (𝑃)
and return to 𝑃 ’s parent. The process is summarized in Algorithm 4.
We also provide an example in Figure 3.

With Algorithm 3 (Mrsf) and 4 (Dfs) at hand, the final Routing
algorithm is quite straightforward: just applyDfs to each tree of the
rooted spanning forest returned byMrsf, as shown in Algorithm 5.

7 PROOF OF THEOREM 1
Now we can prove our main theorem, restated below.

Theorem 1. Given a Multi-Vehicle DaRP with set of requests 𝑅

and set of vehicles 𝐾 , each with a capacity 𝜆, the HGR algorithm runs

in time O(|𝑅 |3 log 𝜆 + |𝑅 |2𝜆2 log 𝜆) and returns a set of |𝐾 | feasible
walks serving all requests in 𝑅 such that the total travel distance

is at most O(
√
𝜆 · log |𝑅 |) times that of an optimal solution to the

Muil-Vehicle DaRP.

1201

Algorithm 4 Dfs(𝑃 , T)
Input: 𝑃 ∈ 𝑉𝐾 ∪ P, and T is a tree on𝑉𝐾 ∪ P containing 𝑃
Output: A feasible walk w covering the subtree of T rooted at 𝑃
1: w← ⟨𝑠0 (𝑃) ⟩
2: if 𝑃 ∈ P then
3: w𝑃 ←the walk guaranteed by Theorem 2
4: else
5: w𝑃 ← ⟨𝑃 ⟩ // If 𝑃 ∈ 𝑉𝐾 is a vehicle location
6: 𝑠 ←starting point of w𝑃
7: Append w𝑃 to w // Serve 𝑃
8: for each 𝑠 ∈ 𝑆 (𝑃) in the order of w𝑃 do
9: for each child group 𝑃 ′ of 𝑃 connected via 𝑠 do
10: Append 𝑠 to w
11: w′ ←Dfs(𝑃 ′, T)
12: Append w′ to w
13: Append 𝑠 to w
14: Append 𝑠0 (𝑃) to w
15: return w

s0(P)P

pk ∈ VK

s1t2

: request group : drop-off location
: pick-up location

: edges of ℱ
: vehicle initial location : walk wP

: vehicle trajectory

(1) (2) (3)

s0(P)P

pk ∈ VK

s1t2
s0(P)P

pk ∈ VK

s1t2

Figure 3: Example of serving the groups using DFS. Figure (1)
shows the constructed spanning forest F , and w𝑃 that starts
at some 𝑠1 and ends at 𝑡2. Figure (2) shows how the vehicle
serves 𝑃 : it enters 𝑃 at 𝑠0 (𝑃), then move to 𝑠1 and serves 𝑃 by
following w𝑃 . Figure (3) shows how the vehicle recursively
serve 𝑃 ’s children after serving 𝑃 : it first moves back to 𝑠1, and
visit children of 𝑃 in the order ofw𝑃 (breaking ties arbitrarily).

Algorithm 5 Routing(𝑅, P,𝑉𝐾)
Input: 𝑅, P and𝑉𝐾
Output: An assignment A that serves 𝑅
1: 𝑆 ← set of all pick-up locations of 𝑅.
2: F ← Mrsf(𝑉𝐾 , P) // Proc. 3
3: A ← ∅
4: for each tree T ∈ F do
5: 𝑝𝑘 ←root of T
6: wT ← Dfs(𝑝𝑘 , T) // Proc. 4
7: return A = {wT : T ∈ F}

Let A be the solution returned by HGR (Algorithm 1), P be
the partition output by Hierarchical Grouping (Algorithm 2),
and F be the rooted spanning forest obtained by Mrsf(𝑉𝐾 ,P)
(Procedure 3).

First, we have the following simple claim on the cost of F .

Claim 2. Let 𝑆 denote the set of all pick-up locations in 𝑅. For

any request partition P, let F = Mrsf(𝑉𝐾 ,P) (Procedure 3) and
cost(F) := ∑︁

𝑒∈F 𝑑 (𝑒), then we have:

cost(F) ≤ cost(A∗),

whereA∗ is any feasible solution to the original Dial-a-Ride problem.

Proof. The solution A∗, being a collection of walks, can also
be thought as a rooted spanning forest over all the pick-up (as
well as the drop-off) locations: View each walk as a sequence of
weighted edges (with weight given by metric 𝑑), then every 𝑠 ∈ 𝑆 is
connected to some vehicle from 𝑉𝐾 as a root. Now we modify A∗
in three steps to make it also a RSF on 𝑉𝐾 ∪ P using the same cost
function 𝑐 (Eq (1)):

(1) Shortcut every drop-off locations to make A∗ a rooted
spanning forest on 𝑆 only. Since the distance 𝑑 is a metric,
this only reduces A∗’s cost;

(2) Then we contract each group of P to a single vertex, which
preserves only between-group edges ofA∗. This again only
reduces its cost;

(3) Finally, since each remaining edge is either between two
groups or between a group and a vertex in 𝑉𝐾 , we can
reassign its cost using 𝑐 . By definition of 𝑐 , this only reduces
the total cost.

Denote the resulting graph as A ′. By construction, it is a rooted
spanning subgraph over 𝑉𝐾 ∪ P with at most the same cost of A∗.
Then by definition we have cost(F) ≤ cost(A ′) ≤ cost(A∗). □

Now we give the proof for the main theorem.

Proof of Theorem 1. Firstly, any optimal solutionA ′ is also a
collection of walks starting from locations in𝑉𝐾 . Applying Fact 1 to
each walk ofA ′, we get a new solutionA∗ such that (1) every walk
of A∗ serves requests in a group-by-group manner, where each
group is of size at most 𝜆; and (2) cost(A∗) ≤ cost(A ′) ·𝑂 (log𝑛) =
𝑂 (log𝑛)OPT.

Then we show cost(A) can be bounded by 𝑂 (
√
𝜆) · cost(A∗),

which will give cost(A) ≤ 𝑂 (
√
𝜆 log𝑛) · OPT. cost(A) can be

decomposed into two parts: the cost of traveling along edges in F ,
and the cost of moving within each group. By the nature of DFS,
each edge of F is traversed exactly twice, therefore the first part of
the cost is at most 2cost(F) ≤ 2cost(A∗) by Claim 2.

For the second part of cost, we fix a request group 𝑃 and consider
the total travel distance of the vehicle within 𝑃 . Recall 𝑠0 (𝑃) is the
“portal” connecting 𝑃 with its parent, and w𝑃 is the walk given
by Theorem 2 that serves all requests in 𝑃 . Let 𝑠 ′ be the starting
location of w𝑃 . The vehicle first moves from 𝑠0 (𝑃) to 𝑠 ′, which
takes at most cost(w𝑃). It then serves all of 𝑃 by following w𝑃 ,
which takes another cost(w𝑃). The vehicle then moves back to
𝑠 ′ and traverse w𝑃 again to recursively serve all children groups
of 𝑃 , and finally moves to 𝑠0 (𝑃). This process will cost at most
another 3cost(w𝑃). So overall the travel distance within 𝑃 is at
most 5cost(w𝑃). (Note this is apparently not the most efficient
moving strategy, but it suffices to give the desired bound)

To summarize, cost(A) ≤ 2cost(A∗) + 5∑︁𝑃 ∈P cost(w𝑃) ≤
𝑂 (
√
𝜆) · cost(A∗), where the last inequality is by Theorem 2. This

concludes our proof. □

1202

8 COMPUTATIONAL EXPERIMENTS
8.1 DaRP Instances and Baselines
Synthetic datasets. We first benchmark HGR on two synthetic
datasets, in order to gain insights about the overall solution qual-
ity and runtime performance. In the first dataset (SY-U), locations
(i.e., request pickups, drop-offs and drivers’ initial locations) are
randomly generated from a uniform distribution on a [0, 100]2 grid.
In the second dataset (SY-G), locations are randomly generated
from a Gaussian mixed-model (GMM) with 𝑍 clusters. Each cluster
corresponds to a bivariate Gaussian distribution whose center is
drawn from a uniform distribution on a [0, 1000]2 grid and with
covariance matrix given by 𝜎2I. SY-G instances represent a topog-
raphy with multiple demand clusters as typically found, e.g., in
sparse urban areas. For the SY-G distribution, several combinations
of parameters 𝑍 and 𝜎 are tested, as detailed in Table 1. The choices
of these synthetic distributions mainly follow the same setting used
in previous works [37, 38].

Realworld datasets.We also test the algorithms on two realworld
datasets consisting of transportation data fromNewYork City (NYC)
and San Francisco (SFO).

• NYC: We use NYC Taxi & Limousine Commission Trip
Record Data [30]. In particular, we randomly select 10,000
trip records from May/2016.

• SFO: We use the Cab Spotting Data [34], which records
roughly 500 taxis’ trace data in a period of 30 days. Again,
we randomly select 10,000 trip records from the original
dataset.

In these datasets a location is specified by its latitude and longi-
tude coordinates. The distance between two locations is defined to
be the graph (shortest-path) distance calculated via the actual road
map of the two cities, which we obtain from the OpenStreetMap
database [31]. All parameter settings are detailed in Table 1.

Table 1: Parameter settings for the datasets. Bold values
indicate fixed parameter values for the sensitivity analyses.

SY-U, NYC and SFO SY-G

𝑛 2, 4, 6, 8, 10 (×103) 2, 4, 6 (×103)
𝑚 30, 60, 90, 120, 150 30, 60, 90
𝜆 2, 4, 8, 16, 32, 64 4, 8, 16
𝑍 5, 10, 20, 50, 100
𝜎 5, 10, 25, 50, 100, 250

Metrics and Baselines. We measure the performance of the algo-
rithms with respect to two objectives. The first is the total travel
distance, which is whatHGR is set to optimize. The second objective
is the total in-transit latency: the in-transit latency for a rider is
the time length he/she is on board, i.e., the time between being
picked-up and finally dropped-off at his/her destination. Total in-
transit latency corresponds to the sum of in-transit latency over
all rides. This objective is crucial for customer experience as most
riders prefer to reach their destination as quickly as possible after
being picked-up.

We adopt two recent DaRP algorithms as the main baselines in
our experiments:

• pruneGDP [37]: This is a heuristic algorithm that builds
routes incrementally by greedily inserting new requests.
It is designed to optimize the total travel distance and can
be implemented very efficiently, though no approximation
guarantee is known.

• FESI [38]: This algorithm optimizes the makespan of vehi-
cles, i.e., the maximum distance traveled by the vehicles.
However, as claimed in [38], FESI also obtains small total
travel distance on various datasets, often comparable with
pruneGDP. We remark that FESI has a𝑂 (

√
𝜆 log𝑛) approx-

imation guarantee in terms of the makespan objective, but
no guarantee for total travel distance is known.

There are many classical (meta-)heuristic and exact algorithms for
DaRP, including Branch-and-Bound [6, 16, 35], Tabu Search [7, 10],
Neighborhood Search [15, 32], and Genetic Algorithms [8, 22, 29].
Compared with these algorithms, the two baselines we choose
stand out particularly with their ability to handle large instances:
both of them can deal with tens of thousands of requests very
efficiently, while most former algorithms can only handle a few
thousand requests at most. Besides, FESI and pruneGDP achieved
state-of-the-art performance in previous experiments [37, 38]. We
also refer to a recent and comprehensive benchmark of heuristic
algorithms [18].5

Implementation. We use the publicly-available code provided by
[38] for FESI. Other algorithms (including ours) are implemented
in C++. All experiments are conducted on a single core of an Intel®
Xeon® Gold 6130 (2.1GHz) processor with 32GB of available RAM.
As FESI is a randomized algorithm, we run FESI 10 times on each
instance and report the average results. Our implementations, with
which all results can be reproduced, is publicly available at https:
//github.com/amflorio/hga-dial-a-ride.

8.2 Computational Results
Figures 4— 6 depict the results on synthetic datasets. Results on
realworld datasets are shown in Figure 7 and 8. Overall, our algo-
rithm exhibits clear superiority on both objectives in almost all
parameter regimes and datasets. Now, we discuss the effect of each
parameter in more details.

Synthetic datasets. Figures 4 and 5 illustrate the effect of 𝑛, 𝑚
and 𝜆 on the algorithms’ performance, for data generated from
uniform and GMM distributions, respectively. We remark that the
trend on the synthetic datasets are much similar to that on the real-
world datasets (Figures 7 and 8), therefore we postpone a detailed
discussion on the effect of 𝑛,𝑚 and 𝜆 to the later part when report-
ing results on realworld datasets. Generally speaking, for the total
travel distance objective, our algorithm HGR consistently performs
the best. When it comes to in-transit latency, our algorithm still
achieves the best objective in most parameter regimes, but FESI
is able to exploit more or larger vehicles, and is likely to provide
better latency.

5The benchmark results can also be accessed at https://sites.google.com/site/
darpsurvey/comparison.

1203

https://github.com/amflorio/hga-dial-a-ride
https://github.com/amflorio/hga-dial-a-ride
https://sites.google.com/site/darpsurvey/comparison
https://sites.google.com/site/darpsurvey/comparison

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

0.5

1.0

1.5

T
ot

al
tr

av
el

di
st

an
ce

×105

50 100 150

m: #vehicles

0.8

1.0

1.2

1.4

1.6
×105

0 20 40 60

λ: vehicle capacity

2

4

6

×105

HGR

pruneGDP

FESI

m = 90, λ = 32 n = 8000, λ = 32 n = 8000,m = 90

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

1

2

3

4

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×106

50 100 150

m: #vehicles

1

2

3

×106

0 20 40 60

λ: vehicle capacity

1

2

3

4

×106

Figure 4: Results on the Uniform synthetic dataset (SY-U)
with varying 𝑛,𝑚, 𝜆.

2 3 4 5 6

n: #requests ×103

0.2

0.4

0.6

0.8

1.0

T
ot

al
tr

av
el

di
st

an
ce

×106

HGR

pruneGDP

FESI

40 60 80

m: #vehicles

0.75

1.00

1.25

1.50

×106

5 10 15

λ: vehicle capacity

1

2

×106

m = 90, λ = 16 n = 6000, λ = 16 n = 6000,m = 90

2 3 4 5 6

n: #requests ×103

0.25

0.50

0.75

1.00

1.25

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×107

HGR

pruneGDP

FESI

40 60 80

m: #vehicles

0.5

1.0

1.5

2.0

×107

5 10 15

λ: vehicle capacity

0.25

0.50

0.75

1.00

1.25
×107

Figure 5: Results on the GMM synthetic dataset (I): varying
𝑛,𝑚, 𝜆.

20 40 60 80 100

Z

0.6

0.8

1.0

1.2

1.4

T
ot

al
tr

av
el

di
st

.

×106

20 40 60 80 100

Z

0.50

0.75

1.00

1.25

1.50

1.75

T
ot

al
in

-t
ra

ns
it

la
te

nc
y

×107

0 50 100 150 200 250

σ

0.50

0.75

1.00

1.25

1.50

1.75

2.00
×106

0 50 100 150 200 250

σ

0.5

1.0

1.5

2.0

×107

HGR

pruneGDP

FESI

n = 6000,m = 90, λ = 16
σ = 50 Z = 10

Figure 6: Results on the GMM synthetic dataset (II): varying
𝑍 and 𝜎 .

Figure 6 shows how the distribution parameters (specifically, the
number of clusters and covariance of the GMM) affects algorithm
performance. The first two columns of Figure 6 show the effect of
varying the number of clusters (𝑍) of the GMM, and the remaining
two show the effect of varying 𝜎 . Generally speaking, the more
spread-out the data are, the larger advantage our algorithm has:
when 𝜎 is very small, the performance of all three algorithms are
very close to each other on both objectives. This is expected as all
the requests are highly concentrated around only 𝑍 = 10 centers,
which makes good choices of routes very limited. On the other
hand, when 𝜎 is larger (which has the similar effect as larger 𝑍 with
fixed 𝜎), our algorithm exhibits clear superiority, with over 50% less
total in-transit latency than FESI or pruneGDP, and 30% less total
travel distance. HGR is also much less sensitive to the change of 𝑍
or 𝜎 compared with the two baselines.

Realworld data. Concerning the effect of 𝑛,𝑚 and 𝜆, results on the
two realworld datasets as well as the synthetic datasets are quite
similar, so we will take one of them as example. Figure 7 shows
the result on the NYC dataset. Both the total travel distance and in-
transit latency grow with 𝑛, as expected, and the gap between HGR
and the baselines also grows with 𝑛 (the first column of Figure 7).
Notice that FESI performs better than pruneGDP in terms of in-
transit latency, because it explicitly optimizes makespan and results
in shorter per-vehicle trips.

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

0.25

0.50

0.75

1.00

T
ot

al
tr

av
el

di
st

an
ce

×107

50 100 150

m: #vehicles

0.6

0.8

1.0

×107

0 20 40 60

λ: vehicle capacity

1

2

3

4
×107

HGR

pruneGDP

FESI

m = 90, λ = 32 n = 8000, λ = 32 n = 8000,m = 90

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

1

2

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×108

50 100 150

m: #vehicles

1.0

1.5

2.0

×108

0 20 40 60

λ: vehicle capacity

1

2

3

×108

Figure 7: Results on the NYC dataset.

The more interesting part is when we fix 𝑛 and 𝜆, and vary the
number of vehicles𝑚 (the second column of Figure 7). Notice that
the latency of our algorithm (HGR) is almost unaffected by𝑚. This
occurs because the first phase (i.e., Algorithm 2) of HGR is indepen-
dent of vehicle locations. After the requests have been partitioned
into groups, the in-transit latency is essentially determined no mat-
ter how we assign vehicles to these groups. A surprising fact is
that the total travel distance of HGR is also little affected by 𝑚.
After inspecting the actual routes generated by HGR, we find that
although there are many vehicles available, the minimum spanning
forest F found in Algorithm 5 uses only a few vehicles.

The third column of Figure 7 shows the result where we fix 𝑛
and𝑚 and vary 𝜆. Larger 𝜆 generally leads to less travel distance,
since larger capacity allows more flexible choices of routes. Our

1204

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

0.25

0.50

0.75

1.00

1.25

T
ot

al
tr

av
el

di
st

an
ce

×107

50 100 150

m: #vehicles

0.6

0.8

1.0

×107

0 20 40 60

λ: vehicle capacity

1

2

3

4
×107

HGR

pruneGDP

FESI

m = 90, λ = 32 n = 8000, λ = 32 n = 8000,m = 90

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

1

2

3

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×108

50 100 150

m: #vehicles

1.0

1.5

2.0

2.5

×108

0 20 40 60

λ: vehicle capacity

1

2

3

×108

Figure 8: Results on the SFO dataset.

algorithm still outperforms the two baselines in both objectives, but
from the last plot one can expect FESI to have better latency when
𝜆 is larger. This is, again, because FESI aims to optimize makespan,
thus larger 𝜆 does not necessarily lead to longer per-vehicle routes,
while it is the opposite for HGR and pruneGDP.

We remark that, for both the synthetic datasets and the realworld
datasets, the effect of varying 𝑛,𝑚 and 𝜆 are much the same.

Running Time Analysis. In the Grouping phase, we construct at
most 𝑛2 minimum spanning trees in each iteration ℓ < log 𝜆, each
of them can be constructed in time 𝑂 (22ℓ log(2ℓ)) [33]. The most
time-consuming part is step 8 where we compute a minimum-cost
perfect matching in each iteration, and the currently best-known
algorithm takes time𝑂 (𝑛3) [13] in a complete graph. Since there are
log 𝜆 iterations, the running time of Grouping phase is𝑂 (𝑛3 log 𝜆 +
𝑛2𝜆2 log 𝜆). In the Routing phase, we find minimum spanning forest
in time 𝑂 (𝑛2 +𝑚) and route the walks in time 𝑂 (𝑚𝑛). Obviously,
𝑚 ≤ 𝑛. In total, the running time is 𝑂 (𝑛3 log 𝜆 + 𝑛2𝜆2 log 𝜆).

In our actual implementation of HGR, we use the Blossom V [23]
matching algorithm due to its widespread use in practice, in spite of
having a slightly worse theoretical guarantee. In the experiments,
for inputs consisting of 10,000 requests and 150 vehicles with ca-
pacity 64, our algorithm takes less than 800 seconds to finish. In a
more practical instance with 4,000 requests and 90 vehicles with
capacity 8, HGR takes about 80 seconds.

Although reasonably fast, our basic implementation of HGR
turns out to be significantly slower than FESI and pruneGDP, both
of which have only an𝑂 (𝑛2) dependence on the number of requests
𝑛. For example, on the largest input mentioned above (𝑛=10,000,
𝑚=150, 𝜆=64), our algorithm (HGR) is 20 times slower than FESI and
pruneGDP. In Section 9, we show how to implement a much more
scalable version of HGR by replacing several components of the
vanilla algorithm with their approximate versions, while sacrificing
slightly the solution quality.

9 SCALABILITY WITH LARGE INSTANCES
9.1 The HGR-approx Algorithm
As discussed at the end of Section 8, the dominating factor of the
running time comes from the matching step (Line 8 of Algorithm 2).

There exists near linear-time (i.e., 𝑂 (𝑛2+𝜖), because the input here
can have 𝑂 (𝑛2) edges) algorithms that output a near-optimal per-
fect matching [11], which in principle can reduce our algorithm’s
running time to𝑂 (𝑛2) (assuming 𝜆 being a relatively small constant)
with some negligible loss in approximation ratio. However, such
matching algorithms are sophisticated and not easy to implement
in practice.

We therefore resort to simpler approximations: instead of finding
the min-cost perfect matching, we find a non-optimal matching us-
ing a “bucketing”method (details see below). Besides, the “edge cost”
𝑤 (Definition 4) used in our graph requires computing multiple
MST over the two clusters, which is quite costly. Specifically, those
MST computations come from evaluating𝑤1 (·, ·) between groups.
We therefore replace𝑤1 with a simpler cost function that approxi-
mates it. Specifically, we implement the two following approximate
versions of HGR:

• HGR-𝑤1: We define a new cost𝑤 ′1 between any two groups
𝑋 and 𝑋 ′ as

𝑤 ′1 (𝑋,𝑋
′) := min

𝑟𝑖 ∈𝑋,𝑟 𝑗 ∈𝑋 ′
𝑑 (𝑠𝑖 , 𝑠 𝑗) + min

𝑟𝑖 ∈𝑋,𝑟 𝑗 ∈𝑋 ′
𝑑 (𝑡𝑖 , 𝑡 𝑗) .

The new algorithm HGR-𝑤1 still finds the minimum-cost
perfect matching (like HGR), but uses𝑤 ′1 in place of𝑤1.

• HGR-approx: This algorithm builds upon HGR-𝑤1. In ad-
dition to using𝑤 ′1 in place of𝑤1, HGR-approx finds a per-
fect matching using a "bucketing" heuristic. Suppose the
largest edge cost is Δ. We first divide all edges into𝑂 (logΔ)
buckets, where the 𝑖-th bucket contains all edges with cost
[(1 + 𝛿)𝑖−1, (1 + 𝛿)𝑖), where 𝛿 is a small constant. Then, for
each bucket we compute a maximal matching using only
the edges of the bucket.
The maximal matching is computed using a simple greedy
method. Starting with an empty matching, the algorithm
greedily chooses the lowest-cost edge that is disjoint with
the current matching and includes it into the solution. It is
straightforward to implement this heuristic in 𝑂 (𝑛2 logΔ)
time.

The HGR-𝑤1 algorithm still has an 𝑂 (𝑛3) dependence with 𝑛
since it needs to find a perfect matching, though it avoids the
𝑂 (𝑛2𝜆2 log 𝜆) additive factor. The HGR-approx algorithm instead
runs in 𝑂 (𝑛2 logΔ) time.

9.2 Experimental Evaluation
We inherit most of the experiment settings from Section 8, and
test HGR-approx on much larger instances. The results are quite
similar, so we only plot some representative results on the NYC
dataset. We are still comparing HGR-approx with pruneGDP and
FESI. To examine how the approximation affects solution quality,
we also include comparison with the original HGR in some smaller
instances as in Section 8. (The original HGR algorithm is too slow
for instance as large as𝑛 = 105 and does not terminate in reasonable
time.)

Figure 9 shows the results on large instances with up to 100k
requests and 10k drivers. One can see thatHGR-approx still achieves

1205

Table 2: Parameter setting for the larger datasets.

𝑛 (#requests) 2.5, 5, 10 (×104)
𝑚 (#vehicles) 1, 2.5, 5, 10, (×103)

𝜆 (vehicle capacity) 2, 4, 8, 16, 32, 64

0.4 0.6 0.8 1.0

n: #requests ×105

0.5

1.0

1.5

T
ot

al
tr

av
el

di
st

an
ce

×108

2000 4000 6000 8000 10000

m: #vehicles

0.50

0.75

1.00

1.25

1.50

×108

0 20 40 60

λ: vehicle capacity

1

2

3

4
×108

HGR-approx

pruneGDP

FESI

m = 10000, λ = 32 n = 100000, λ = 32 n = 100000,m = 10000

0.4 0.6 0.8 1.0

n: #requests ×105

0

1

2

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×109

2000 4000 6000 8000 10000

m: #vehicles

0.5

1.0

1.5

2.0

2.5

×109

0 20 40 60

λ: vehicle capacity

1

2

3

4
×109

0.4 0.6 0.8 1.0

n: #requests ×105

0

1

2

3

4

R
un

ni
ng

ti
m

e

×103

2000 4000 6000 8000 10000

m: #vehicles

0

1

2

3

4

×103

0 20 40 60

λ: vehicle capacity

1

2

3

4

×103

Figure 9: Results on large-scale inputs from the NYC dataset.

best total travel distance (the first row), while having comparable in-
transit latency (the second row) with the state-of-the-art benchmark
(FESI). Note that FESI explicitly optimizes makespan (the largest
travel distance of all vehicles), which often also leads to small in-
transit distance since the solution is formed by many short trips,
but the total distance can be very large. The running time (the
third row) of HGR-approx is, however, still larger than the two
benchmarks, though the difference (∼ 4×) is much smaller than
that of the originalHGR, which does not even finish in a reasonable
time on such-sized instances. This indicates that our algorithm has
the potential to scale to large instances.

Figure 10 illustrates the performance of HGR-approx on smaller
instances, with comparison to the original HGR algorithm and
HGR-𝑤1. One can see that the approximations do lead to (slight)
performance degradation. In terms of total travel distance (which
is the objective our algorithm optimizes), HGR-approx is slightly
worse than HGR-𝑤1, which is slightly worse than HGR. The effect
on in-transit latency is even less obvious. The approximation also
greatly reduces the running time of HGR, though they are still
higher than pruneGDP and FESI.

In summary, we are able to accelerate HGR significantly using
some straightforward approximation or heuristics, sacrificing the
solution quality only slightly. The main ingredient of the algorithm
— hierarchically grouping requests — is quite flexible and provides
a good starting point to apply other routing methods.

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

0.25

0.50

0.75

1.00

1.25

T
ot

al
tr

av
el

di
st

an
ce

×107

50 100 150

m: #vehicles

0.8

1.0

1.2

×107

0 20 40 60

λ: vehicle capacity

1

2

3

4

×107

HGR

HGR-w1-approx

HGR-approx

pruneGDP

FESI

m = 150, λ = 32 n = 10000, λ = 32 n = 10000,m = 150

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

1

2

T
ot

al
in

-t
ra

ns
it

la
te

nc
y ×108

50 100 150

m: #vehicles

1.0

1.5

2.0

2.5

3.0
×108

0 20 40 60

λ: vehicle capacity

1

2

3

4
×108

0.2 0.4 0.6 0.8 1.0

n: #requests ×104

0

50

100

150

200

R
un

ni
ng

ti
m

e

50 100 150

m: #vehicles

0

50

100

150

200

0 20 40 60

λ: vehicle capacity

0

100

200

300

400

500

Figure 10: Results on inputs from NYC dataset of the same
scale as Section 8.

10 DISCUSSION
In this paper we propose an algorithm for the multi-vehicle Dial-
a-Ride problem with the objective to optimize the total travel dis-
tance of all vehicles. The 𝑂 (

√
𝜆 log𝑛) approximation ratio of our

algorithm matches that of the best known algorithm for the single-
vehicle case. It is still an open problem whether this ratio can be
improved even in the single-vehicle case. We provide three differ-
ent implementations of the basic algorithm with increasing runtime
efficiency. We experimentally demonstrate that all versions of our
algorithm outperform two recent state-of-the art heuristics for
this problem on both synthetic and real world datasets. Further,
we showcase scalability of the most efficient implementation to
datasets of size up to 100,000 requests.

Our work is a significant first step towards building theoretically
sound algorithms for multi-vehicle Dial-a-Ride that are also prac-
tical. There are several intriguing open questions that out work
raises. Firstly, our algorithm does not directly handle deadline con-
straints that are often encountered in practice. Note that we could
heuristically incorporate deadlines using the ideas given in [38]:
first, solve the problem without deadlines using HGR, and then use
the insertion subroutine from [37] as long as no deadline constraint
is violated. However, proving similar approximation guarantees as
in this work becomes much more challenging in this case. We leave
this as a future research direction.

By replacing various components of our algorithm with their
approximate versions, we are able to greatly boost its scalability.
We believe that the runtime can be further improved by exploiting
the inherent parallelism of many of the steps (in particular, the
capacitated grouping part) and utilizing algorithms developed in
the recently popular Map-Reduce models of computation [24]. We
leave this as our second open problem.

1206

REFERENCES
[1] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for Trip-Vehicle Assignment

in Ride-Sharing. In Proceedings of the Thirty-Second AAAI Conference on Artificial

Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence

(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial

Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. 3–9.
[2] Hua Cai, Xi Wang, Peter Adriaens, and Ming Xu. 2019. Environmental benefits

of taxi ride sharing in Beijing. Energy 174 (2019), 503–508.
[3] Moses Charikar and Balaji Raghavachari. 1998. The finite capacity dial-a-ride

problem. In Proceedings of the 39th Annual IEEE Symposium on Foundations of

Computer Science (FOCS’98), November 8-11, 1998, Palo Alto, California, USA.
458–467.

[4] Peng Cheng, Hao Xin, and Lei Chen. 2017. Utility-Aware Ridesharing on Road
Networks. In Proceedings of the 2017 ACM International Conference on Man-

agement of Data (Chicago, Illinois, USA) (SIGMOD ’17). New York, NY, USA,
1197–1210.

[5] Regina R Clewlow and Gouri S Mishra. 2017. Disruptive transportation: The
adoption, utilization, and impacts of ride-hailing in the United States. (2017).
https://escholarship.org/uc/item/82w2z91j

[6] Jean-François Cordeau. 2006. A Branch-and-Cut Algorithm for the Dial-a-Ride
Problem. Oper. Res. 54, 3 (2006), 573–586.

[7] Jean-François Cordeau and Gilbert Laporte. 2003. A Tabu search heuristic for
the static multi-vehicle dial-a-ride problem. Transportation Research Part B:

Methodological 37 (07 2003), 579–594.
[8] Claudio Cubillos, Enrique Urra, and Nibaldo Rodríguez. 2009. Application of

genetic algorithms for the DARPTW problem. International Journal of Computers

Communications & Control 4, 2 (2009), 127–136.
[9] Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie.

2004. Computer-Aided Complexity Classification of Dial-a-Ride Problems. IN-
FORMS Journal on Computing 16, 2 (2004), 120–132.

[10] Paolo Detti, Francesco Papalini, and Garazi Zabalo Manrique de Lara. 2017. A
multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility
constraints in healthcare. Omega 70 (2017), 1–14.

[11] Ran Duan and Seth Pettie. 2010. Approximating maximum weight matching in
near-linear time. In Proceedings of the 51th Annual IEEE Symposium on Founda-

tions of Computer Science (FOCS 2010), October 23-26, 2010, Las Vegas, Nevada,

USA. 673–682.
[12] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices.

Journal of research of the National Bureau of Standards B 69, 125-130 (1965),
55–56.

[13] Harold N Gabow. 1990. Data structures for weighted matching and nearest
common ancestors with linking. In Proceedings of the First Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA 1990), 22-24 January 1990, San Francisco,

California, USA. 434–443.
[14] Thierry Garaix, Christian Artigues, Dominique Feillet, and Didier Josselin. 2010.

Vehicle routing problems with alternative paths: An application to on-demand
transportation. European Journal of Operational Research 204, 1 (2010), 62–75.

[15] Timo Gschwind and Michael Drexl. 2019. Adaptive large neighborhood search
with a constant-time feasibility test for the dial-a-ride problem. Transportation
Science 53, 2 (2019), 480–491.

[16] Timo Gschwind and Stefan Irnich. 2015. Effective handling of dynamic time
windows and its application to solving the dial-a-ride problem. Transportation
Science 49, 2 (2015), 335–354.

[17] Anupam Gupta, MohammadTaghi Hajiaghayi, Viswanath Nagarajan, and Ra-
mamoorthi Ravi. 2010. Dial a ride from k-forest. ACM Transactions on Algorithms

(TALG) 6, 2 (2010), 1–21.
[18] Sin C Ho, Wai Yuen Szeto, Yong-Hong Kuo, Janny MY Leung, Matthew Petering,

and Terence WH Tou. 2018. A survey of dial-a-ride problems: Literature review
and recent developments. Transportation Research Part B: Methodological 111
(2018), 395–421.

[19] Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large
scale real-time ridesharing with service guarantee on road networks. Proceedings
of the VLDB Endowment 7, 14 (2014), 2017–2028.

[20] Jang-Jei Jaw. 1984. Solving large-scale dial-a-ride vehicle routing and scheduling
problems. FTL report (Massachusetts Institute of Technology. Flight Transportation

Laboratory) (1984). https://hdl.handle.net/1721.1/68045
[21] Jang-Jei Jaw, Amedeo R Odoni, Harilaos N Psaraftis, and Nigel HMWilson. 1986.

A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem
with time windows. Transportation Research Part B: Methodological 20, 3 (1986),
243–257.

[22] Rene Munch Jorgensen, Jesper Larsen, and Kristin Berg Bergvinsdottir. 2007.
Solving the dial-a-ride problem using genetic algorithms. Journal of the opera-
tional research society 58, 10 (2007), 1321–1331.

[23] Vladimir Kolmogorov. 2009. Blossom V: a new implementation of a minimum
cost perfect matching algorithm. Mathematical Programming Computation 1, 1
(2009), 43–67.

[24] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.
Filtering: A Method for Solving Graph Problems in MapReduce. In Proceedings of

the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA’11), San Jose, CA, USA, June 4-6, 2011 (San Jose, California, USA). New
York, NY, USA, 85–94.

[25] Kelin Luo, Chaitanya Agarwal, Syamantak Das, and Xiangyu Guo. 2022. The
Multi-vehicle Ride-Sharing Problem. In Proceedings of the Fifteenth ACM Inter-

national Conference on Web Search and Data Mining (WSDM’22), Virtual Event /

Tempe, AZ, USA, February 21 - 25, 2022. 628–637.
[26] Kelin Luo, Alexandre M Florio, Syamantak Das, and Xiangyu Guo. 2022. A

Hierarchical Grouping Algorithm for the Multi-Vehicle Dial-a-Ride Problem.
arXiv preprint arXiv:2210.05000 (2022). https://arxiv.org/abs/2210.05000

[27] Kelin Luo and Frits CR Spieksma. 2020. Approximation algorithms for car-sharing
problems. In Proceedings of the 26th International Conference on Computing and

Combinatorics (COCOON 2020), Atlanta, GA, USA, August 29-31, 2020 (Lecture

Notes in Computer Science), Vol. 12273. Springer, 262–273.
[28] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic

taxi ridesharing service. In 2013 IEEE 29th International Conference on Data

Engineering (ICDE’13). 410–421.
[29] Mohamed Masmoudi, Kris Braekers, Malek Masmoudi, and Abdelaziz Dammak.

2016. A Hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem.
Computers and Operations Research 81 (12 2016).

[30] NYCTLC. 2020. New York City Taxi & Limousine Commission trip data. https:
//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[31] OpenStreetMap. 2021. San Francisco and New York City street map data. https:
//www.openstreetmap.org.

[32] Sophie N Parragh, Karl F Doerner, and Richard F Hartl. 2010. Variable neighbor-
hood search for the dial-a-ride problem. Computers & Operations Research 37, 6
(2010), 1129–1138.

[33] Seth Pettie and Vijaya Ramachandran. 2000. An optimal minimum spanning
tree algorithm. In International Colloquium on Automata, Languages, and Pro-

gramming (ICALP’2000), Geneva, Switzerland, July 9-15, 2000. 49–60.
[34] Michal Piorkowski, Natasa Sarafijanovic-Djukic, andMatthias Grossglauser. 2009.

CRAWDAD dataset EPFL/mobility. https://crawdad.org/epfl/mobility/20090224/
cab.

[35] Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. 2007. Models and
branch-and-cut algorithms for pickup and delivery problems with time windows.
Networks: An International Journal 49, 4 (2007), 258–272.

[36] Alexander Schrijver et al. 2003. Combinatorial optimization: polyhedra and

efficiency. Vol. A. Springer. 453–458 pages.
[37] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.

A Unified Approach to Route Planning for Shared Mobility. Proceedings of the
VLDB Endowment 11, 11 (2018), 1633–1646.

[38] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2019. Last-Mile Delivery Made
Practical: An Efficient Route Planning Framework with Theoretical Guarantees.
Proceedings of the VLDB Endowment 13, 3 (2019), 320–333.

[39] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The Simpler the
Better: An Indexing Approach for Shared-Route Planning Queries. Proceedings
of the VLDB Endowment 13, 13 (Sept. 2020), 3517–3530.

[40] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order Dispatch in Price-Aware
Ridesharing. Proceedings of the VLDB Endowment 11, 8 (April 2018), 853–865.

[41] Libin Zheng, Peng Cheng, and Lei Chen. 2019. Auction-Based Order Dispatch and
Pricing in Ridesharing. In 35th IEEE International Conference on Data Engineering

(ICDE 2019), Macao, China, April 8-11, 2019. 1034–1045.

1207

https://escholarship.org/uc/item/82w2z91j
https://hdl.handle.net/1721.1/68045
https://arxiv.org/abs/2210.05000
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.openstreetmap.org
https://www.openstreetmap.org
https://crawdad.org/epfl/mobility/20090224/cab
https://crawdad.org/epfl/mobility/20090224/cab

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 HGR: A New Algorithm for DaRP
	5 Part (I): Grouping
	6 Part (II): Routing
	7 Proof of Theorem 1
	8 Computational Experiments
	8.1 DaRP Instances and Baselines
	8.2 Computational Results

	9 Scalability with large instances
	9.1 The HGR-approx Algorithm
	9.2 Experimental Evaluation

	10 Discussion
	References

