Two particles P and Q describe Simple Harmonic Motion (SHM) of same amplitude (a) and frequency (v) along the same straight line. The maximum distance between the two particles is $ \sqrt { 2 }a $ . The initial phase difference between the particles is:
$ A.Zero $
$ B.\dfrac{\pi }{2} $
$ C.\dfrac{\pi }{6} $
$ D.\dfrac{\pi }{3} $
Answer
Verified
491.1k+ views
Hint: Use the basic formula of Simple harmonic motion for a particle along an axis and use the same formula for the second particle. We don’t have to add phase angle to both the particles, since we only need to find the phase difference. Adding phase angle to either one is just enough as the phase difference will turn out to be that phase angle itself. Remember the trigonometric formulations for these kinds of questions as they play key roles in solving.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
Complete the letter given below written to your Principal class null english null
Trending doubts
Show variation of resistivity of copper as a function class 12 physics CBSE
Electrolysis of dilute H2SO4 generates H2S2O8 What class 12 chemistry CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
A convex lens is placed in water Its focal length A class 12 physics CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE