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Abstract
Trusted Execution Environments (TEEs) are an essential
building block in the security architecture of modern mo-
bile devices. In this paper, we review a TEE implementa-
tion, called TrustedCore (TC), that has been used on Huawei
phones for several years. We unveil multiple severe design
and implementation flaws in the software stack of this TEE,
which affect devices including the popular Huawei P9 Lite,
released in 2016, and partially the more recent Huawei P20
Lite, released in 2018. First, we reverse-engineer TC’s com-
ponents, their interconnections, and their integration with the
Android system, focusing on security aspects. Second, we ex-
amine the Trusted Application (TA) loader of the TC platform
and reveal multiple design flaws. These flaws allow us to de-
crypt any TA found on our target devices and, thus, break code
confidentiality. Third, we describe the design of Huawei’s key-
store system, the heart of all services using hardware-backed
cryptography. We found severe vulnerabilities in this keystore
system and demonstrate the leakage of export-protected keys
from the TEE, which considerably weakens full-disk encryp-
tion. Fourth, along with these findings, we additionally dis-
covered an exploitable memory corruption within Huawei’s
keymaster TA, enabling us to execute arbitrary code within the
ARM TrustZone at the highest privilege level. The exploit re-
quires us to bypass several mitigation techniques such as stack
canaries and Address Space Layout Randomization (ASLR),
which are all flawed in this TEE’s design. We reported our
findings to Huawei in a responsible disclosure procedure and
publicly discuss our analyses for the first time in this paper.

1 Introduction

TEEs are an integral part of the security architecture of mobile
devices. They provide an execution context where security-
critical services, such as user authentication, mobile payment,
and digital rights management, can run isolated from the Rich
Operating System (Rich OS). The Rich OS, e.g., Android or
iOS, typically has a complex software stack and is thus prone

to error. In theory, any bug in the feature-rich domain, includ-
ing severe kernel-level bugs, cannot affect the integrity and
confidentiality of a TEE, as TEEs are isolated from the rest
of the system by means of hardware primitives. As ARM is
the predominant architecture used for chipsets in mobile de-
vices, the ARM TrustZone (TZ) [6] provides the trust anchor
for virtually all TEEs in mobile devices, including Huawei
models.

Although TEEs have been extensively used by millions
of products for years, security analyses targeting these sys-
tems are rarely discussed in public since all major vendors,
including Huawei, Qualcomm, and Samsung, maintain strict
secrecy about their individual proprietary implementations.
However, the correct implementation of a TEE is complex
and comparable with the design of an operating system, pos-
ing innumerable challenges for vendors. These challenges
regularly lead to severe bugs that potentially undermine the
whole mobile device’s security architecture [13–16, 31, 32].

In this work, we unveil several design and implementation
flaws in a TEE implementation by Huawei, called Trusted-
Core (TC), that has been commercially used on millions of
devices. We found all of these issues independently and are
not aware of any other research covering them. The reviewed
version of TC was deployed on the popular Huawei P9 Lite,
released in 2016, and our discoveries partially apply to the
more recent Huawei P20 Lite, released in 2018. Note that
on newer Huawei devices (e.g., Huawei P40 and Huawei
P30), the TEE architecture and implementation has changed,
and a TEE called iTrustee replaced TC [42]. Our research
focuses on certain versions of TC and, in detail, we make the
following contributions:

First, this review is the first holistic architectural descrip-
tion of TC, to the best of our knowledge. Using a combination
of static and dynamic analysis, we reverse-engineer TC’s com-
ponents and systematically describe their interconnections as
well as their integration with the Android system.

Second, we reveal, as well as exploit, multiple design flaws
in the decryption and verification routines used to load confi-
dential TAs, enabling us to recover all plaintext binaries from



our device. We conduct this analysis by examining the TA
loader used by TC to transfer confidential TAs into the TEE
during runtime. As a consequence and even more compro-
mising, we detected the usage of the same decryption key on
several devices of the Huawei P-series, including the Huawei
P20 Lite, Huawei P10, and Huawei P9 Lite. Although other
TZ-based TEEs are capable of loading TAs during runtime,
the confidentiality protection is unique to Huawei’s imple-
mentation and studied for the first time in this research.

Third, we analyze Huawei’s version of the Android
keystore system, which is the heart of all services using
hardware-backed cryptography [24]. We describe the design
of Huawei’s Android keystore system, unveil fatal design
flaws, and demonstrate the leakage of export-protected crypto-
graphic keys from the TEE. Complementary to other research
reviewing the keystore system on Qualcomm’s TEE [14]
(used on Nexus and Pixel devices) and Samsung’s TEE [31]
(used on the Galaxy series), we present the first review of the
keystore system as implemented by Huawei.

Fourth, we found a vulnerability that allows us to execute
arbitrary code and escalate our privileges to the highest level
of the TEE context. While writing the exploit code, we probed
all mitigation techniques present on the Huawei TEE and
found weaknesses in all mitigations, for instance, stack ca-
naries and ASLR. More specifically, we gain arbitrary code
execution within the keymaster TA, which is the TEE compo-
nent of the keystore system. From this TA context, we identify
the TEE kernel’s attack surface and argue that the Application
Programming Interface (API) available to the keymaster TA
is unnecessarily powerful.

Responsible Disclosure We found all of the issues covered
in this paper in August 2019 and, in coordination with Huawei,
tried to assess their scope and impact by investigating newer
phones and firmware images. Huawei’s restrictive bootloader
unlock policy from May 2018 [20], and the introduction of en-
crypted firmware images, are effective mitigations against our
triaging efforts as well as static and dynamic analyses of TEE
components in general. In April 2020, we filed comprehensive
reports covering the scope and impact of our findings. Huawei
acknowledged all bugs and indicated that all issues are already
known and fixed with updates distributed in November 2019
and January 2020.

2 Background

This section provides the reader with the necessary preliminar-
ies to get the most out of our analysis of Huawei’s TC. First,
we introduce the privilege levels of modern ARM-based de-
vices. Second, we briefly mention the TEE implementations
found on commercially available Android devices and give
examples of their usage. Third, we elaborate on the adversary
model assumed for the attacks presented in our research.
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Figure 1: The ARMv8-A architecture supports up to four priv-
ilege levels, called exception levels (ELs). ARM TrustZone
splits these ELs into two worlds, the Normal World and the
Secure World. Commonly, a prefix indicates the world of the
EL (e.g., S-EL0), if not clear from the context.

2.1 ARMv8-A Privilege Levels

The ARMv8-A architecture supports up to four privilege
levels [7], called Exception Levels (ELs), as illustrated in
Figure 1. In addition to the typical dual-mode split into user-
land (EL0) and kernel (EL1), this architecture can host a
hypervisor in EL2. Since hypervisors tend to be more relevant
for cloud-computing scenarios than mobile devices, they are
not in the scope of our work. A further addition to the tradi-
tional model are the ARM Security Extensions, also known
as ARM TrustZone (TZ) [8]. TZ allows system designers to
partition the device’s hardware and software resources into
two states, a non-secure state, and a secure state.

The partitioning of the software resources on mobile
devices, which are predominantly based on ARM System-
on-Chips (SoCs), usually results in a split as illustrated in
Figure 1. In the non-secure state, also referred to as Normal
World (NW), the userland application stack (e.g., Android)
and the kernel (e.g., Linux) run in N-EL0 and N-EL1, respec-
tively. When in the secure state, also referred to as Secure
World (SW), Trusted Applications (TAs) run in the user-
land (S-EL0) and are hosted by a Trusted Operating Sys-
tem (Trusted OS) executed in S-EL1. The two worlds have
their own page tables and, if properly configured, the NW
cannot access physical memory regions assigned to the SW,
whereas the SW has unrestricted access. Switching between
these worlds is possible through a component called the Se-
cure Monitor, which is executed on the highest privilege level
(S-EL3). On all commercially available platforms, a secure
boot chain only permits the execution of vendor-signed soft-
ware components within the SW. Thus, all SW components
are part of the system’s Trusted Computing Base (TCB). In
contrast, the NW is more open and allows for the installation
of third-party apps. Many vendors allow developers to modify
the Rich OS kernel (N-EL1) after unlocking the bootloader of
their device. Unfortunately, Huawei does not offer this option



for their devices anymore since May 2018 [20].
The partitioning of the hardware resources of the SoC al-

lows system designers to grant the SW exclusive access to
peripherals. A commonly known use case is the fingerprint
sensor on phones. This sensor is usually exclusively accessed
by the SW software to keep the captured fingerprint image se-
cret. For this use case, the SW provides an API for the NW to
enroll and verify fingerprints, without the NW ever accessing
the sensor or the captured data.

2.2 TEEs on Android

Different vendors implement different TEEs, leading to even
more fragmentation of the systems that we summarize un-
der the umbrella term “Android”. Depending on the SoC
used in a mobile device, we can at least identify four com-
mercially and widely used TEE implementations. Qualcomm
chipsets, present in Google’s flagship Pixel series and many
more devices, run the Qualcomm Secure Execution Envi-
ronment (QSEE) [34]. Samsung devices, if shipped with an
Exynos chipset, either run a TEE named Kinibi [35], de-
veloped by Trustonic, or Samsung’s own TEE named TEE-
Gris [36]. On Huawei devices, we have chipsets by HiSilicon,
and can find a TEE called TrustedCore (TC) [41]. Huawei’s
TC is the primary focus of our work.

The features brought to Android systems by TEEs enhance
many services, including user authentication and full-disk en-
cryption. For instance, all Android systems implement user
authentication by three TEE-backed NW components [25]:
the Gatekeeper daemon, responsible for Personal Indentifica-
tion Number (PIN), pattern, and password authentication; the
Fingerprint daemon, responsible for fingerprint-based authen-
tication; and the Keystore daemon, providing cryptographic
operations for the two previous daemons. All three of these
daemons usually have a counterpart in S-EL0 (e.g., the gate-
keeper, fingerprint, and keymaster TAs), hosting the security-
sensitive parts of the authentication operation.

TEE-backed full-disk encryption is carried out by the vol-
ume daemon (vold) and its interplay with the keymaster TA
in the TEE. A cryptographic key, only available in plaintext
in the TEE, guarantees that an encrypted partition can only
be decrypted on the device. This hardware-binding property
allows vendors to thwart brute-force attacks against the user’s
PIN, authentication pattern, or password by introducing de-
lays if too many login attempts occur, or, e.g., in corporate
environments, wipe the partition after a certain number of
failed login attempts.

2.3 Attacker Model

The attacker model underlying our work assumes all NW
components to be untrusted. This model corresponds to the
attacker commonly assumed for TZ-based TEE systems and

is most realistic for Android-based mobile devices. In prac-
tice, all of the demonstrated attacks can be carried out by
having full control over N-EL0, corresponding to a root-level
attacker.

Note that the privileges of a sandboxed Android app are
generally insufficient to execute our attacks, but TEEs were
designed to protect against strong attackers such as root and
kernel-level attackers. Having root or kernel privileges in
Android is a reasonable assumption as many documented
flaws led to this situation in the past [11, 40].

However, we do not need to modify and execute code on N-
EL1. For the privilege escalations, first, to S-EL0, and, second,
to S-EL1, discussed in Section 6.1 we do not even need root-
level privileges in N-EL0 (depending on the firmware version)
since the privileges of a system service having access to a
specific kernel module are sufficient.

3 Reversing the TrustedCore Architecture

We base our study of TC’s architecture on the dynamic analy-
sis of various components of two Huawei phones, the Huawei
P9 Lite and the Huawei P10 Plus that we had root-level access
to. Furthermore, we collected multiple firmware images for
both devices, analyzed relevant components statically, and,
thus, were able to identify changes during the evolution of the
architecture. Lastly, we had access to the Linux kernel source
code for both of our devices [33].

During the following discussion of the different com-
ponents and their interconnections, Figure 2 serves as an
overview. This figure is organized using the world-split
and the ARMv8 exception levels, as discussed above in
Section 2.1. In the following sections, we first cover the NW
components and then the SW components.

3.1 Normal World
The central components making use of TEE features are An-
droid system services. These system services expose their
functions to apps, or other system services, using the binder
Inter-Process Communication (IPC) framework [38]. This
interface is specified and forms the backend of the Android
Framework API commonly known to all Android app de-
velopers. Since different SoCs usually ship with different
TEEs, system services that make use of the TEE must deal
with different implementations. For this purpose, Google de-
cided to define a common interface, the Hardware Abstraction
Layer (HAL) [23], to access vendor-specific implementations
to interact with heterogeneous hardware. This HAL library, in-
dividual to each system service, is implemented by the vendor
(in this case, Huawei) and implements the system service’s
HAL interface.

On Huawei devices, the HAL library is responsible for
two tasks. First, it maps the data structures passed to the
common HAL interface to the data structures expected by
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Figure 2: Taking the ARMv8-A privilege levels as a scaffold,
this figure illustrates TrustedCore’s components, their inter-
connections, and their integration with the Android system.

the TEE implementation, i.e., the data structures expected
by the addressed TA, and second, it accounts for the TEE’s
state machine. In order to fulfill these two tasks, the HAL
library uses Huawei’s TEE interface, encapsulated within the
libteec library. libteec’s interface primarily implements
the GlobalPlatform (GP) TEE client API [21], which we use
next to elaborate on common interaction patterns. The HAL
library as well as the libteec are proprietary.

A common sequence of functions using the GP TEE Client
API, as used on Huawei, devices is the following:

1. TEEC_InitializeContext: During the context initial-
ization call, the client connects to a Unix domain socket
of teecd. teecd is the only process that is allowed to
open a file descriptor to /dev/tc_ns_client, which is
the device node exposing the Linux kernel module to in-
teract with TC. Its executable file is a statically compiled
and stripped ELF64 binary, which might be a protec-
tion measure against reverse engineering. As another
protection measure, teecd only forwards an opened file
descriptor to the kernel module to certain clients. For An-
droid apps, the apk certificates are verified. For system
services (e.g., keystored), the package names and the
user ids are checked. teecd uses a whitelist of allowed
clients for these checks. Furthermore, teecd passes the
login credentials to the TEE driver, which associates the
credentials with the file descriptor.

2. TEEC_OpenSession: With an initialized context, a client
can open a session to a TA. First, it is checked if the TA
is already loaded. If it is not loaded, the client tries to
load it. In the SW, the handlers for loading TAs are im-
plemented in the globaltask TA, which acts like an

init process in this regard. globaltask distinguishes
between built-in TAs and secure TAs in the loading pro-
cess. Built-in TAs are loaded during TC’s initialization.
Secure TAs can be loaded on demand and their corre-
sponding encrypted binaries, identified by a *.sec ex-
tension, reside in the Android file system. The process
of loading encrypted TAs is covered in more detail in
Section 4.

When the target TA is loaded within TC, the client
issues the actual open-session request. In this pro-
cess, its credentials are once again checked within
the kernel. In our analysis, we observed different evo-
lutions of this authentication inside the driver. The
most advanced technique creates a SHA-256 hash
of all executable pages of the requesting client and
compares it against a hash stored in a signed file
(e.g., /vendor/etc/native_packages.xml). This file
is also sent to the TEE during the initialization of the sys-
tem to allow for verification within the trusted context.
The request is forwarded to the target TA and processed
in its corresponding open-session handler. If the TA ac-
cepts the open-session request, a session id is assigned
and the client can issue commands.

3. TEEC_InvokeCommand: Next, the client can finally in-
voke commands of the TA. The code for context and
session establishment is self-contained and implemented
in the HAL library. In the command-invocation stage,
the data passed to the HAL is used. To exchange data
with the SW, the TC kernel module implements a shared
memory infrastructure that is based on a physical mem-
ory region dedicated to sharing memory between the two
worlds. Note that this dedicated memory region is nec-
essary because each world has its own page tables and
does not know about the page tables of the other world.
Using this shared memory infrastructure, a client (i.e.,
a system service) can pass data over to the SW. These
data structures consist of information helping the SW
to dispatch the request to the proper TA, and the actual
payload for the TA.

4. TEEC_CloseSession and TEEC_FinalizeContext:
The remaining two functions are used to close the ses-
sion and free all resources connected with the context.

3.2 Secure World

While the NW components can be studied using static and
dynamic analysis, we are restricted to static analysis and the
input/output behavior observable from the NW when inves-
tigating SW components. Many of the TEE-related software
components on Huawei devices can be found on the teeos
partition. This partition contains the following components:



• The Trusted OS kernel, TrustedCore.

• The “init process”, globaltask.

• Multiple TAs including the keymaster TA.

While the TAs are 32-bit ARM ELF binaries, the
TrustedCore and the globaltask binaries do not contain
headers reveiling their internal structure. However, we found
the remainders of a string table and a symbol table in both bi-
naries. Using entries from the symbol table (i.e., CODE_START,
DATA_START, and BSS_START), we were able to identify the
original sections (i.e., .text, .data, and .bss) of the bina-
ries. As a result, we implemented a tool based on Python’s
elftools library to fill the missing section header string table,
e.g., .shstrtab, and create proper ELF headers from the
gathered information. This step allowed us to study the inner
workings of TrustedCore and globaltask.

For completeness, before we dive into TC, the
trustedfirmware partition contains a modifed ver-
sion of ARM’s reference implementation of the secure
monitor (ARM TrustedFirmware [9]). We did not investigate
this part of the SW software stack further, except for noticing
that it uses the 64-bit instruction set of the ARMv8-A
architecture (AArch64) and identifying the smc-handlers
responsible for the context switch, either from NW to SW or
vice-versa.

The TC kernel acts as a dispatcher for TA requests from
the NW and exposes its system call interface to all its TAs.
Additionally, it handles interrupts originating from peripherals
like the fingerprint sensor. To connect the GP TEE Client API
call sequence observed in the NW with their corresponding
components in the SW, we systematically go through the
interaction from a TA’s perspective.

By reviewing globaltask and multiple TAs, we noticed
that all TAs implement the GP Internal Core API [22]. Before
a client can interact with a TA, it has to initialize a context with
the TEE by contacting globaltask. Internally, this context
initialization ensures that the TA is properly loaded and ready
to process requests. Thus, globaltask can be seen as the
init process of TC. A common interaction sequence with a
TA includes the following functions:

1. TA_CreateEntryPoint: This function is the construc-
tor for TAs. It is called only once during the lifetime of
the TA when the first session is established (i.e., by a
NW client calling TEEC_OpenSession). The gatekeeper
TA gives an example of the state initialized by this con-
structor. This TA needs the total number of failed login
attempts across client sessions to introduce a delay after
a certain number of failed attempts.

2. TA_OpenSessionEntryPoint: This function is
the direct counterpart of a NW client calling
TEEC_OpenSession. In many TAs we found au-
thentication logic (i.e., checking user ids or signatures)
and the initialization of session-specific state (i.e.,

data structures to save state across multiple command
invocations).

3. TA_InvokeCommandEntryPoint: This function in-
vokes the actual command handler of the TA. Its di-
rect counterpart from a NW client’s perspective is the
TEEC_InvokeCommand function. For instance, the key-
store daemon invokes the keymaster TA to generate
export-protected cryptographic keys. These keys can be
used by further command invocations to perform cryp-
tographic operations with them (i.e., encrypt, decrypt,
verify, or sign data). The keymaster TA will be later
discussed in detail (see Section 5).

4. TA_CloseSessionEntryPoint: This function frees
all session-specific state. Its NW counterpart is the
TEEC_CloseSession function.

5. TA_DestroyEntryPoint: This function deallocates all
resources reserved in the initial entry point creation when
a TA is unloaded from TC.

This sequence of functions summarizes the interaction pat-
tern from a TA’s perspective. There is one more element
to be discussed, which are TEE agents. TEE agents are im-
plemented as threads in teecd and enable TAs to leverage
features of the Linux kernel. For example, TC does not im-
plement file system drivers itself. Instead, it calls the corre-
sponding agent to carry out storage operations. This agent
runs in a common Linux userland process (e.g., teecd) and,
therefore, can leverage the file system implementation of the
kernel. We identified three agents: the fs agent, for file sys-
tem operations, the socket agent, for networking operations,
and the misc agent, for time retrieval operations.

4 Breaking Code Confidentiality of TAs

In this section, we first discuss TC’s loader capable of de-
crypting confidential TAs. Then, we elaborate on the identi-
fied design flaws and their consequences. The analysis in this
section has been conducted on a Huawei P9 Lite device.

4.1 Loading Encrypted TAs

During system startup, we noticed that the fingerprintd
interacts with the TEE driver to load TAs from the
/system/bin directory. The files loaded have a *.sec ex-
tension and their contents are encrypted. In total, we can
find eleven *.sec files in this directory, all being encrypted
TAs. Since we have access to the loader due to the previous
analyses, we can study the loading process for the encrypted
TAs.

We found the loader implementation within the
globaltask TA. The *.sec files have restrictive Linux
permissions and can only be loaded by certain system
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services. During the loading process, a buffer containing the
encrypted TA from the file system is passed to globaltask.
Figure 3 gives an overview of the encrypted TA and the

involved cryptographic keys. The loading process takes place
in four stages:

First, a region of the passed buffer, called manifest, is de-
crypted using an RSA private key. Second, another region
containing a signature of a SHA-256 hash is verified using
an RSA public key. Third, an AES key, which is part of the
previously decrypted manifest, is used to decrypt a further
region of the passed buffer, resulting in the ELF file of a TA.
Fourth, the SHA-256 hash from the second stage is compared
against the SHA-256 hash of the decrypted ELF file.

As can be seen in Figure 3, the RSA private key and the
RSA public key used within globaltask are part of different
key pairs. Huawei has the corresponding parts of the keys
present in globaltask.

After globaltask successfully decrypted a TA, it requests
the creation of a process from the TC kernel and updates its
management structures for running TAs. As soon as the initial
ioctl system call returns, requests can be sent to the newly
spawned TA.

4.2 Extracting TA Decryption Keys

The essential question about the loading mechanism as de-
scribed in the previous section is: how is the RSA private
key protected? Ideally, it would never be loaded to Random
Access Memory (RAM), and all operations making use of it
would take place in a Trusted Platform Module (TPM) or a
crypto unit. Thus, even if globaltask were to be compro-
mised, the key would stay confidential. However, the design
of TC’s loading mechanism is based on white-box crypto-
graphy to protect its keys. White-box cryptography is essen-
tially obfuscation of cryptographic code and keys. Instead of
hardcoding the key, it is hidden within the structures of the

wb_aes:

pubkeyenc

privkeyenc

.text

.data

...

...

...

...

globaltask

Figure 4: The white-box AES implementation is part of
globaltask’s .text section while the ciphertext for both
keys resides in its .data section.

cryptographic algorithm used, making it hard to extract.
This design’s problem is that the key can be extracted

with some effort [17], or directly extracted by executing the
white-box cryptography code. In the case of globaltask, a
white-box AES implementation is used to decrypt the RSA
private key from a cyphertext present in globaltask’s .data
section. Since TAs on TC contain 32-bit ARM instructions,
we can slice the relevant parts from globaltask and piece
an executable program together that performs the decryption
operation for us.

To investigate the key re-usage across multiple firmware
images, we built a tool based on Python and the QEMU emu-
lator [10] that extracts the private and the public RSA keys
from a given globaltask binary. Figure 4 illustrates the
relevant parts of the globaltask binary. Using a Python
script, we generate C sources, as illustrated in Listing 1. The
globaltask binary and all variables indicated with <...>
are placed into this program template by the script since they
depend on the version at hand. In this program, we first map
the content of the globaltask binary readable, writable, and
executable (Line 10 in Listing 1). Second, we calculate the
addresses to the encrypted keys and the white-box AES func-
tion (Lines 11-13 in Listing 1). Lastly, we call the function
to decrypt the keys and print their plaintexts (Lines 15-19 in
Listing 1). The resulting C program can be compiled using a
32-bit ARM toolchain and executed using the QEMU emu-
lator in ARM user emulation mode. This mode allows us to
execute an ELF32 ARM binary on our AMD64 machine.

Having the loader’s RSA private key, we successfully de-
crypted the manifests of all TAs found on the file system of
our target device, the Huawei P9 Lite. Within the decrypted
manifests, we found that all encrypted TAs have different
AES keys. Next, we decrypted all encrypted TA ELF files
using their corresponding AES key and manually verified the
resulting ELF files. By completing this step, we have defeated



1 char globaltask[] = { ... }; // globaltask binary
2

3 int main(){
4 char *pubkey_dec[0x1000] = { 0 };
5 char *privkey_dec[0x1000] = { 0 };
6 char* (*wb_aes) (char*, char*, unsigned int);
7

8 mprotect(globaltask, sizeof(globaltask),
9 PROT_READ|PROT_WRITE|PROT_EXEC);

10

11 pubkey_enc = globaltask + <pubkeyenc_off>;
12 privkey_enc = globaltask + <privkeyenc_off>;
13 wb_aes = globaltask + <wb_aes_off>;
14

15 wb_aes(pubkey_enc, pubkey_dec, <pubkey_sz>);
16 hexdump("privkey:", pubkey_dec, <pubkey_sz>);
17

18 wb_aes(privkey_enc, privkey_dec, <privkey_sz>);
19 hexdump("privkey:", pubkey_dec, <privkey_sz>);
20

21 return 0;
22 }

Listing 1: Given the globaltask binary, offsets to the white-
box AES implementation, and the ciphertexts, this C program
template decrypts the keys for us.

the code confidentiality of TAs as implemented on our target
device.

To better understand the impact of this finding, we investi-
gated our dataset of 133 firmware images distributed to differ-
ent Huawei device models from July 2015 until April 2018.
We were able to directly extract the private keys without
modifying our tooling, from 22 of these firmware versions.
Shockingly, we discovered that the private key was the same
across all firmware images. In a further analysis, we found
artifacts (i.e., log strings) indicating the presence of the same
white-box cryptography design in 119 of our 133 images, the
last one distributed in April 2018. We found evidence for
this flawed design being used on recent device models, like
the P10 Plus and P20 Lite, by successfully decrypting TAs
obtained from these devices’ firmwares.

5 Extracting Export-Protected Keys

In this section, we introduce the Android keystore system
and elaborate on the design flaws found in Huawei’s imple-
mentation. Afterward, we explain the impact of our finding
using the example of Full-Disk Encryption (FDE) and provide
evidence that this design flaw has been existing for several
years. The dynamic analysis underlying this examination was
conducted on the Huawei P9 Lite.

5.1 The Android Keystore System
The Android keystore system is capable of binding key ma-
terial to the hardware [24]. This hardware-binding feature
is leveraged through the TEE. In particular, an app can re-
quest the generation of cryptographic keys and operations
performed using these keys from the keystore system service

1 struct keymaster1_device {
2

3 struct hw_device_t common;
4

5 /* ... */
6

7 keymaster_error_t (*generate_key)(
8 const struct keymaster1_device* dev,
9 const keymaster_key_param_set_t* params,

10 keymaster_key_blob_t* key_blob,
11 keymaster_key_characteristics_t** characteristics);
12

13 /* ... */
14

15 };
16 typedef struct keymaster1_device keymaster1_device_t;

Listing 2: An indicative keymaster HAL function to generate
keys. The key_blob output parameter contains the encrypted
key material on the successful return of the function.

(keystored) using the binder IPC framwework [38]. The
requesting app can specify an alias to refer to cryptographic
key material. In a key-generation request, the keystored con-
verts this request to the vendor-specific format and contacts
the TEE driver to forward the request to the keymaster TA.
Next, the keymaster TA performs the key-generation request
and returns an encrypted keyblob to the keystored. This
keyblob is encrypted using a key we call Key Encryption
Key (KEK). Lastly, keystored acknowledges the app’s re-
quest and, hence, the app can use the specified alias to refer to
this keyblob in succeeding cryptographic operations. Figure 5
in Section A provides a further illustration of the Android
keystore system.

The goal of this mechanism is to bind the key material
to the secure hardware and never expose its plaintext to the
NW. The app can use the alias to the keyblob maintained
by keystored to perform cryptographic operations on data.
keystored represents an additional layer of protection and
exposes a unified interface to the hardware-backed keymaster,
which, in our case, is a TA running in TC, but could also be
implemented using a secure element. This design ensures that
the keys will never be in NW memory in plaintext form, and
also that even the key’s encrypted form (i.e., the keyblob) will
never be in the app’s memory. Only the TEE can access the
plaintext keys.

While the Android Open Source Project (AOSP) provides
the keystore’s integration with the Android Framework, the
NW infrastructure to communicate with the TEE is vendor-
specific, as explained in Section 3.1. For instance, the part of
the keystore implementation that converts the key-generation
request into a format that the keymaster TA understands is
implemented through Huawei’s HAL and libteec libraries.
The keystore HAL defines functions to carry out crypto-
graphic operations. To investigate the keyblob from above, we
take a closer look at the HAL interface function responsible
for generating keys, which is illustrated in Listing 2.

The dev parameter is an input parameter and used as a refer-



ence to the keymaster1_device_t itself. params is an input
parameter and points to an array containing key generation pa-
rameters. The key_blob is an output parameter and contains
an opaque uint8_t pointer to the key material. This keyblob
represents the handle from above. characteristics is also
an output parameter and contains the characteristics of the
generated key, i.e., key generation parameters like algorithm,
block mode, padding, or digest, and authorization modes of
usage or access restrictions.

The returned keyblob is used within further cryptographic
operations like encrypting, decrypting, signing, and verify-
ing messages. Since this parameter is defined as an opaque
pointer, its format is up to the vendor.

5.2 Extracting the Keymaster’s Master Keys

In the design of the keymaster TA, we found that a Keyed-
Hash Message Authentication Code (HMAC) is used to verify
the integrity and authenticity of the presented keyblob. If the
HMAC that is part of the presented keyblob does not match
the HMAC calculated from the keyblob, the keymaster TA
rejects the request. An HMAC requires a secret cryptographic
key. In the case of the keymaster TA, this secret key must
only be known by the TEE to guarantee that nobody else can
generate an authentic keyblob.

The keyblob, as the name suggests, contains the encrypted
key material. In our review, we found that this key material is
encrypted with an AES-CBC scheme. Surprisingly, we unveiled
that the AES key, e.g., the KEK, used is a constant. Using the
KEK, we can decrypt the key material outside of the TEE.

Regarding the HMAC, we discovered the usage of an
HMAC-SHA256 scheme also using a constant key, which is
different from the KEK. Thus, both keys are constants resid-
ing in the virtual address space of the TA, and even worse,
they are contained within the TA’s binary and not dynamically
loaded from the Trusted OS or special-purpose hardware, like
it is the case on other platforms [31]. In Section A Listing 3
we provide an illustration of the keyblob structure.

Having both keys, we can decrypt export-protected keys
outside of the TEE and create authentic keyblobs ourselves.

5.3 Breaking Full-Disk Encryption

Android’s FDE is based on the security guarantees of the
used TEE [26]. An essential goal of hardware-backed FDE
is to bind the decryption of the secured content to the device
and prevent offline attacks that would allow an adversary to
brute-force a user’s PIN, unlock pattern, or password. Binding
the encryption key to the device allows for the introduction
of additional defenses, i.e., an enforced delay after a certain
amount of failed login attempts, or even the erasure of data
from the device if a maximum number of failed attempts is
reached.

For an in-depth technical explanation of Android’s TEE-
backed FDE scheme, we recommend Beniamini’s technical
blog [14]. Beniamini did a similar analysis regarding the
keymaster TA on Qualcomm’s TEE, called QSEE. The sig-
nificant difference to the keymaster TA design on the Nexus
6 device compared to the one employed on our Huawei P9
Lite is that the KEK is derived from a device-specific hard-
ware key, called SHK, rendering the KEK device-specific
as well. In contrast, we did not find such a device-specific,
hardware-key-based derivation in Huawei’s keymaster TA.
The disastrous consequence is that, while on the Nexus 6, an
adversary would need to retrieve the KEK for each device,
the KEK for the Huawei P9 Lite is the same on all devices
using the same keymaster TA. Therefore, an adversary can
launch offline brute-force attacks on arbitrary devices in order
to break the device’s FDE.

In our analysis of Huawei’s FDE, we found that it works
similar to the description provided by Beniamini [14]. One
of the noteworthy differences to his analysis on the Nexus 6,
is the location of the crypto footer which contains the TEE-
backed encrypted keyblob of an RSA private key used in
combination with the user credentials and a salt to decrypt the
Device Encryption Key (DEK). The DEK is eventually used
to decrypt the userdata partition of the device. We found
the crypto footer within the last 4K bytes on the very same
userdata partition.

In addition to our dynamic analysis, we investigated four
different devices by statically analyzing their firmware images.
In total, we obtained 133 firmware images. We were able
to extract the keymaster TA from 73 firmware images and
verified the presence of constant KEK’s in all of them. The
firmware images investigated were distributed from July 2015
until April 2018. We found that all firmware images after
April 2018 are using more sophisticated obfuscation schemes
to thwart static analyses, which hinders us from reviewing
keymaster TAs released after this date.

6 Writing a Keymaster Exploit

An HMAC, as used in the present keymaster TA implementa-
tion, constitutes an obstacle for internal software tests, and,
therefore, the respective code might not have received as much
attention during testing. Based on this intuition, we studied
how the keymaster TA uses the keyblob and, indeed, found
an exploitable memory corruption flaw.

6.1 Arbitrary Code Execution
We identified a stack-based buffer overflow in a function
related to exporting the public key of an RSA key pair. The
allocated stack space holding the public key after extracting
it from the keyblob is of constant size. Since we can craft our
own keyblobs, we can manipulate the size of the key pair’s
modulus and trigger a classical stack-based buffer overflow.



In order to hijack the control flow of the keymaster TA, we
had to overcome the exploit mitigations in place. During our
analysis of exploit mitigations, we found that ASLR and stack
canaries are present but ineffective. The stack canaries are
constants and can be overwritten using the known value. The
ASLR lacks entropy and cannot withstand brute-force attacks.
Furthermore, a crashing TA is not subject to an additional
round of address space randomization and loaded to the same
base address again. As a consequence, it was straightforward
to defeat these mitigations and craft a more powerful primitive,
which essentially allows us to execute arbitrary code within
the keymaster TA context.

If the KEK described in Section 4 would not be constant
already, but a more secure key derived from a device-specific
value, as it is the case on Qualcomm devices [14], we would
now be able to leak this key from the keymaster TA.

6.2 Privilege Escalation

The ability to execute code in S-EL0, i.e., SW userpace, al-
lows us to directly interface the Trusted OS. In order to map
the attack surface of the TC kernel, we identified 174 syscall
handlers, which is quite a large attack surface for a trusted
computing base. The separation of privileges to invoke a
syscall happens via permission flags assigned to TAs during
loading. The Trusted OS kernel maintains a task structure
containing these flags.

One particularly useful system call enables TAs to map
physical memory addresses to their virtual address space. The
implementation of this function receives a physical address,
a size, and a flag, which we identified as a secure mode flag.
Only if the secure mode flag is enabled, a set of allowed ranges
is checked against the requested physical address. From the
device tree, used by the Linux kernel to get information about
the physical address layout of the SoC, we were able to de-
rive that the first allowed range is a shared memory region
within the memory reserved for the Trusted OS, and the sec-
ond allowed rule matches the remaining memory except the
Trusted OS region.

Since this system call is directly exposed to the TA under
our control, we can disable the secure mode flag in order to
bypass these checks. Furthermore, this check does not exclude
mapping of code and data regions used by the ARM Trust-
edFirmware running in S-EL3. Thus, it would be ineffective
either way.

Using this system call, a TA can map arbitrary physical
memory to its virtual address space, even if a higher privilege
level is using this physical memory, i.e., the kernel in S-EL1
or the Secure Monitor in S-EL3. We successfully extended
our exploit from the previous section in order to escalate priv-
ileges to the Trusted OS kernel. We argue that exposing an
API with these capabilities is unnecessary. Given the func-
tionality provided by the keymaster TA, we do not see any
reason why it has access to such capabilities.

7 Lessons Learned

In this section, we summarize our lessons learned related to
the absence of hardware-protected crypto keys and the TCB
attack surface of TZ-based TEEs.

7.1 Absence of Hardware-Protected Crypto
Keys

In our work, we demonstrated how security-by-obscurity de-
sign principles were used despite the presence of a technol-
ogy that is expected to protect the confidentiality of data by
hardware means. Although this is an individual case and we
know from independent work focussing on QSEE [14] and
Kinibi [16, 31] that confidential data (e.g., crypto keys) are
generally secured by hardware, opposed to being hidden in
firmware blobs, we can refine our understanding of TZ based
on this case. TZ is not an all-in-one solution but rather a
construction kit for TEEs. An end product’s capabilities re-
garding integrity and confidentiality guarantees highly depend
on the system designer’s choices of hardware and software
components.

A further important insight relates to the severity of impact
inherent to software-based designs. In the reviewed keymaster
TA’s design, the KEK was not device-specific and reused
across devices and firmware versions. The leakage of this
key essentially disables the disk encryption’s device binding
employed by a whole generation of devices and allows for
off-device brute-force attacks against the user’s PIN, pattern,
or password.

7.2 TCB Attack Surface
Complementary to the TCB of Huawei’s TC reported by
Cerdeira et al. [18] in their recent systematization of knowl-
edge on TZ-based TEEs, we found that the aggregated size
of TAs (encrypted and non-encrypted) is 7.6 MB. Thus, the
TCB in TC’s userspace is more than 16 times larger than
reported by Cerdeira et al. and, according to their data, the
largest userspace TCB of all commercially used TEE imple-
mentations. Due to TAs being directly exposed to the NW
this TCB is not only huge but also comprises a wide attack
surface.

Accompanying the large TCB, we demonstrated the risk of
memory corruption bugs due to the usage of memory-unsafe
languages. This design choice seems to be widely spread, and
all major TEE implementations have been victim to memory
corruption attacks [12,16,40]. Although the usage of managed
runtime environments [37] or memory-safe languages (e.g.,
Rust [19]) would be a viable way to reduce the risk of memory
corruptions significantly, these proposals are not adopted by
vendors.

The choice for memory-unsafe languages makes effective
exploit mitigation techniques mandatory. In our research, we



found that this is not the case for the reviewed system and,
according to other research, effective mitigations are also
missing on other TEE implementations [4, 16].

After we took over the keymaster TA, we could use the API
of the Trusted OS to map physical memory. Although the fact
that we could map and modify memory pages of a higher priv-
ileged context (e.g., S-EL3) is probably an implementation
flaw, the availability of powerful memory mapping functions
to the keymaster TA is a design flaw as such. A lack of proper
TA API designs and access policies has also been shown on
Kinibi [31]. Future designs should consider the principle of
least privilege regarding the capabilities of TAs.

8 Related Work

Our work was particularly inspired by all researchers that tar-
geted Huawei devices and published their results. Shen [39]
and Stephens [40] works covering full-chain exploits from
the NW userland (i.e., N-EL0) to the SW kernel (i.e., S-EL1)
on Huawei devices were invaluable resources for us. Comple-
mentary to their work, we, for the first time, systematically
describe TC’s architecture as well as its integration with the
Android system. Furthermore, we are the first to review the se-
cure TA loader. Lastly, we are not aware of any other research
elaborating on Huawei’s keystore system.

Regarding other TEE implementations, Beniamini [16]
shares his insights on loading signed TAs into the TEE and
the simultaneously arising problem of revocation. If a TEE
has no means to reject the loading of an outdated and vulner-
able TA, an attacker will always be able to intrude the TCB.
Komaromy [28–30] describes Kinibi’s architecture in great de-
tail, which is entirely different from TC’s architecture due to
the usage of a microkernel. Additionally, Lapid and Wool [31]
systematically reviewed the Kinibi system and took cache-
based side-channel attacks into account. Later, Adamski et
al. [2] [3] took the research on Kinibi to the next level. Not
only do they share their technical insights accumulated dur-
ing their Kinibi review, more importantly for the commu-
nity, they also share many of their tools to support other re-
searchers in replicating their research. By open-sourcing all
our tools created during the analysis of Huawei’s TC, we fol-
low their example. Details about Samsung firmware analysis
and approaching the problem of feedback-driven fuzzing for
Kinibi TAs can also be found in Akimov’s work [5]. Sam-
sung changed their TEE implementation with the Samsung
Galaxy S10 model. Only a few resources exist for this TEE
called TEEGris. Tarasikov [1] shares his insights from re-
verse engineering and building a prototypical emulator for
TEEGris.

The most insightful research addressing Qualcomm’s
QSEE has been carried out by Beniamini [13, 15, 16]. In
his research, he covers several design and implementation
flaws of this platform. Harrison et al. [27] approached the
problem of re-hosting TEEs in general. With their system

called PartEmu, they can run various TEE implementations.
Huawei’s TC is not part of their evaluation. The semantic
gap problem inherent to the NW-SW split of TZ-based TEE
architectures was discussed by Machiry et al. [32] for the
first time. In their recent Systematization of Knowledge on
vulnerabilities in TZ-based TEEs, Cerdeira et al. [18] sum-
marize many of the above mentioned works and counduct a
cross-vendor comparison. With our insights, we complement
their work by, for the first time, discussing TC’s secure TA
loader, which is unique to this platform. Furthermore, we are
able to uncover many of the issues discussed in their work on
Huawei’s platform and show their instantiation in practice.

9 Conclusions

We reviewed Huawei’s TEE, called TC, and uncovered several
design flaws in different subsystems. We provide a systematic
description of TC’s components, their interconnections, and
their integration with the Android system. Uniquely used on
this platform, we study the secure loader of TC responsible
for loading confidential TAs into the TEE. We found several
issues in the loader’s design, like protecting a constant key
using white-box cryptography, and were able to break the code
confidentiality of encrypted TAs distributed to many Huawei
devices. Furthermore, we examined the keystore system and
revealed considerable design flaws that allowed us to leak
export-protected cryptographic keys from the TEE.

Lastly, we also found an exploitable memory corruption
vulnerability enabling us to probe and bypass the exploit miti-
gations used in TAs on TC. We unveiled that the stack canary
and ASLR implementations on this platform are insufficient.
It was possible to escalate our privileges to the keymaster TA
context inside of the TEE. From within the TEE, we analyzed
the TEE kernel’s attack surface and discovered an unneces-
sarily powerful API being exposed to this execution context.
Using this API, we were finally able to escalate our privileges
to the highest privilege level present on this platform.
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A Appendix

A.1 Android Keystore System

App keystored keymaster TA
gen_key(alias, ...) gen key

kbenc

store 
alias : keyblobenc

enc(alias, data)

gen key

encKEK(kb)

enc(kbenc, data)

decKEK(kbenc)

enckb(data)
dataencdataenc

Figure 5: An app requests cryptographic operations from
keystored. keystored uses the keymaster TA hosted in the
TEE to carry out the key generation and encryption requests.
The keyblob (kb), containing the generated key, is never ex-
posed to NW memory in plaintext. Only the keymaster TA
can decrypt its plaintext using the KEK.

1 struct keyblob {
2 uint8_t hmac[32];
3 uint8_t iv[16];
4 uint8_t magic[4];
5 uint32_t unknown;
6

7 uint32_t keymaterial_offset;
8 uint32_t keymaterial_size;
9 uint32_t key_params1_count_offset;

10 uint32_t key_params2_count_offset;
11 uint32_t key_params1_data_offset;
12 uint32_t key_params1_data_size;
13 uint32_t hidden_params_count_offset;
14 uint32_t hidden_params_data_offset;
15 uint32_t hidden_params_data_size;
16 uint32_t keyblob_size;
17 uint8_t blob[]; // C99 FAM
18 }

Listing 3: The keyblob structure used by TC’s keymaster TA.
We obtained the keys to generate the HMAC and to encrypt
or decrypt the key material which is part of the blob member.

Our static analysis of the keymaster TA and dy-
namic analysis of the NW keystore system components
revealed a keyblob structure, as shown in Listing 3.
The actual key_material, key_params1, key_params2,
key_params_data, and hidden_params are part of the last
structure member, which is a flexible array member. The first
member is an HMAC of the entire keyblob, including the
dynamically sized blob member. The key_material and the
hidden_params are encrypted.
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