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Abstract
When dealing with millions of lines of C code, we

still cannot have the cake and eat it: type analysis for
call graph construction is scalable yet highly imprecise.
We address this precision issue through a practical ob-
servation: many function pointers are simple; they are
not referenced by other pointers, nor do they derive their
values by dereferencing other pointers. As a result, sim-
ple function pointers can be resolved with precise and
affordable pointer aliasing information. In this work, we
advocate KELP with two concerted stages. First, instead
of directly using type analysis, KELP performs regional
pointer analysis along def-use chains to early and pre-
cisely resolve the indirect calls through simple function
pointers. Second, KELP then leverages type analysis to
handle the remaining indirect calls. The first stage is ef-
ficient as KELP selectively reasons about simple func-
tion pointers, thereby avoiding prohibitive performance
penalties. The second stage is precise as the candidate
address-taken functions for checking type compatibility
are largely reduced thanks to the first stage. Our exper-
iments on twenty large-scale and popular software pro-
grams show that, on average, KELP can reduce spurious
callees by 54.2% with only a negligible additional time
cost of 8.5% (equivalent to 6.3 seconds) compared to the
previous approach. More excitingly, when evaluating the
call graphs through the lens of three various downstream
clients (i.e., thread-sharing analysis, value-flow bug de-
tection, and directed grey-box fuzzing), KELP can sig-
nificantly enhance their effectiveness for better vulnera-
bility understanding, hunting, and reproduction.

1 Introduction

Call graph (CG) construction is a fundamental and essen-
tial problem, underpinning a myriad of downstream se-
curity applications (e.g., heap error detection [14, 27, 51,
52, 68], taint analysis [5, 93], fuzzing testing [11, 18, 34],

and control-flow integrity [40, 41, 57, 91]). In low-level
C programs, function pointers are often employed as a
powerful mechanism for producing compact and flexi-
ble code. However, by their dynamic nature, function
pointers pose a critical challenge to statically resolve
indirect calls for feasible targets. Even worse, despite
the tremendous progress over decades, the previous ap-
proaches [4,26,29,46,50,75,77,80] for CG construction
are either imprecise or inefficient when scaling up to the
ever-growing complexity of modern software systems.

Previous Approaches. In general, there are two basic
ways to construct CGs: pointer analysis and type analy-
sis. First, pointer analysis computes the possible values
of each memory location, thereby using the function-
pointer values to resolve each indirect call [29, 69, 77].
Unfortunately, due to the sophisticated memory opera-
tions, existing highly precise pointer analysis has faced
difficulty in scaling up to million-line software [28, 40,
50]. For example, the recent study [28] shows that a
field-sensitive and flow-insensitive Andersen’s pointer
analysis [29, 60] fails to construct a CG for Bind (680
KLoC) within eight hours. Moreover, another recent
work [40] shows that SUPA [77,78,80], a state-of-the-art
field-, flow-, and context-sensitive demand-driven An-
dersen’s pointer analysis, cannot construct a CG for GCC
(135 KLoC) with a twelve-hour time budget.

In contrast, type analysis has shown its promise
to readily handle millions of lines of code in min-
utes [50, 94]. Specifically, function signature analy-
sis (FSA) [6] identifies indirect-call targets by matching
the types of function pointers with the ones of address-
taken functions. On the downside, FSA is highly im-
precise. For instance, the recent work [94] shows that
FSA for the Linux kernel spent a few minutes construct-
ing a highly imprecise CG with 81K callees per indi-
rect call. The main reason for imprecision is that indi-
rect calls with a few general parameter types (e.g., void*
or char*) can potentially match a large number of in-
feasible callees [50]. To mitigate the precision issue,
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most recently, multi-layer type analysis (MLTA) [50] ad-
ditionally considers types of memory objects that hold
the function pointers. However, much work [28, 29, 40]
shows that type-based CG construction remains impre-
cise for adoption in industrial settings because pure type
analysis is unaware of any pointer aliasing information.

Our Contributions. In this work, we advocate a staged
and concerted approach, namely KELP, to alleviate the
tricky precision-scalability dilemma. Our practical ob-
servation is that many function pointers are used sim-
ply without being referenced by other pointers or deriv-
ing their values by dereferencing other pointers. Con-
sequently, these simple function pointers can be effec-
tively resolved by using “low-hanging” regional pointer
aliasing information. Interestingly, early capturing of
the unique callees invoked through these simple func-
tion pointers can help reduce the number of candidate
address-taken functions for checking type compatibility.

We use the buggy program shown in Figure 1 to il-
lustrate KELP, where the simple variable b1 defined at
Line 17 contains the address of checked_print, while
the complex variable b2 derives its value, the address of
unchecked_print, by dereferencing pointer p at Line
18. By merely checking type compatibility, MLTA [50]
can imprecisely compute two callees for both the indi-
rect calls at Lines 13 and 14. In contrast, by using re-
gional (not whole-program) pointer analysis to compute
the def-use relations of the variable b1 at Line 13, KELP
can infer that only the function checked_print is in-
voked. Furthermore, checked_print, whose address is
assigned only to b1, cannot be invoked by accessing an-
other variable b2 at Line 14. As a result, the type analysis
can only match unchecked_print to the indirect call at
Line 14. More illustrations are presented in § 2.

To validate our observation, we empirically studied the
Linux kernel (§ 3). We revealed two major findings that
34.5% of indirect calls use simple function pointers (of-
ten as stack variables or global variables), and those indi-
rect calls uniquely invoke 23.9% of address-taken func-
tions, which strongly imply KELP’s effectiveness.

As depicted in Figure 2, KELP has two concerted
stages, arming with several customized techniques (§ 4).

• First, KELP resolves the callees of those indirect
calls through simple function pointers. To this end,
we present a def-use analysis, computing the re-
gional pointer aliasing information related to the
simple pointers. For each indirect call of interest,
our analysis tracks the transitive def-use relations
across functions in a forward and backward manner,
thereby reaching the sites of address-taken func-
tions and precisely capturing the feasible callees.

• Second, KELP resolves the callees of the remain-
ing indirect calls through complex function pointers

1 typedef void (*fptr_t)(int*);

2 struct A {fptr_t printer;};

3 struct B {struct A a;};

4 void checked_print(int* val){

5 if(val) printf("%d\n", *val);

6 }

7 void unchecked_print(int* val){

8 printf("%d\n", *val);

9 }

10 void process_input(struct B b1, struct B b2){

11 // return NULL for invalid inputs

12 int* ret = examine_input(user_input);

13 (*b1.a.printer)(ret); // safe

14 (*b2.a.printer)(ret); // NPD

15 }

16 void get_printers(struct B* p){

17 struct B b1={.a = {.printer = &checked_print}};

18 struct B b2 = *p; // dereferencing p

19 process_input(b1, b2);

20 }

21 int main(void) {

22 struct B* p = (struct B*) malloc(...);

23 struct B b ={.a={.printer= &unchecked_print}};

24 *p = b;

25 get_printers(p);

26 ...; // e.g., clearing the allocated memory

27 }

Figure 1: MLTA calculates two possible callees for each
of the indirect calls, which is less precise than KELP.

(i.e., relative to simple ones), resorting to checking
type compatibility. Specifically, our analysis recog-
nizes and safely removes those address-taken func-
tions that only those indirect calls computed at the
first stage can invoke. As a result, the number of the
candidate functions that can be matched in the type
analysis is significantly reduced.

Notably, KELP has three eminent merits, thereby es-
tablishing a new sweet spot between precision and effi-
ciency in the realm of type-based CG construction.

1. Given the same indirect call, KELP can always pre-
cisely compute a subset of the callees concluded by
the existing type analysis [6,26,46,50]. Specifically,
our two core stages work in concert: the preced-
ing def-use tracking precisely resolves the indirect
calls through simple function pointers, thereby con-
siderably “squeezing” the address-taken functions
that can be matched in the incoming type analysis.

2. KELP remains lightweight without inducing many
time overheads. Our regional def-use analysis auto-
matically distinguishes the simple function pointers
from the complex ones on-the-fly, computing the af-
fordable pointer information in an elastic manner.

3. KELP does not induce additional false negatives to
type-based call graph construction. Specifically, our
analysis conservatively handles a few corner cases
(e.g., the unknown def-use chains of simple func-
tion pointers) and safely uses type-analysis results
as a fallback to refrain from any new false negatives.
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LLVM Bitcode Call Graph

Link caller 
to callees

identifying reachable sites 
of address-taken functions

Stage I: Def-Use Analysis

forward/backward traversing 
def-use chains across functions

for each indirect call 
through a simple function pointer

computing indirect-call   
targets by type matching

Stage II: Type Analysis

identifying confined 
address-taken functions

for each indirect call 
through a complex function pointer

Figure 2: The workflow of KELP: a staged and concerted approach to type-based call graph construction.

To sum up, our new scheme is orthogonal to the type-
analysis formulation and can serve as a pre-processing
step to existing type analysis for refining indirect-call tar-
gets in a precise, efficient, and safe manner.

Experiment Highlights. We have implemented our de-
sign of KELP and performed extensive experiments on
twenty software programs to demonstrate its effective-
ness (§ 5 and § 6). Excitingly, even though CG con-
struction has been studied for over forty years, KELP
still can significantly advance the state-of-the-art type
analysis [50] in terms of effectiveness in most programs.
Furthermore, it is quite inspiring that KELP’s ability to
provide more precise CGs, as opposed to MLTA’s, can
significantly enhance three various downstream applica-
tions. Our promising results are highlighted below.

1. Compared to MLTA, on average, KELP can pre-
cisely identify 396 more uniquely-resolved indirect
calls, reduce the average callee size by 54.2%, and
remove 94 bogus callees from the indirect call with
the largest callee size. KELP can reduce the average
callee size by more than 20% for 18 programs.

2. Compared to MLTA, KELP remains lightweight
and, on average, incurs only an additional 8.5%
time overhead (accounting for 6.3 seconds). KELP
can construct a precise CG for six million-line sys-
tems (e.g., Firefox) in around four minutes per sys-
tem and for the Linux kernel in around 11 minutes.

3. KELP can help thread-sharing analysis [35, 76]
to precisely reduce 25.3% more spurious thread-
shared load/store memory accesses for better under-
standing and debugging concurrent programs.

4. KELP can help value-flow analysis, SABER [81],
precisely validate three source-sink properties (i.e.,
memory leak, double free, and file description leak)
by reducing 17.1% more false warnings on average.

5. KELP can help directed grey-box fuzzing, BEA-
CON [34], to reproduce existing ten CVE-ID vul-
nerabilities by largely reducing total time costs by
51.9% and irrelevant program executions by 46.9%.

We stress that the three downstream clients broadly
involve static and dynamic program analyses, as well

as reasoning about sequential and concurrent programs,
which can benefit various phases and tasks throughout
software development. Given the importance of CGs, we
believe that KELP can beef up more downstream clients.
To sum up, this paper makes four main contributions:

• We advocate type analysis with regional pointer
information, a big stride forward towards refining
indirect-call targets in a precise and efficient way.

• We present a novel way to resolve simple and com-
plex indirect calls in a staged and concerted manner.

• We empirically demonstrate that KELP can achieve
the best precision with negligible extra time costs
compared to the most recent type-based solution.

• We use the CGs produced by KELP to help improve
the effectiveness of three existing clients. KELP will
soon be open-sourced to foster future research.

2 KELP in a Nutshell

In this section, we first give an overview of basic pointer
manipulations (§ 2.1) and then reuse the example shown
in Figure 1 to show how the previous work impairs the
precision of the downstream bug finding (§ 2.2). We then
orchestrate the essence of KELP (§ 2.3).

2.1 Basic Concepts of Pointer Operations
We first clarify some basic terminology of pointer ma-
nipulations [30, 47, 77]. The &p denotes the address-of
operation, retrieving and exposing the memory address
of pointer p. In addition, we say that p is referenced by
(or pointed to by) q if q contains the address of p. Partic-
ularly, when a function exposes its address (assigned to a
pointer) via an address-of operation, we call the func-
tion an address-taken function [50]. Correspondingly,
address-taken sites refer to the statements (or the ini-
tializers of global variables) where the functions expose
their addresses via the address-of operations.

Besides, for the load statement p = ∗q, we say p de-
rives the value by dereferencing q or the value of p is
loaded from the memory object referenced by q. Sim-
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ilarly, for the store statement ∗q = p, the value of p is
stored in the memory object referenced by q.

2.2 Previous Type-Based Approaches
Much recent work [50,94] shows that the type-based call
graph construction is scalable to millions of lines of code
in minutes. However, existing type analysis is still highly
imprecise, creating a significant obstacle to adoption in
practice. We reuse the buggy code shown in Figure 1 to
illustrate further that the spurious callees computed by
the previous type-based approaches [6, 26, 46, 50] com-
promise the precision of a downstream bug checker.

Recall that the code in Figure 1 defines two structures,
A at Line 2 and B at Line 3, where A contains a field,
printer, with a function-pointer type, fptr_t, and B

has an instance of A. Also, the variable b1 is defined at
Line 17, holding checked_print’s address. Compara-
tively, b2 contains unchecked_print’s address, which
is derived by dereferencing p at Line 18. Both b1

and b2 are passed into the function process_input

as parameters. At Line 12, process_input processes
the untrusted user_input by running the function
examine_input. When ret is NULL due to the invalid
user_input, the code can invoke unchecked_print at
Line 14, dereferencing a NULL pointer at Line 8.
Previous Type Analysis. All the previous type analy-
ses [6, 26, 46, 50] can imprecisely identify two callees
for the two indirect calls at Lines 13 and 14. First,
function signature analysis [6] (FSA) identifies indirect-
call targets by matching the types of function pointers
with the ones of address-taken functions. In particu-
lar, the indirect call at Line 14 uses the function pointer
b2.a.printer with the type fptr_t. Since both func-
tions, checked_print and unchecked_print, have
the matched types, and their addresses are exposed (via
the address-of operation) during the initialization of vari-
ables b and b1, FSA can regard both as feasible callees
for Line 14. Similarly, FSA can match both functions to
the indirect call at Line 13 as callees imprecisely.

To improve the precision of FSA, multi-layer type
analysis [50] (MLTA) refines indirect-call targets by ad-
ditionally considering the types of memory objects hold-
ing function pointers. For instance, the function pointer
b2.a.fptr_t at Line 14 has the type fptr_t, and
the pointer’s value is loaded from the type-A object a,
which is then loaded from the type-B object b. MLTA
considers that the callees at Line 14 should have their
addresses taken to some pointers with the three-layer
type B.A.fptr_t rather than merely the one-layer type
fptr_t in FSA. However, by examining Line 17, the
function checked_print is still type-compatible to be
invoked at Line 14, which is still imprecise as FSA.
Incurring False Warnings. The imprecision of CGs

can compromise the effectiveness of downstream appli-
cations. Consider that a static Null pointer dereference
checker uses the indirect-call results of either FSA or
MLTA. The checker first finds that the ret at Line 12
could be NULL and proceeds to track whether the ret

could be dereferenced somewhere without NULL check-
ing. Along the control flows, the checker reaches the in-
direct call at Line 13, enters both callees, and reports an
NPD warning at Line 8. However, the warning is bogus,
as the indirect call at Line 13 never invokes the function
unchecked_print. In § 2.3, we show how KELP can
help the NPD checker suppress the false warning.

2.3 A Staged and Concerted Approach
We first define the basic notions, which enable KELP to
improve the precision of type-based CG construction.

Definition 1. A function pointer is called simple when it
is not referenced by other pointers and does not derive its
values by dereferencing other pointers.

In essence, simple function pointers do not have the
complexity introduced by referencing or dereferencing
operations involving other pointers. In contrast, complex
function pointers could be referenced by other pointers
or obtain their values with pointer dereferencing. Cor-
respondingly, we define an indirect call as simple (com-
plex) when the call site uses simple (complex) function
pointers to perform indirect invocation. Next, we char-
acterize the functions that are only invoked by simple
indirect calls, thus limiting the scope of address-taken
functions that can be matched to complex indirect calls.

Definition 2. We refer to a function as confined when it
can only be invoked in simple indirect calls.

That is, the address of a confined function is only prop-
agated to simple indirect calls along def-use chains.

Back to the example in Figure 1, KELP first performs
regional pointer analysis for each indirect call, tracking
the def-use chains of the simple function pointer. The
analysis is regional as it does not perform an exhaustive
analysis of the whole program. Specifically, our analy-
sis ensures the tracked function pointer is not referenced
by other pointers and does not propagate its values with
pointer dereferencing in both the forward and backward
control flow paths. By tracking the def-use chains, KELP
can also capture the confined values of the simple func-
tion pointer. In the example of Figure 1, since the vari-
able b1 is defined with the function checked_print’s
address at Line 17 and then used at Line 13 without being
referenced by other pointers or propagating its value with
pointer dereferencing, KELP can precisely compute that
the indirect call at Line 13 can invoke checked_print.
In contrast, when tracing the def-use chains of the vari-
able b2 for resolving the indirect call at Line 14, KELP
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can recognize the load site at Line 18 and differentiate b2
as a complex variable that derives its value by derefer-
encing the pointer p. As a result, by design, KELP leaves
the complex indirect call to the succeeding efficient type
analysis for avoiding prohibitive performance penalties.

Next, KELP then employs the type analysis to resolve
the complex indirect call at Line 14. To embrace high
precision, we compute the candidate address-taken func-
tions that can be matched due to type compatibility by re-
moving the confined function checked_print. Specif-
ically, checked_print is uniquely invoked by the sim-
ple indirect call at Line 13, because the function’s ad-
dress is taken only once and then propagated to the in-
direct call without pointer dereferencing. By checking
the type compatibility from fewer candidate functions,
as a result, KELP can precisely identify the single callee
at Line 14. With the precise CG, the NPD checker can
precisely identify the control flows of the bug.

Note that the previous type analyses [6, 26, 46, 50] fo-
cus on using more type information rather than reduc-
ing the candidate address-taken functions; KELP is or-
thogonal to their formulation and can act as their pre-
processing step to further refine indirect-call targets.

Roadmap. We have introduced the essence of our staged
approach to type-based call graph construction. In what
follows, we orchestrate KELP in a systematic way.

1. In § 3, we perform a characteristic empirical study
on the Linux kernel and reveal two major findings
that significantly imply the practicality of KELP.

2. In § 4, we present a staged and concerted approach
with several tailored techniques to resolve the in-
direct calls through simple and complex function
pointers in a precise and efficient manner.

3 A Characteristic Empirical Study

To understand how prevalent simple function point-
ers are in practice, we conducted an empirical study
on the Linux kernel (v5.15), one of the most popular
open-source software. In particular, a plethora of re-
search [22, 37, 44, 87, 88, 90] has focused on the Linux
kernel owing to its vital security impacts. To reveal the
effectiveness of our staged and concerted strategy, we in-
vestigate two critical research questions listed below.

• Q1: Is it common to use simple function pointers?
• Q2: Is it common for address-taken functions to be

only invoked by simple indirect calls?

For Q1, if most function pointers are not simple, the
regional def-use tracking at our first stage cannot effec-
tively resolve many indirect calls. For Q2, consider that
most functions are address-taken more than once and can
be invoked in both simple and complex indirect calls. As

1 typedef void (*fptr_t)(struct unix_sock *);

2 void unix_gc(void){

3 list_for_each_entry(u, &gc_candidates, link)

4 scan_children(&u->sk, dec_inflight);

5 ...;

6 while (cursor.next != &gc_candidates){

7 scan_children(..., inc_inflight_move_tail);

8 }

9 ...;

10 list_for_each_entry(u, &gc_candidates, link)

11 scan_children(&u->sk, inc_inflight);

12 }

13 void scan_children(struct sock *x, fptr_t func){

14 if (x->sk_state != TCP_LISTEN) {

15 scan_inflight(x, func);

16 }

17 }

18 void scan_inflight(struct sock *x, fptr_t func){

19 if (test_bit(CANDIDATE, &u->gc_flags)){

20 func(u); // a simple indirect call

21 }

22 }

Figure 3: An example in Linux kernel (af_unix.c).

a result, the type analysis at our second stage cannot pre-
cisely resolve the complex indirect calls because the can-
didate functions for checking type compatibility cannot
be largely reduced by identifying the confined functions.
To answer the two questions, we statistically count each
address-taken site of functions and each indirect call by
analyzing the LLVM bitcode of the Linux kernel.

Finding I: Considerable indirect calls (34.5%) are
through simple function pointers.

More specifically, for the 87355 indirect calls being
studied, many indirect calls (34.5%) are through sim-
ple function pointers. Through our observation, we have
noted that simple function pointers are commonly em-
ployed as global or stack variables, where their values
are directly defined during declaration. Conversely, com-
plex function pointers tend to be implemented as heap
objects. Specifically, first, the def-use chains of stack
variables are very short, commonly spanning across sev-
eral functions without complicated control flows. Sec-
ond, the global variables are often initialized once and
remain unchanged for the left execution (also called sta-
tionary [16]). To sum up, our Finding I implies that the
def-use tracking at our first stage is highly cost-efficient
thanks to the characteristics of simple function pointers.

Example 3.1. Figure 3 shows the usage of simple func-
tion pointers. In the function unix_gc, the three func-
tions dec_inflight, inc_inflight_move_tail, and
inc_inflight, are address-taken to the simple vari-
able func, which then acts as a parameter passed from
scan_children to scan_inflight and finally used in
the indirect call at Line 20. Since the address of func
is never exposed to other pointers, func’s value at Line
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20 can be precisely determined by reasoning about direct
def-use relations. If using pure type analysis for the indi-
rect call at Line 20, a dozen false callees can be induced.

Finding II: Considerable functions (23.9%) are
only invoked by simple indirect calls.

In addition, for the 90127 address-taken functions be-
ing studied, most functions (76.3%) are only address-
taken once, having only one address-taken site. The re-
sult implies that simple and complex indirect calls com-
monly invoke different groups of functions. To sum up,
our Finding II implies that our type analysis at our sec-
ond stage is highly effective in reducing the candidate
address-taken functions for checking type compatibility.

Example 3.2. In unix_gc of Figure 3, the three func-
tions, dec_infligt, inc_infligt_move_tail, and
inc_infligt, are address-taken to and only once to the
simple function pointer func. In other words, only the
indirect call through accessing func at Line 20 can in-
voke the three functions and any other indirect calls can-
not. If directly using pure type analysis [6, 50], the three
functions can be matched to other type-compatible indi-
rect calls, which can induce tremendous bogus callees.

Summary. The above two findings on the Linux ker-
nel strongly imply the effectiveness of our two concerted
stages to resolve indirect-call targets. To the best of our
knowledge, the previous type-based approaches are all
oblivious to simple function pointers. On the other hand,
precise pointer analysis that computes the possible val-
ues of all function pointers is prohibitively expensive for
large codebases [28, 41]. In § 4, we detail the key tech-
niques behind KELP for refining indirect-call targets.

4 Algorithm Design

This section first presents the basic notions for program
abstraction and states two key challenges (§ 4.1). Then,
we present the two core stages in KELP (§ 4.2 and § 4.3).

4.1 Preliminaries
In this part, we describe the program abstraction for for-
mulating our approach and state two key challenges.
Assumption. As with most previous pointer analysis and
type analysis [6, 26, 46, 50, 77], we assume that the code
being analyzed is closed, meaning that all of the source
code for the target program is available and within the
scope of our analysis. If the code is open and some func-
tions are passed from outside the program for inner indi-
rect calls to invoke, both the conventional pointer analy-
sis and type analysis may not be able to resolve the cor-
responding indirect calls.

Program P := F+

Function F := f (v1, . . . ,vn){S∗;}
Statement S :=

| v1 = v2 | v = &o | v1 = ∗v2 | ∗ v1 = v2

| v1 = φ(v2,v3) | return v | v = v0(v1,v2, . . .)

| v1 = &v2→ f ld | s1;s2

Figure 4: The syntax of the language.

Program Abstraction. Like much work [10, 14, 16, 30,
31, 68, 77], we formalize KELP with a standard LLVM-
like language shown in Figure 4. Note that we also use
the mem2reg [83] optimization to produce and simplify
the LLVM IR of an analyzed program, which is further
discussed in § 5. Specifically, we have call sites denoted
as cs, which may accept a variable. We use IC to denote
all indirect calls. The Phi instruction, v1 = φ(v2,v3),
merges the values of v2 and v3 from different basic blocks
into a single value v1. Besides, to reach field-sensitivity,
we have the instruction that, given a memory address
operand, returns a new address by adding a relative off-
set, corresponding to a field element.

We follow the LLVM convention of separating pro-
gram variables into two disjoint sets of top-level vari-
ables (v ∈ V) and address-taken objects (o ∈ O). First,
top-level variables may hold some memory addresses,
comprising stack virtual registers and global variables.
The variables V are in SSA form, where every variable
has only one definition. Second, the objects O represent
abstract memory locations, accessed indirectly via loads
and stores by taking the variables V as arguments.

Points-to Relations. The points-to set of a pointer v at
a statement s is denoted as pt(s,v) = {o|o ∈O}. In Fig-
ure 5(a), for example, we can infer pt(s2, p) = {o1} at s2.
To resolve the indirect calls at s20 and s21, KELP needs
to compute pt(s20,b1) and pt(s21,b2) by identifying and
tracing their def-use chains, as shown in Figure 5(b).

Def-Use Chains. We define the inter-procedural def-use
graph that captures the data dependencies of variables
and objects, upon which KELP resolves the simple indi-
rect calls by the regional traversal of direct value flows.

Definition 3. A DUG is denoted as G = (N,E), where
• N is a set of nodes, each of which, n, denotes a state-

ment s. Thus, we also use s to denote a node.
• E ⊆ N×N is a set of directed edges, each of which

represents a def-use relation. First, a direct value-
flow edge s1

v→ s2 (v ∈ V) from a statement s1 to a
statement s2 denotes a def-use relation for v with its
def at s1 and use at s2. Second, an indirect value-
flow edge s1

o→ s2 (o ∈ O) from s1 (a store) to s2
(a load or a store) denotes an approximate def-use
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chain for o with its def at s1 and use (or def) at s2.

Remark. The direct value flows in DUG (e.g., s1
v→ s2)

can be readily constructed thanks to its SSA form. In
contrast, the indirect value flows s1

o→ s2 require addi-
tional pointer aliasing information to determine the ob-
jects of pointer dereferencing and match the loads and
stores precisely. The previous pointer analyses [31, 77,
81, 89] construct the DUG by using an expensive whole-
program Andersen’s pointer analysis [29], which is diffi-
cult to scale up to large-scale million-line software pro-
grams (e.g., the Linux kernel) [40, 50]. Instead of track-
ing all value flows, KELP only precisely monitors the di-
rect value flows to resolve simple indirect calls, which
greatly reduces the performance overhead. When realiz-
ing that the tracking passes through indirect value flows
with pointer dereferencing, KELP categorizes the corre-
sponding indirect calls as complex based on Definition 1.

Example 4.1. Figure 5(b) shows the def-use chains ¬
from variable b1 defined at s8 to b1 used at s20 and 
from variable b defined at s3 to b2 used at s21, which
would be tracked by KELP in a backward way. For ex-
ample, the s18

b2→ s21 is a direct edge through variable
b2 while s4

o1→ s9 is an indirect edge through object o1.
The grey part means the corresponding chains are not
backward tracked by KELP, as the value of the complex
pointer b2 is propagated along the indirect value flow.

Problem Statement. We deliberate on two technical
challenges for KELP to reach precise and efficient:

1. How to devise the def-use analysis to selectively re-
solve simple indirect calls and automatically avoid
reasoning about complex indirect calls (§ 4.2).

2. How to leverage the regional pointer information of
direct value flows to boost the precision of resolving
complex indirect calls in type analysis (§ 4.3).

4.2 Resolving Simple Function Pointers
through Efficient Def-Use Tracking

At the first stage, we resolve the indirect calls through
simple function pointers (denoted as IC1). Specifically,
we devise a regional def-use analysis to capture the val-
ues of the simple function pointers and bypass the pro-
hibitive resolution of the complex ones. In what follows,
we first investigate the def-use analysis. We then unravel
the approach of resolving the indirect-call targets.

Regional Def-Use Tracking. At a high level, KELP
carries out regional field-, flow-, and context-sensitive
def-use analysis to resolve each simple indirect call.
Specifically, the analysis ensures the function pointers
being tracked are simple, thereby efficiently computing
the confined values of the simple function pointers. To

(a)

1   int main(void){
2          p=&o1;
3          b=&unchecked_print;
4       *p=b;
5       get_printers(p);
6  }
7   void get_printers(p){
8          b1 =&checked_print;
9       b2= *p;
10       process_input(b1, b2);
11  }

12   void checked_print(int* val){
13       if (val) printf(“…”, *val);
14   }
15   void unchecked_print(int* val){
16       printf(“…”, *val);
17   }
18 void process_input(b1, b2){    
19 ret = examine_input(…);
20 (*b1)(ret);
21      (*b2)(ret);
22  }

checked
_print

pt(s20, b1)=?① s8
b1

s10 s18 s20
b1b1

② unchecked
_print pt(s21, b2)=?

b2
s21

o1
s4 s9 s18

b2

(b)
Figure 5: (a) shows the simplified code of Figure 1 by
omitting the type information, e.g., two struct types A and
B. (b) shows the tracked def-use chain (the node s3 in the
chains  defining b is omitted) to compute the points-to
set of simple b1 and complex b2, respectively.

this end, we combine both forward and backward def-
use tracing for direct value flows. When perceiving that
the tracked function pointers can propagate their values
along the indirect value flows in either the forward or
backward control-flow paths, KELP ceases further pro-
hibitive tracking and classifies these pointers as complex.

Backward Phase. At the core, the backward analysis
examines whether the function pointer of an indirect call
is simple without propagating its value by dereferencing
other pointers. By backward tracking the direct def-use
chains, the analysis can compute the values of the inter-
esting pointer. In detail, we conduct a backward def-use
reachability analysis by computing a reachability rela-
tion denoted as ;. Formally, (s, p) ;(s1,q) signifies a
computed def-use from a definition of q at s1 to a use of
p at s in DUG. Unlike the previous work [31,77,80], the
top-level variables q and p could not be memory objects
o according to the definition of direct value flows.

First, we introduce three basic rules of [FUNC-SITE],
[COPY], and [PHI], as shown in Figure 6.
• In rule [FUNC-SITE] to handle p = & f unc, a func-

tion f unc is address-taken being referenced by pointer p,
producing pt(s, p) = & f unc. In particular, reaching the
address-taken of a function means that the value of the
function pointer is successfully checked.
• In rule [COPY] to handle p = q, a variable q is back-

ward def-use reachable from the variable p.
• In rule [PHI] to handle p = φ(q,r), both variables q

and r are backward def-use reachable from p.
Next, we describe [FIELD] to handle p = &q→ f ld,

where a variable q is backward def-use reachable from
the variable p, which is similar to [COPY]. Differently,
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[FUNC-SITE]
s : p = & f unc

pt(s, p) = pt(s, p)∪{ f unc}
[COPY]

s : p = q s1
q→ s

(s, p) ;(s1,q)

[PHI]
s : p = φ(q,r) s1

q→ s s2
r→ s

(s, p) ;(s1,q),(s, p) ;(s2,r)
[FIELD]

s : p = &q→ f ld s1
q→ s

(s, p) ;(s1,q) p = FLD(q, f ld)
[LOAD]

s : p = ∗q
(s, p) ;×

[CALL]
scall : p = q s1

q→ scall

(scall , p) ;(s1,q)
[RET]

sret : p = q s1
q→ sret

(sret , p) ;(s1,q)

Figure 6: Basic rules for backward def-use tracking for simple indirect calls.

we introduce a new function notation p = FLD(q, f ld),
which signifies that p represents the field f ld of q. This
rule is important for achieving field-sensitivity, as it en-
ables the differentiation of various function-pointer fields
and the fields’ values within a struct variable.

Example 4.2. For the def-use chains ¬ in Figure 5(b),
we can infer (s20,b1) ;(s18,b1) ;(s10,b1) ;(s8,b1)
through the parameter passing by using the rule [COPY].

Importantly, indirect value flows refer to the propaga-
tion of values through pointer dereferencing, specifically
from stores to loads. Once the tracking of def-use chains
encounters these indirect value flows, the backward anal-
ysis ceases any further expensive tracking. Specifically,
when the analysis reaches a load site where the value of
the tracked function pointer is obtained by dereferencing
other pointers, KELP employs the below [LOAD] rule.
• In rule [LOAD] to handle p = ∗q, the analysis con-

siders that the value of p is derived by dereferencing
pointer q and, thus, recognizes p as complex. Reach-
ing a load site leads to the termination of our backward
def-use analysis, indicated by the notation (s, p) ;×.

Example 4.3. In Figure 5(b), using [LOAD], the value
of variable b2 at s9 is loaded from the memory object
o1 referenced by pointer p, denoting b2 as a complex
function pointer and s21 as a complex indirect call.

Moreover, we introduce the inter-procedural analysis
rules (i.e., [CALL] and [RET]) for the def-use traversal.
To be precise, context-sensitivity is reached by CFL-
reachability [63]. Since CFL-reachability is orthogo-
nal to our contributions, we briefly describe the pro-
cess. Specifically, we maintain a string during the def-
use traversal to validate the feasibility of the calling con-
texts. The traversed def-use path is realizable if strings
between calls and returns have matched parentheses.
• In [RET] to handle a p = q at sret , q is backward

reachable from p. When traversing along the return edge,
we append a left parenthesis (cs to the string.
• In [CALL] to handle p = q at scall , q is backward

reachable from p. When traversing back to the call site,
we append a right parenthesis )cs to the string.

Forward Phase. The goal of the forward def-use analysis
is to ensure that the values of the function pointer being
tracked are not propagated to memory objects referenced
by other pointers in the forward control-flow path. Other-
wise, the values of the function pointers may propagate
to complex indirect calls, implying that the referenced
values (i.e., functions’ addresses) are not confined. In
our second stage (§ 4.3), we would identify the confined
functions that are only invoked by simple indirect calls.
For the forward def-use tracking, KELP employs rules
for handling statements that are similar to those used in
the backward tracking. However, differently, the def-use
reachability relation is computed in a forward manner.
Handling Global Variables. The tracking of global vari-
ables is different from the non-global ones. Specifically,
flow-sensitively tracking def-use chains of global vari-
ables that can be assigned multiple times (without pass-
ing through explicitly as parameters and returns) is chal-
lenging, as the control flows are unknown. Thus, simple
global variables are handled flow-insensitively. Specif-
ically, when backward analyzing an indirect call and
identifying the function pointer as a simple global vari-
able, the def-use analysis also globally collects all pos-
sible ever-written values to the global variable in differ-
ent regions as the potential callees. In our study of § 3,
we found that most global variables of function pointers
are initialized once, perhaps because multiple writes to
global variables in different modules can be error-prone
in large systems, thus being commonly avoided.

Resolving Simple Indirect Calls. After identifying the
regional def-use relations of simple function pointers, we
resolve the indirect calls. Specifically, for each indirect
call s : v = v0(v1, . . .) that is successfully tracked without
termination, we identify the corresponding callees based
on the reachable address-taken sites of functions and col-
lect the indirect call in the set IC1.

We also record each def-use reachable address-
taken site of functions after tracking (denoted as a set
De fUseReachingSites). The address-taken sites of func-
tions can be either the stores or the initializers of global
variables. The set De fUseReachingSites, as shown
in § 4.3, can help identify and reduce the candidate
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address-taken functions for checking type compatibility,
largely improving the precision of KELP.

Example 4.4. For the def-use chains ¬ in Figure 5(b),
we can compute pt(s20,b1) = {&checked print}. As a
result, the indirect call at s20 is resolved. We also collect
s8, the address-taken site of checked print, for the in-
coming type analysis to identify the candidate functions.

Summary. By courtesy of the first stage, KELP has two
salient advantages. First, our def-use tracking enables the
early and principled discovery of indirect calls through
simple function pointers. As a result, many indirect calls
can be resolved precisely without more conservative type
matching. Second, our regional def-use tracking actively
avoids reasoning about the complex function pointers
that could otherwise trigger performance penalties, ju-
diciously leaving the corresponding indirect calls to the
succeeding stage to embrace high efficiency.

4.3 Resolving Complex Function Pointers
through Precise Type Analysis

Our second stage handles the remaining complex indirect
calls (denoted as IC2) via type analysis, which, notably,
cannot be resolved efficiently by the def-use tracking at
the first stage. Specifically, instead of using the whole
address-taken functions as the candidate functions for
checking type compatibility, KELP removes those con-
fined address-taken functions that only those simple in-
direct calls can invoke. Intuitively, confined functions
are characterized by having all their address-taken sites
included in the def-use chains of function pointers used
in simple indirect calls. Thus, these confined functions
cannot be invoked in complex indirect calls.

In what follows, we first investigate how to efficiently
identify the confined address-taken functions by lever-
aging the reachable address-taken sites computed by the
preceding def-use tracking. We then orchestrate how to
remove the confined address-taken functions from the
candidate functions for type checking, thereby precisely
resolving the complex indirect calls.
Identifying Confined Function Set. We use ConFunc
to denote the Confined address-taken Functions and
CandiFunc to represent Candidate Functions for type
checking. At a high level, KELP captures the functions
ConFunc, which have all address-taken sites reachable
by our forward and backward def-use tracking. Intu-
itively, this case guarantees that the functions’ addresses
are only propagated to simple indirect calls, thus only in-
voked by simple indirect calls. Specifically, the method
IdentifyConfinedATFunc() in Algorithm 1 describes
two critical steps to capture the functions ConFunc.

• Lines 2 and 7: We first check whether an address-
taken function denoted by f unc can be invoked by

Algorithm 1: Precise Type Analysis.
1 Function IdentifyConfinedATFunc():
2 F←↩ retrieveAllFunc();
3 ConFunc←↩ /0;
4 foreach f unc ∈ F do
5 if ¬isAddressTaken( f unc) then
6 continue;

7 if ∃cs ∈ IC1 : f unc ∈ ICToCalleeMap[cs] then
8 S←↩ getAllAddressTakenSites( f unc);
9 if ∀s ∈ S : s ∈ De fUseReachingSites then

10 ConFunc←↩ConFunc∪{ f unc}

11 return ConFunc

12 Function ResolveComplexICall():
13 IC2←↩ IC− IC1;
14 ConFunc←↩ IdentifyConfinedATFunc ();
15 AT Func←↩ getAllAddressTakenFunc();
16 CandiFunc←↩ AT Func−ConFunc;
17 foreach cs ∈ IC2 do
18 Callees←↩ retrieveTypeResult(cs) ;
19 NewCallees←↩ /0 ;
20 foreach f unc ∈Callees∩CandiFunc do
21 NewCallees←↩ NewCallees∪{ f unc} ;

22 ICToCalleeMap[cs] = NewCallees;

23 return ICToCalleeMap;

simple indirect calls. That is, f unc is one of the
callees of an indirect call cs in IC1.

• Lines 8 and 10: We next enumerate each address-
taken site (denoted as s) of the function f unc,
checking whether all the sites are def-use reachable
(s ∈De fUseReachingSites). If so, f unc is confined
in simple indirect calls and put to ConFunc.

Thanks to the first stage that captures all reachable
address-taken sites, our second stage can efficiently rec-
ognize the confined address-taken functions ConFunc.

Example 4.5. Back to Figure 5(b), checked print is only
address-taken once, and its address-taken site s8 is def-
use reachable from b1 used in the indirect call at s20.
Thus, checked print can only be invoked at s20. As
a result, the complex indirect call at s21 cannot invoke
checked print through accessing another pointer b2.

Resolving Complex Indirect Calls. After capturing
the confined functions ConFunc, KELP identifies the
candidate functions CandiFunc, for effectively check-
ing type compatibility. The type analysis here can
be either the traditional function signature (one-layer)
analysis or the multi-layer type analysis, as identify-
ing fewer candidate address-taken functions CandiFunc
is orthogonal to their approach formulation. The al-
gorithm to resolve complex indirect calls is shown by
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the method ResolveComplexICall() in Algorithm 1.
More specifically, KELP has two critical steps.

• Lines 13 and 16: We identify CandiFunc by finding
an address-taken function absent from ConFunc.

• Lines 17 and 22: Finally, we retrieve the type-
compatible targets for each indirect call in IC2 and
precisely remove the callees not in the CandiFunc.

Example 4.6. Back to Figure 5(b), we resolve the re-
maining complex indirect call at s21. First, we identify
the candidate functions {unchecked print} by removing
the confined function checked print from all address-
taken functions {unchecked print,checked print}. Sec-
ond, by checking the type compatibility, we can precisely
match unchecked print to the indirect call at s21.

Summary. KELP confers two salient privileges over
the pure type analysis [6, 50]. First, our type analy-
sis is precise, removing those address-taken functions
uniquely invoked by the simple indirect calls. As a re-
sult, the type-compatible targets of complex indirect calls
are significantly refined. Second, our type analysis re-
mains lightweight, as identifying the confined address-
taken functions is efficient thanks to the def-use reach-
able address-taken sites provided by the preceding stage.

5 Implementation

KELP is built on the LLVM infrastructure, where it
serves as the pre-processing step for the state-of-the-art
multi-layer type analysis (MLTA) [50]. Figure 2 illus-
trates the workflow of KELP, where it takes the LLVM
bitcode file of the target program as input, resolves indi-
rect calls, and generates the call graph as output. Next,
we will delve into two implementation details.
Promoting Memory to Register. LLVM IR can include
excessive stack traffic for very simple and common oper-
ations, potentially degrading the performance of the def-
use analysis. To address this issue, we use the mem2reg
optimization pass [83], which transforms memory refer-
ences into register references and introduces Phi nodes
when necessary. Specifically, the pass promotes alloca
instructions that are solely used for loads and stores.
Safe Fallback Strategy. We assume that the analyzed
code is self-contained as a standard practice; otherwise,
most previous type and pointer analysis techniques could
overlook indirect-call targets. In addition, there are two
possible causes of producing new false negatives by em-
ploying KELP when the def-use chains of simple func-
tion pointers cannot be fully collected. First, the def-use
traversal may encounter unknown control flows or code,
such as dynamically-linked libraries, indirect calls, and
assembly code. Note that the case is uncommon in prac-
tice since, intuitively, the uses of simple stack variables

do not span across complicated control flows. The sec-
ond source is handling global variables, whose def-use
chains are collected in a flow-insensitive and conserva-
tive manner. When an initialized global variable is re-
assigned with the value gained by dereferencing other
pointers somewhere, the indirect def-use chains of the
global variable are hard to be fully collected by KELP.
Note that the case is uncommon because we observed
that most global variables are simple and initialized once
without modification anymore [16]. To mitigate both the
problems, we design an automatic fallback strategy dur-
ing def-use traversal in KELP. Specifically, for both the
corner cases, KELP leaves the indirect calls being com-
puted to the incoming type analysis as a backup. As a
result, our approach does not introduce additional false
negatives to type analysis.

6 Evaluation

This section investigates the following questions:

• § 6.1: Compared to the pure type analysis, how pre-
cise and efficient is KELP?

• § 6.2: How much can KELP improve the effective-
ness of the downstream security applications?

Furthermore, we discuss other questions in § 6.3, such
as the effectiveness of each stage and potential false neg-
atives. All the experiments were finished on a com-
puter with two 20-core Intel(R) Xeon CPU@2.20GHz
and 128GB physical memory running Ubuntu-16.04.

6.1 Advancing Pure Type Analysis

First, we compare KELP to the most recent multi-layer
type analysis, MLTA [50]. This experiment aims to show
that our two concerted stages can effectively act as a
pre-processing step to improve the pure type analysis in
terms of precision with negligible extra time overheads.

Experiment Setup. Based on the four principles be-
low, we chose twenty representative real-world C-based
software suites as the benchmarks shown in Table 1.
First, the software is mature, with a long code history.
Second, the award-winning software has significant im-
pacts on both academia and industry. Specifically, much
work [14, 24, 50, 68, 89] has evaluated these systems to
ensure their security owing to their impacts. Third, these
systems represent a broad spectrum of popular applica-
tions, such as databases, network protocols, and oper-
ating systems. Fourth, the software is large-scale and
extensively exploits indirect calls. Importantly, each
software program has more than 100 KLoC, and seven
million-line software programs are involved in showing
KELP’s effectiveness in industrial settings.
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Table 1: Comparison on time costs (second) and precision in refining indirect-call targets.

ID Project Size
(KLoC)

Indirect
Calls

MLTA KELP
Sing. Avg. Max. Time Sing. Avg. Max. Time

1 OpenSSH 118 136 6 13.4 58 6.4 7 (1 ↑) 6.2 (53.7% ↓) 18 (40 ↓) 6.7 (+ 0.3)
2 GCC 135 133 10 18.7 48 8.3 11 (1 ↑) 16.1 (13.9% ↓) 48 (0 ↓) 8.7 (+ 0.4)
3 Curl 168 989 276 12.9 6 4.3 855 (579 ↑) 4.3 (66.7% ↓) 6 (0 ↓) 4.6 (+ 0.3)
4 Redis 179 383 54 23.1 105 6.8 85 (31 ↑) 15.7 (32.0% ↓) 16 (89 ↓) 7.3 (+ 0.5)
5 Git 278 507 63 22.3 153 16.2 77 (14 ↑) 13.9 (37.7% ↓) 126 (27 ↓) 16.8 (+ 0.6)
6 zfs 377 1715 58 107.3 1539 40.8 117 (59 ↑) 29.5 (72.5% ↓) 256 (1283 ↓) 42.6 (+ 1.8)
7 Vim 416 1023 20 39.2 517 14.4 899 (879 ↑) 13.2 (66.3% ↓) 517 (0 ↓) 15.0 (+ 0.6)
8 PJSIP 505 1099 207 18.0 117 19.3 294 (87 ↑) 3.1 (82.8% ↓) 117 (0 ↓) 20.1 (+ 0.8)
9 OpenSSL 513 1827 203 79.6 337 23.3 322 (119 ↑) 25.4 (68.1% ↓) 238 (99 ↓) 24.6 (+ 1.3)

10 Libicu 537 1830 67 9.8 42 31.2 142 (75 ↑) 5.1 (48.0% ↓) 42 (0 ↓) 32.4 (+ 1.2)
11 Python 560 1402 67 56.3 221 40.6 173 (106 ↑) 27.6 (51.0% ↓) 217 (4 ↓) 72.1 (+ 31.5)
12 Wrk 594 1159 217 27.8 155 11.6 326 (109 ↑) 19.7 (29.1% ↓) 155 (0 ↓) 12.7 (+ 1.1)
13 Postgres 955 1724 128 28.2 55 49.1 215 (87 ↑) 22.2 (21.2% ↓) 54 (1 ↓) 50.9 (+ 1.8)
14 FFmpeg 1213 3390 718 39.3 1443 87.5 729 (11 ↑) 35.7 (9.2% ↓) 1443 (0 ↓) 93.2 (+ 5.7)
15 PHP 1314 1737 193 36.3 1057 27.1 382 (189 ↑) 9.1 (65.4% ↓) 1029 (28 ↓) 28.7 (+ 1.6)
16 MariaDB 1769 4224 493 27.0 94 101.9 1678 (1185 ↑) 13.6 (49.6% ↓) 65 (29 ↓) 118.1 (+ 16.2)
17 MySQL 2030 3568 779 20.4 92 77.8 1398 (619 ↑) 7.4 (63.7% ↓) 87 (5 ↓) 86.6 (+ 8.8)
18 Wine 4092 12596 1205 56.0 473 76.5 3645 (2440 ↑) 16.4 (70.7% ↓) 456 (17 ↓) 79.8 (+ 3.3)
19 Firefox 7998 2738 534 12.3 233 181.1 793 (259 ↑) 7.8 (36.6% ↓) 109 (124 ↓) 201.6 (+ 20.5)
20 Linux 26181 87355 13730 12.9 443 666.3 14799 (1049 ↑) 6.8 (47.3% ↓) 296 (147 ↓) 694.1 (+ 27.8)
- Avg. 2497 6477 951 32.5 359 74.5 1347 (396 ↑) 14.9 (54.2% ↓) 265 (94 ↓) 80.8 (+ 6.3)

Sing., Avg., and Max. denote the number of single-callee indirect calls, the average callee size of all indirect calls, and the maximum callee size, resp.

We assess the precision of refining indirect-call tar-
gets by using three metrics, i.e., the number of single-
callee indirect calls, the average callee size of all indi-
rect calls, and the largest callee size, which are critical
for various applications. In particular, uniquely-resolved
indirect calls can be transformed into direct calls, subse-
quently inlined, and optimized further. Intuitively, more
precise call graphs lead to more single-callee indirect
calls and optimization. In addition, reducing the average
and largest callee sizes is critical to many applications,
such as CFI [40, 55, 57] and bug finding [24, 27, 52, 68].

Precision. The results are shown in Table 1, where KELP
is more precise than MLTA at any metric. Compared
to MLTA, on average, KELP can additionally increase
396 uniquely-resolved indirect calls, reduce the average
callee size by 54.2%, and remove 94 false callees from
the indirect call with the largest callee size. In addition,
for 18 projects, KELP can reduce the average callee size
largely by more than 20%. At most, KELP can prune
away 82.8% of bogus indirect-call targets in PJSIP.

To investigate how our two concerted stages con-
tribute to the precision of KELP, we examine the sim-
ple and complex indirect calls (i.e., IC1 and IC2), and
the confined and candidate address-taken functions (i.e.,
ConFunc and CandiFunc). The results are shown in Fig-
ure 7. We observed that all programs use simple indirect
calls, accounting for 33.0% on average, which suggests
the effectiveness of computing the regional pointer infor-
mation at the first stage. Also, those simple indirect calls
uniquely refer to many confined functions (32.0% on av-
erage), which suggests that the candidate functions for
checking type compatibility can be significantly reduced,
thereby improving the precision of pure type analysis.
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Figure 7: (a) and (b) show the relative proportion of the
simple indirect calls (Icall) and the confined functions.

Time Cost. After showing the high precision of KELP,
we next assess whether KELP induces negligible time
costs. As shown in Table 1, KELP incurs a few extra time
costs against MLTA, on average, only increasing by 6.3
seconds and incurring 8.5% time overheads. The negli-
gible time costs are due to the affordable, regional infor-
mation of simple function pointers, which is efficiently
tracked by our def-use tracking. More importantly, KELP
remains very scalable and lightweight for the Linux ker-
nel, constructing its precise call graph in around eleven
minutes. For each project of the remaining six million-
line industrial-strength software programs, KELP can fin-
ish its analysis within four minutes. Therefore, consid-
ering the average precision improvement of 54.2%, we
believe that KELP is promising to serve as an efficient
and precise pre-processing step for pure type analysis.
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Figure 8: Statements that do not access thread-shared
memory in FSAM are removed by using KELP’s CGs.

6.2 Enhancing Downstream Clients
In § 6.1, we have shown that KELP advances the state-of-
the-art type analysis. Furthermore, we assess the KELP’s
effectiveness through the lens of three downstream ap-
plications: thread-sharing analysis [35, 76, 85], value-
flow bug detection [21, 68, 81], and directed grey-box
fuzzing [17,34,96]. Importantly, these clients’ effective-
ness strongly relies on the precision of the call graphs be-
ing provided (explained in § 6.2.1, § 6.2.2, and § 6.2.3).

Experiment Setup. To select the tools of these down-
stream clients, first, we chose FSAM [76] in the MTA
module of SVF [79] as thread-sharing analysis to iden-
tify loads and stores accessing thread-shared memory.
Second, we chose SABER [81] in SVF as a bug finding
tool for checking source-sink properties. More specifi-
cally, we used the three built-in checkers in SABER, the
memory leak checker, file leak checker, and double free
checker. Note that SVF is a popular tool that under-
pins many security applications [18–20, 37, 40, 42, 58].
Third, we used the recent work BEACON [34] as our di-
rected fuzzer for the contexts of bug reproduction. In our
dedicated evaluation of call graphs produced by KELP
and the pure type analysis (the focus of this paper), we
constructed call graphs using the two different sets of
indirect-call results. Our examination measured the ex-
tent of improvement in the effectiveness of each tool
when utilizing call graphs of varying precision.

6.2.1 Thread-Sharing Analysis

Thread-sharing analysis (TSA) that determines whether
a statement can read or write thread-shared data shores
up many popular applications, such as understanding and
debugging concurrent programs [36,53,73], and concur-
rency bug detection [7,18,37]. By the nature of the inter-
procedural analysis, FSAM [76], the TSA tool, requires
a precise CG to identify the related statements.

We chose the eight software programs in Table 1 that
use Pthread APIs as our benchmarks. To perform TSA
for large codebases, we chose Steensgaard’s pointer anal-
ysis [75] in the WPA module of SVF. We evaluate the
reduction in false thread-sharing statements in FSAM by
using the CGs generated by KELP and MLTA, respec-

Table 2: Precise call graphs for finding value-flow bugs.

Project Memory Leak File Leak Double Free

(1) OpenSSH 78 (71, -7) 37 (32, -5) 21 (18, -3)
(2) GCC 50 (41, -9) 6 (6, -0) 2 (2, -0)
(3) Curl 6 (6, -0) 14 (11, -3) 5 (5, -0)
(4) redis 124 (94, -30) 64 (58, -6) 42 (39, -3)
(6) zfs 95 (81, -14) 32 (21, -11) 111 (91, -20)

(12) Wrk 281 (223, -58) 74 (61, -13) 250 (211, -39)

tively. As illustrated in Figure 8, on average, 25.3% of
false thread-sharing statements can be additionally re-
moved by using KELP’s call graphs. As shown in Ta-
ble 1, the precision improvement is due to further remov-
ing 55.5% of bogus indirect-call targets by KELP, with a
few (9.2%) extra time costs in building CGs. To sum up,
KELP is effective in helping thread-sharing analysis.

6.2.2 Source-Sink Value-Flow Bug Detection

Value-flow analysis [14, 21, 68] is powerful at checking
many source-sink properties, such as heap memory er-
rors. SABER [81] detects source-sink value-flow bugs
by tracking a global value-flow graph. We used the six
software programs from Table 1 that did not run out of
memory in our running environment as our benchmarks.
Intuitively, more precise CGs for the same tool result in
more precise control flows during bug detection, leading
to removing false bug warnings.

As shown in Figure 2, KELP can help SABER to fur-
ther reduce 17.1% of false positives. As shown in Ta-
ble 1, the precision improvement is due to further re-
moving 54.9% of bogus indirect-call targets by KELP,
with only a few (6.2%) extra time costs in building CGs.
By examining bug reports, we observed that the less than
20% false-positive reduction is reasonable because many
bugs do not span across indirect control flows. In addi-
tion, some false warnings in the reports are induced by
other factors (e.g., path conditions, imprecise points-to
sets of general pointers). A precise and efficient vulnera-
bility hunting tool requires various efforts, and we focus
on improving call graphs. To sum up, KELP’s CGs are
effective in helping value-flow bug detection.

6.2.3 Directed Grey-Box Fuzzing

Directed grey-box fuzzing is a promising technique for
bug reproduction, a crucial part of bug understanding and
fixing [36, 49]. The recent work, BEACON [34], speeds
up the bug reproduction process by pruning away irrel-
evant paths that cannot reach the target code. To this
end, BEACON performs static control-flow reachability
and “asserts” irrelevant paths through instrumentation.
As a result, the executions irrelevant to the target code
are stopped early during fuzzing. At a high level, more
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Table 3: Precise CGs for directed grey-box fuzzing (the numbers in parentheses represent the improvement of KELP).

Project CVE ID Tstat (s) Tf uzzing (h) Tall (h) #Executions (million) Avg. Callee Size

Ming-4.7

2016-9827 6.3 (7.0, +0.7)† 0.79 (0.40, 49.2%↓) 0.79 (0.40, 49.2%↓) 1.20 (0.71, 41.0%↓)

5.5 (3.8, 30.9%↓)2016-9829 6.3 (7.0, +0.7) 4.09 (1.30, 68.3%↓) 4.10 (1.30, 68.3%↓) 8.88 (1.99, 77.6%↓)
2017-11728 6.3 (7.0, +0.7) 1.78 (1.10, 38.2%↓) 1.78 (1.10, 38.2%↓) 2.27 (1.79, 21.2%↓)
2017-11729 6.3 (7.0, +0.7) 2.73 (0.98, 64.0% ↓) 2.74 (0.99, 64.0% ↓) 3.92 (1.77, 54.8%↓)

Ming-4.8 2018-8807 7.2 (8.1, +0.9) 2.88 (1.53, 47.0%↓) 2.88 (1.53, 47.0%↓) 28.57 (9.82, 65.6%↓) 3.1 (1.8, 41.9%↓)2018-8962 7.2 (8.1, +0.9) 5.09 (2.44, 52.0%↓) 5.09 (2.44, 52.0%↓) 22.14 (17.19, 22.4%↓)
libxml 2017-5969 839.0 (846.9, +7.9) 1.05 (0.11, 89.2%↓) 1.28 (0.35, 72.8%↓) 4.02 (0.59, 85.4%↓) 11.9 (3.9, 67.2%↓)
binutils 2017-7209 46.3 (48.1, +1.8) 1.33 (0.57, 57.0%↓) 1.34 (0.58, 56.5%) 6.94 (3.78, 45.5%↓) 2.1(1.8, 14.3%↓)
binutils 2020-16590 83.1 (86.3, +3.2) 4.68 (2.87, 38.7%↓) 4.70 (2.98, 36.5%↓) 42.16 (24.52, 41.8%↓) 4.1 (2.2, 46.4%↓)
binutils 2020-16591 54.2 (57.3, +3.1) 10.55 (6.95, 34.1%↓) 10.57 (6.97, 34.1%↓) 68.11 (58.66, 13.9%↓) 4.1 (2.2, 46.4%↓)

The versions of binutils are 53f7e8ea, f717994, and c98a454 from top to bottom. †: the difference is spent in CG construction.

precise CGs lead to more precise control-flow reachabil-
ity and, thus, more precise path pruning. Consequently,
the fuzzer can explore fewer infeasible program paths,
thereby increasing the reproduction efficiency.

We followed the benchmarks [34] and chose ten pre-
vious CVE IDs impacted by indirect-call control flows
from Libxml, Binutils, and Ming spreading across dif-
ferent historical versions. We assess (i) the time costs
(second) of static analyses (e.g., building CGs to per-
form control flow reachability), denoted as Tstat . In ad-
dition, we measure (ii) the time costs of reproducing
the CVEs through fuzzing Tf uzzing and (iii) the number
of executions required (million) to reproduce the CVEs
#Executions. Specifically, more effective CG construc-
tion leads to more effective control-flow path pruning,
thus resulting in fewer time costs Tstat + Tf uzzing and
fewer executions #Executions to reproduce bugs.

Five runs of fuzzing were performed to compute the
average results shown in Table 3. On average, KELP
can help BEACON further reduce 51.9% of time costs
(Tstat +Tf uzzing) and 46.9% of executions (#Executions).
Specifically, by using our CGs for reproducing the ten
CVEs, BEACON only needs to additionally pay a few
seconds (fewer than ten seconds for each project) in Tstat ,
thereby reducing 16.618 hours in whole time costs Tall
and 67.389 millions of executions. Shown in Table 3, the
efficiency improvement is due to additionally reducing
49.3% of bogus indirect-call targets by KELP. To sum
up, KELP’s CGs are effective in helping directed fuzzing.

6.3 Discussion

Constant Propagation. Constant propagation [64] is a
technique used in compiler optimization and static anal-
ysis to determine and propagate constant values through
a program. It could handle single-callee indirect calls
by capturing the constant values of function-pointer vari-
ables. We perform an experiment that compares KELP to
MLTA powered by constant propagation. Our results on
the twenty software programs show that KELP is 45.7%
more precise than MLTA with constant propagation, with

only about 4 seconds of additional overheads. In conclu-
sion, constant-value propagation is ineffective for han-
dling numerous simple indirect calls that can have mul-
tiple callees across different calling contexts due to the
dynamic nature of function pointers.

Ablation Study. Next, we perform an ablation analy-
sis on each stage of KELP to assess the precision en-
hancement achieved by characterizing simple function
pointers and confined functions. The precision improve-
ment is measured using the average callee size as a met-
ric. Our results show that when only the first stage is
used, KELP could only improve MLTA by 32.7%. When
only the second stage is used, KELP could only improve
MLTA by 23.2%. In conclusion, the combined use of
both stages in KELP can result in a significantly higher
level of precision compared to MLTA.

False-Negative Analysis. We also investigate whether
KELP may incur new false negatives in regional def-
use tracking. To reduce subjectivity and collect ground
truths, we implemented a trace collection tool using In-
tel PT-based (Processor Tracing) to dynamically collect
indirect-call traces through instrumentation. To alleviate
the poor-coverage limitation of dynamic execution, we
used AFL++ as our fuzzer to extensively test the three
popular software programs (with six different versions
shown in Table 3) under various inputs in around one
week. Since the traces have debug information (e.g., the
line number), we used such information to identify the
matched callees. By analyzing the traces, initially, we
found a few callees were missed at eight indirect calls, all
due to the implicit casting of primitive types in the type
analysis (e.g., casting from long int to char *). The
reasons for these false negatives in type analysis are well
studied by the previous work [50, 55, 82]. We have fixed
these cases by equalizing certain primitive types [55].
Consequently, at the time of writing, we did not find any
new false negatives. In another experiment, shown in Ta-
ble 3, KELP did not remove the real callees in indirect
calls leading to the target code and succeeded in repro-
ducing the CVE IDs. In summary, KELP does not induce
extra false negatives owing to our safe fallback strategy.

USENIX Association 33rd USENIX Security Symposium    1395



7 Related Work

A long stream of downstream program analysis applica-
tions [13–15, 24, 68, 93] require effective CG construc-
tion. We discuss two lines of existing CG construction.

Pointer Analysis. Pointer analysis is an essential tech-
nique with much seminal work [32, 69]. Particularly,
many important dimensions are developed to determine
how precisely the pointer information is computed, in-
cluding field-sensitivity [10,59], flow-sensitivity [30,31,
38, 47], context-sensitivity [45, 48, 70], and inclusion-
based or unification-based analyses [4, 29, 60, 75]. In
principle, more precise pointer analysis can bring more
performance overheads and, thus, be less efficient for
large programs. Much research may focus on other prob-
lems (e.g., bug finding [5, 38, 39, 72], persistent pointer
information [67, 86]). We discuss the pointer analysis
from the problem of the indirect-call resolution.

The existing pointer analysis could be categorized into
exhaustive analysis (function pointers and general point-
ers are computed simultaneously) and on-demand anal-
ysis (function pointers are resolved when needed). On-
demand pointer analysis [74, 77, 80] is more efficient for
resolving function pointers by reducing redundant com-
putation on general data pointers. However, existing pre-
cise demand-driven pointer analysis is still very hard to
scale up to hundreds of thousands of lines of code.

More specifically, SUPA [77, 80] is the state-of-the-
art field-, flow-, and context-sensitive Andersen-style on-
demand pointer analysis. SUPA first performs exhaustive
flow-insensitive Andersen’s analysis [29] to construct a
conservative value-flow graph that captures the def-use
relations of variables and objects. Then, for a function
pointer of interest, SUPA conducts points-to refinements
based on the graph. Despite the advancement, the recent
work [40] still shows that SUPA has difficulty in scaling
up to GCC (135 KLoC) within twelve hours to resolve
function pointers. In contrast to SUPA, KELP differenti-
ates simple function pointers from the complex ones, us-
ing the regional pointer information of direct value flows
to resolve the simple pointers precisely. In addition, our
def-use analysis can make type analysis more precise by
reducing the candidate address-taken functions. There-
fore, as shown in Table 1, KELP is highly scalable for
the twenty programs with more than 100 KLoC.

Lastly, we delve into the differences between KELP
and our other concurrently published work, CORAL [16].
Specifically, CORAL defines the concept of stationary
function pointers, which can be precisely resolved even
with flow-insensitive unification-based or inclusion-
based analyses. The results show that CORAL can scale
up to millions of lines, analyzing MariaDB (1.8 MLoC)
within 2.5 hours. First, it is important to note that station-
ary function pointers are complex because they can be

referenced by other pointers [16]. KELP utilizes scalable
type analysis to resolve the indirect calls using stationary
and complex function pointers, whereas CORAL adopts
a progressive and refinement-based approach, combin-
ing multiple pointer analyses to achieve higher precision.
Second, CORAL is designed for scenarios where time
and memory costs can be tolerated in order to embrace
high precision, such as the daily build process [68]. On
the other hand, KELP can analyze millions of lines of
code in just a few minutes, making it suitable for scenar-
ios that prioritize efficiency, such as the continuous inte-
gration process. In summary, KELP and CORAL leverage
different characteristics of function pointers, are tailored
to different scenarios, and harness different techniques.

Type Analysis. Type analysis can scale up to mil-
lions of lines of code in minutes. First, function sig-
nature analysis (FSA) [6] identifies indirect-call targets
by matching the types of function pointers (used in in-
direct calls) with those of candidate address-taken func-
tions. Due to the low costs, FSA has been extensively
used for control-flow integrity [12, 55, 56, 91, 92, 95].
Some work [26, 46] additionally considers field types of
two-layer structs. To improve the precision, multi-layer
type analysis [50] considers the field types of multi-layer
structures to prune away infeasible indirect-call targets.
However, as shown in our experiments and other litera-
ture [28, 40, 94, 94], pure type analysis can still induce
many false positives. To address the precision problem,
KELP uses the regional pointer information of simple
pointers for the first time, thereby improving the preci-
sion of both complex and simple indirect calls.

Finally, much seminal research shares a different prob-
lem scope with us, constructing CGs for binaries [8,
9, 43] or other high-level languages (e.g., Java [1, 2,
62], Python [65], C# [66], JavaScript [54, 71], and
Scala [3, 61]), or resorting to dynamic program informa-
tion [23, 25, 33, 57, 84]. We believe that extending our
insights and approaches to other high-level languages is
an exciting direction, and we leave it to our future work.

8 Conclusion

We have introduced a staged and concerted approach
named KELP to improve the precision of type-based call
graph construction with negligible additional time over-
heads. Our extensive experiments have shown that using
regional pointer information for simple function pointers
is a big stride forward in the realm of type-based CG con-
struction, significantly improving the effectiveness of re-
fining indirect-call targets. We expect that our work can
improve more downstream program analysis clients and
also offer intriguing insights for other static analyses.
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