
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

A Mixed-Methods Study of Security Practices
of Smart Contract Developers

Tanusree Sharma, Zhixuan Zhou, Andrew Miller, and
Yang Wang, University of Illinois at Urbana Champaign

https://www.usenix.org/conference/usenixsecurity23/presentation/sharma

A Mixed-Methods Study of Security Practices of Smart Contract Developers

Tanusree Sharma1, Zhixuan Zhou1, Andrew Miller1, Yang Wang1

1University of Illinois at Urbana-Champaign
{tsharma6, zz78, soc1024, yvw}@illinois.edu

Abstract

Smart contracts are self-executing programs that run on

blockchains (e.g., Ethereum). While security is a key concern

for smart contracts, it is unclear how smart contract developers

approach security. To help fill this research gap, we conducted

a mixed-methods study of smart contract developers including

interviews and a code review task with 29 developers and an

online survey with 171 valid respondents. Our findings show

various smart contract security perceptions and practices, in-

cluding the usage of different tools and resources. Overall,

the majority of our participants did not consider security as a

priority in their smart contract development. In addition, the

security vulnerability identification rates in our code review

tasks were alarmingly low (often lower than 50%) across dif-

ferent vulnerabilities and regardless of our participants’ years

of experience in smart contract development. We discuss how

future education and tools could better support developers in

ensuring smart contract security.

1 Introduction

Blockchains are cryptographic platforms that can securely

host applications and enable the transfer of digital assets

in a decentralized manner. Smart contract blockchains like

Ethereum are increasingly capable of supporting sophisti-

cated computations (a.k.a., decentralized apps or dApps)

[94]. Smart contracts are program scripts that define cus-

tomized functions and rules during transactions and can run

autonomously once deployed on a blockchain [46]. To sup-

port this unique form of computation, domain-specific pro-

gramming languages, such as Solidity and Vyper, have been

created to allow developers to write smart contracts.

A wide variety of industry applications in finance, health-

care, and energy have been rapidly exploring the use of

blockchain technology and smart contracts to enable sys-

tem transparency and traceability. Since deployed smart con-

tracts can perform critical functions of holding a consider-

able amount of digital assets, tokens or currencies in circu-

lation, they become a hotbed for attacks. According to DeFi

Pulse [18], there is about $29.93B USD worth of total value

locked (TVL) as of Sept 2022 controlled by deployed smart

contracts in Decentralized Finance (DeFi) applications. While

DeFi is a promising domain and has the potential to disrupt

traditional financial systems by lowering the barriers for bil-

lions of people who do not have access to these services, there

has been several security incidents in which digital tokens

worth of millions of dollars have been stolen. In June 2016,

vulnerabilities in the Maker DAO (decentralized autonomous

organization) smart contract code were exploited to empty out

more than two million Ether, which were worth 40 million

USD [85]. This attack exploited the reentrancy vulnerability

in the ‘splitDAO’ function of the code. The code was poorly

designed, allowing for a regular call to be changed into a re-

cursive call, resulting in multiple unauthorized withdrawals

and depletion of the account.

More recently, since DeFi started skyrocketing in 2020,

there has been a new wave of smart contract attacks that led to

the loss of hundreds of millions of dollars in value (e.g., [81]).

Clearly, security is critical for smart contracts, and various

smart contract security resources and tools have been created.

However, it is not clear how people who write smart contracts

(we denote as smart contract developers) think about and ap-

proach security in smart contract projects. To help bridge

this gap, we conducted an exploratory qualitative study con-

sisting of a semi-structured interview and a smart contract

code review task with 29 smart contract developers with di-

verse backgrounds. We conducted an online survey with 171

valid responses to explore common security practices in smart

contract development, following the results of an interview.

Research questions. Specifically, our study aims to answer

the following research questions:

• RQ1: How do smart contract developers ensure their

smart contracts are secure against potential attacks?

• RQ2: How do smart contract developers conduct code

reviews and whether they are able to identify common

smart contract security vulnerabilities in the code?

USENIX Association 32nd USENIX Security Symposium 2545

Summary of findings. Our study findings show that our

participants have a wide variety of smart contract security per-

ceptions and practices, including various tools and resources

they used. Most participants did not consider security as a

top priority in smart contract development, mainly because

(1) they felt they needed to ship products fast, (2) they forked

code from popular projects, and (3) they relied on security

audits. The security vulnerabilities we tested had fairly low

detection rates even for the popular reentrancy issue, only less

than half of all participants successfully identified it. Task

success rate was generally positively correlated with the level

of experience (years of experience in smart contract develop-

ment). Our hierarchical task analysis [86] of code reviews

suggests that relying solely on standard documentation, refer-

ence implementations, and security tools was often inadequate

for identifying security issues, particularly for junior develop-

ers. Despite accessing these materials or utilizing a security

tool, these participants still failed to identify security issues.

Besides, developers, regardless of their years of experience,

shared challenges with existing smart contract security tools.

Main contributions. Our work makes the following con-

tributions: (1) our rich interview data offer novel results on

the various security perceptions and practices of smart con-

tract developers with diverse backgrounds; (2) results from

our smart contract code review task sheds light on how smart

contract developers actually examine smart contract code for

security vulnerabilities; (3) results from our online survey

further explore common security practices of smart contract

developers and largely confirm our interview findings, and

(4) we present implications for security education and tools

to support developers in ensuring smart contract security.

2 Related Work
2.1 Blockchains and Smart Contracts
The financial industry is seen as a primary user scenario of

the blockchain concept. Blockchain is known for its use in

cryptocurrencies, but it also has the potential in improving

financial services by providing a secure and efficient way of

tracking ownership over a series of transactions over time. In

traditional financial systems, intermediaries such as banks are

responsible for recording transactions, which harbor the risk

of errors. However, with blockchains, transaction information

is distributed across a network of nodes. Once a transaction is

verified and recorded by the network, it cannot be altered [47,

72]. That significantly reduces the risk of errors.

Bitcoin was the first blockchain application and a cryp-

tocurrency that provides users with full control over their

transactions without geographical constraints, eliminating the

involvement of centralized authorities such as governments

and banks [71]. There are multiple blockchain platforms that

offer different smart contract capabilities. There are also many

smart contract languages, such as Solidity, Serpent, and Vyper.

Solidity [20] is the most popular for Ethereum. It enables de-

velopers to build decentralized applications with built-in eco-

nomic functions in smart contracts [24]. Smart contracts are

essentially containers of code that encode real-world contrac-

tual agreements in the digital realm [65]. It is a protocol that

automatically verifies and executes the terms of the agreement

between parties in a decentralized blockchain network. Its

code execution is verified by the network nodes [24]. Many

languages can be used to write smart contracts, but Solid-

ity [20] is the most popular for Ethereum. Solidity code is

compiled into bytecode for execution on the Ethereum Virtual

Machine (EVM) [1]. The EVM is a machine that runs smart

contracts on Ethereum, using an instruction set to identify

and call different contracts, manage exceptions, and compute

transaction costs. Data is stored on the blockchain or in con-

tract memory, and contracts are often used to handle and trans-

fer Ether. Since Ethereum is arguably the most popular smart

contract platform and has a wealth of tools and resources,

making it a good choice for our developer research.

2.2 Software Development Practices

Developers play a crucial role in software development and

their skills and domain knowledge are important in creating

secure applications. Previous studies have pointed out the

need for a deeper understanding [22] of software develop-

ment [78] and the human factors of software security [51],

highlighting the importance of security education [73, 95] for

developers and understanding the tools and attitudes of de-

velopers towards security [33]. To advocate software security

education, some indicated the need for security guidelines

mandated by the industries [93], [96] in cultivating exper-

tise [27,73] to identify vulnerabilities. Furthermore, tools pro-

ducing false positives [39, 57], complex workflows [39, 87]

and poorly designed warning prompts [39] failed to meet the

expectation of developers. By soliciting input from academia,

industry, and government agencies, some institutes such as

NIST [17] and OWASP [16] developed systematic software

security guidelines for developers to mitigate the potential

impact of exploitation and address the root causes of vulnera-

bilities in preventing future recurrences. In contrast, prior re-

search on smart contracts mainly focused on the effectiveness

of security assessment tools [43] in identifying vulnerabili-

ties [30, 68], shortcomings in security tooling (i.e., the user

interfaces for visualizing results and error messages [44]),

and root causes for the occurrence of severe smart contract

vulnerabilities [63]. However, notably they mainly focused

on technical issues. These approaches were helpful. How-

ever, they did not examine smart contract developers’ actual

development and security practices with the programming

languages which could result in buggy code. A closer look

at the incidents revealed that eventually, a large number of

vulnerabilities in smart contracts occurred due to develop-

ers’ mistakes [63]. Hence, to help avoid vulnerabilities in

smart contracts, there needs to be a well-thought-out design

adhering to security best practices [43] and incorporating de-

velopers’ needs as a key requirement for new tooling design

2546 32nd USENIX Security Symposium USENIX Association

of smart contract [40]. In this work, we explored an untapped

perspective, smart contract developers’ security practices.

2.3 Smart Contract Development Practices

2.3.1 Characteristics of Smart Contract Development

Compared with traditional software, smart contract develop-

ment is relatively new. As a piece of software, a smart contract

is quite similar to traditional software, while the behavior of

the attacker/ attacks can be qualitatively different. Smart con-

tracts’ prominent characteristics allow interaction without

a lower-level security library (i.e., digital signature). Thus,

make them tempting targets to monetize the attacks (e.g.,

“stealing” tokens and passing them to a mixer before selling

them) [48]. Recent literature shows common vulnerabilities in

EVM-based smart contracts, including re-entrancy [67,76,90],

unhandled exception [31, 64], integer overflow [62, 76], and

unrestricted action or access control [76, 83]. To trigger re-

entrancy, a function call is made to an external contract which

invokes and re-enters callback to the original contract [67].

Integer overflows could also cause contract funds to become

completely frozen [76]. In addition, lack of authorization

checks can lead to execution of arbitrary code [83].

Blockchain technologies are evolving dramatically, which

adds “design flaws in smart contract languages”. Develop-

ers of decentralized apps are often confronted with changing

platform features [55]. Thus, common software weaknesses

such as access control, incorrect calculation, race condition,

and many other security weaknesses may be amplified on

blockchain platforms [19]. In a smart contract, the system

states are visible on public blockchains and the smart contract

code is often “open-sourced.” Furthermore, the incorpora-

tion of economic considerations, such as incentive mecha-

nisms and gas costs, as outlined by Parizi et.al. [74] adds

an additional layer of complexity to the overall concept of

economic security. With the recent boom of the DeFi industry

(since 2020), a new pool of developers joined this industry

and started writing smart contracts [37]. Recent blockchain

applications indicated the practice of “calling external smart

contracts” during development [37], which often leads to

potential exploitation. In fact, DeFi projects are known as

“money lego” because they can be created by composing smart

contracts from different projects [37]. This composability,

however, also opens the door for trusting and calling untested

and potentially vulnerable smart contracts.

The infamous disasters involving the DAO [14] and the Par-

ity Wallet [9] have highlighted such risks where attackers ex-

ploited programming bugs to steal approximately USD 70M.

A series of suspicious transactions happened in yCREDIT

and xToken smart contracts and suffered attacks with a loss

of USD 24M due to the inconsistency in minted tokens [11].

Another attack was due to a flash loan within the xSNXa

contract [11]. Recent work shows systemic consensus-layer

vulnerabilities due to miner extractable value (MEV) where

attackers can front-run orders by observing and placing their

orders with higher gas fees [41].

2.3.2 Empirical Research of Smart Contract Developers

Prior work has proposed theoretical foundations for smart con-

tract development, e.g., an engineering process model [84].

There are prior studies on smart contract development prac-

tices (e.g., challenges encountered [59, 69], usability of smart

contract languages [75], maintenance methods after contract

deployment [36], usage of selfdestruct function [35], listing

smart contracts on etherscan [52], controlling gas consump-

tion [32]). However, these studies did not focus on security.

There are a few prior studies that explored smart contract

developers’ security perceptions. Zou et al. explored the per-

ceptions and challenges of smart contract development, where

security was one type of challenges discovered through inter-

views and surveys [97]. The majority (84.9%) of their survey

respondents agreed that code review is essential to ensure

smart contract correctness. Wan et al. [92] focused on self-

reported perceptions of smart contract security and how it fits

into the development lifecycle. Chaliasos et al. conducted a

survey of smart contract developers to understand how they

use automated security tools [34]. Developers tended to em-

ploy lightweight tools. The majority of auditors (76%) spent

only up to 20% of their time using security tools during audits,

implying that audits are mostly manual [34].

To our knowledge, our study is one of the very first to

empirically examine smart contract developers’ security per-

ceptions, practices, and actual behavior in code review (i.e.,

whether and how they detect security vulnerabilities in smart

contracts). Despite various attacks reported and evaluations of

security analysis tools [77, 82, 82], we still know little about

whether, when, and how smart contract developers actually

deal with the security aspect of their contract code. In this

work, we aim to uncover smart contract developers’ security

and development practices and the fine-grained details of how

they attempt code review with existing tools and resources.

2.3.3 Smart Contract Security Methods/Tools

Smart contract developers have adopted a wide range of tools,

such as ConcenSys [2] to operate at different stages of smart

contract development. Many tools have been developed to

analyze either contract source code or its compiled EVM byte-

code [77], most of which are based on symbolic execution

[60]. Some exmaples smart contract analysis tools include

Oyente [3], ZEUS [58], Maian [4], SmartCheck [88], Con-

tractFuzzer [56], Vandal [31], Ethainter [30], Securify [90],

and MadMax [50]. For instance, Oyente [3] is a symbolic exe-

cution tool to detect a small number of known smart contract

vulnerabilities. In comparison, Securify [90] uses a depen-

dency graph to extract precise semantic information to verify

compliance and violation. However, Securify suffers com-

patibility issues when used on operating systems other than

USENIX Association 32nd USENIX Security Symposium 2547

Linux. A recent study [79] highlighted the limitations of se-

curity analysis tools, including the ability to identify a limited

number of known vulnerabilities, slow analysis speed, and a

lack of cross-platform compatibility.

Code auditing is indicated as an essential aspect of defen-

sive programming, commonly used in smart contract develop-

ment. Popular tools for auditing include Surya [5], Mythril [6],

and MythX [7]. Organizations also hire third-party companies

like Trail of Bits, OpenZeppelin, and ConsenSys Diligence.

Auditing is an iterative process and depends on factors like

time, budget, and resources. Research suggests that code au-

diting should be an additional security measure rather than a

primary consideration and recommends a “security from the

beginning posture” [26, 80]. Organizations also run bounty

programs to incentivize community members to report vul-

nerabilities. For example, the 0x project [10] offers bounties

of up to $100K USD for critical vulnerabilities, however, it

depends on budget and resource availability. In this study, we

aim to investigate developers’ current practices and desires

for future smart contract security tooling.

3 Method

We used a mixed-methods approach to study smart contract

developers’ security practices via semi-structured interviews,

code review tasks, and a follow-up online survey to triangulate

their self-reported perceptions with their actual behavior.

3.1 Interview Study

Our study was inspired by user studies of software develop-

ers’ security practices (e.g., [25, 49, 75]). We explored smart

contract developers’ practices and expectations for security

tooling through a user study, which includes semi-structured

interviews and a code review task. The focus is on Solid-

ity developers, as it is the most popular smart contract lan-

guage [42, 75]. The study was approved by the IRB, and each

participant was compensated with a $30 gift card. Data was

collected and quotes were anonymized to protect participants’

privacy. Most of the study was conducted in 2022.

3.1.1 Participant Recruitment

To help reach a wide range of developers, we recruited through

different methods: (1) snowball sampling from our contacts

in the Ethereum community, (2) posting on our Twitter and

Facebook as well as ethresear.ch and Discord channels, and

(3) contacting Solidity developers of public smart contract

projects on GitHub. We selected participants based on the

responses to our screening survey. Respondents were invited

to our study if they met our selection criteria: a) is a solidity-

based smart contract developer; b) has some smart contract

development experience; c) should provide a proper explana-

tion of their developed smart contract(s). We did two rounds

of recruitment. In total, we received 67 responses from our

screening survey. We reached out to 38 of them via email

based on our selection criteria. In total, 29 people agreed to

participate in our study. Eight participants were from word-of-

mouth by our personal contacts in the Ethereum community.

Two were from GitHub public projects. 19 were from our

concurrent postings on Twitter, Facebook, Discord, and the

ethresear.ch online forum (we did not know who came from

which of these specific platforms though). We stopped re-

cruiting because our last four interviews did not generate new

results. Participation was voluntary. The study lasted one hour

with the initial interview 25 minutes, the code review task 25

minutes, and the exit interview 10 minutes.

3.1.2 Pilot study

We conducted two rounds of pilots with a total of four smart

contract developers to test our study design. We revised our

interview questions and code review tasks based on their

feedback. Details of the pilot study and the changes we made

based on the pilot results can be found in Appendix A

3.1.3 Initial Interviews

We conducted an exploratory qualitative study with semi-

structured interviews to gather rich data on smart contract

developers’ security practices, a new phenomenon. Interview

scripts were designed based on research questions and can

be found on our study GitHub 1. We started by asking about

their programming languages background, role, experiences

in software development, and motivation for starting smart

contract development. Then we asked a series of questions

to understand their knowledge and experiences of developing

smart contracts and handling security issues, including tools

for writing contracts, guidelines for smart contract develop-

ment, factors considered, and challenges encountered during

development. To understand how smart contract developers

tackle potential security risks in the development process, we

also asked about their current practices (e.g., use of coding

standards, policies, and security analysis tools as well as any

educational resources) related to smart contract security. To

get rich anecdotal data, we also asked about their personal

experiences and stories of how they handled specific smart

contract security-related issues in the past. Thus, interview

questions get at not only general practices but also specific

cases. The next study component was a smart contract code

review task to show how “concretely” participants go about

reviewing the code and identifying potential vulnerabilities.

3.1.4 Smart Contract Code Review Task

Since code review is a common task in smart contract develop-

ment, this task was designed to understand how smart contract

developers conduct code reviews, particularly for identifying

security vulnerabilities. Each participant was asked to review

one smart contract that we created. Specifically, we asked

them to (1) share their computer screen and allow us to record

1Our study scripts, smart contracts for the code review task, and analysis

code book are in: https://github.com/AccountProject/Developer_Study_SC

2548 32nd USENIX Security Symposium USENIX Association

https://github.com/AccountProject/Developer_Study_SC

the screen with their permission to understand how they con-

duct the code review; (2) have at most 25 minutes for the

code review; (3) search/use any resources/tools they need; (4)

i. review the code; ii. identify security vulnerabilities and/or

areas for improvement; iii. modify the code accordingly; (5)

explain the modifications and rationale behind them.

Code Review Task Design. We designed this study compo-

nent to model the real-world code review task that developers

would be reasonably expected to encounter in their smart

contract development. We chose to include two vulnerabili-

ties in each smart contract, where one vulnerability is more

well-known and should be easier to identify than the other.

We measured the difficulty of these vulnerabilities based on

our pilot participants’ feedback. We also added some minor

non-security issues, such as indentation, space/tabs, and blank

lines, which should be easily detectable.

To select smart contracts vulnerabilities, we conducted an

extensive review of exploited smart contracts from different

security vulnerability reports, such as Smart Contract Weak-

ness Classification and Test Cases (SWC) [19], Consensys

Known Attacks [2], different GitHub repositories and ether-

scan source code of abandoned or previously exploited smart

contracts [12] and recent literature on smart contract exploita-

tion ([76, 82]). The four chosen vulnerabilities are 1) re-

entrancy, 2) unchecked low-level calls, 3) integer overflow

and 4) improper access control. The first two vulnerabilities

were included in one contract, and the last two vulnerabil-

ities in another contract. The vulnerabilities were grouped

as they normally appeared in smart contracts. They were de-

signed based on real-life exploitation, which has happened

before [19, 76, 82]. However, it is possible that some vul-

nerabilities were easier or harder to find depending on their

functions/method structure. The contract code can be found in

the GitHub repo. Table 2 summarizes the four vulnerabilities

in the code review task and how to avoid/address them.

We created our two smart contracts using a boilerplate con-

tract of ERC-20 token which provides basic functionalities to

transfer tokens and allow tokens to be approved so they can

be spent by another account. The ERC20 token contract is

commonly used as a basis for smart contract (DeFi) projects.

Numerous DeFi projects and open-source smart contracts

adopt the ERC20 standard interface. The ERC20 standard

interface can create tokens on Ethereum and can be re-used

by applications such as wallets and decentralized exchanges.

We believed that most smart contract developers would have

some familiarity with this contract, and our pilot study con-

firmed our assumption. Our contracts for code review have the

same basic ERC-20 functionalities. To make our code review

task realistic for participants to complete in 25 minutes, we

trimmed down some auxiliary functions from the selected

contract sample code. Both of the contracts for code review

are ERC-20 based, and there are no major differences in size.

We then modified the contract by adding the vulnerabilities.

We got feedback from solidity programmers and tested the

contracts in our pilot. We included comments in the contract

code to help participants understand the context of the con-

tract functions, as well as explicit comments to non-standard

ERC20 token functions (interface).

During the task, we provided the instructions verbally. Af-

ter giving the instructions, we provided the GitHub link which

contained the smart contract for review to the participants

through Zoom chat. We provided some extra time for par-

ticipants to set up their development environment before we

started counting the 25-min task time. This set-up time which

was not counted in the 25 minutes. Since the target partici-

pants are very busy, we limited our study to about one hour.

Code review time (25 minutes) is based on the code length,

which varies significantly in practice (10-1000 lines of code).

It is a limitation but for practical reasons it was a trade-off

between study time and participant’s availability.

3.1.5 Exit Interview

Once the task was completed or the time ran out, we con-

ducted an exit interview with the participants. We asked their

opinions about the task they worked on and how they per-

ceived the difficulty of the task. We also asked about their

overall experience with the code review task and if they would

like to share any other experiences of security practices in

smart contract development. Finally, we asked about their

desired features of security tools to help them improve smart

contract security. We received the modified code by each par-

ticipant via email. This data helped us determine whether they

correctly identified the vulnerabilities.

3.1.6 Data Collection and Analysis

Study data was collected through Zoom audio/video/screen

recordings with consent and analyzed using thematic analy-

sis [29]. Data included interview responses, code review task

outputs, think-aloud, and exit interview responses.

Qualitative Data analysis. Two researchers performed

open coding independently on a sample of the data (20%).

Then they met regularly to discuss and converged on a shared

codebook before coding the remaining data. We calculated

the inter-coder reliability in Cohen’s Kappa, which was 0.94

and considered very good [66]. Our open coding followed an

inductive analysis method to explore practices and behaviors

toward smart contract development. Our codebook includes

46 codes. Then data and concepts that belonged together

were grouped into sub-categories. Further abstraction of the

data was performed by grouping sub-categories into generic

categories and those into main categories. We then grouped

related codes, organized them in high-level themes, and iter-

ated this process to finally produce 18 themes to interpret the

results of smart contract developers’ security practices, secu-

rity concerns, and individual experiences and challenges with

tools and development methods. Some example themes are:

priorities in smart contract development, use of information

resources, development tools, smart contract security tools.

USENIX Association 32nd USENIX Security Symposium 2549

Assessing The Code Review Task Outcome. For the code

review task, recorded videos of the participants performing

the code review task were analyzed to measure the success

rate, based on whether a participant correctly identified the

security vulnerabilities in the smart contract. Prior to conduct-

ing the lab study, we created and verified the correct/secure

solutions for each task. The general ideas for these solutions

are described in Table 2. This ensured that we could verify

whether participants successfully identify the vulnerabilities

and provide a correct/secure answer or fix. We also paid at-

tention to how they conducted the code review, e.g., whether

and how they searched and used any resources/tools. Specifi-

cally, we conducted a hierarchical task analysis [86], a com-

mon Human-Computer Interaction (HCI) technique, to break

down the process of how a participant performed the code

review into detailed steps and to help identify how the pro-

cesses of successful and failed code reviews differ. We further

dissected the steps into sub-steps to understand how smart

contract developers inspected individual elements (e.g., func-

tions, events) during the code review tasks. This analytical

process helped us identify potential indicators for successes

or failures of code reviews (e.g., reasoning, steps, resources,

and tools that participants used during the task). For exam-

ple, some participants checked the task code against common

ERC20 standard implementations (e.g., OpenZeppelin) to en-

sure correct syntax, while others specifically checked certain

functions (e.g., “transfer,” “transferfrom,” “owner”) for vul-

nerabilities. We also checked whether their suggestions or

modified code could potentially fix the vulnerabilities.

3.2 Online Survey

We conducted a follow-up online survey based on results

from interviews and code reviews to explore common secu-

rity practices among smart contract developers. The survey

aimed to further generalize and quantify commonalities found

in the interviews with a larger sample. We used our personal

contacts in the crypto space, social media and smart contract

community forums to recruit respondents. Each respondent

who finished the survey and provided valid response can join

a lottery to win a $100 gift card (one card for every 10 valid

responses). We used a lottery approach for participant com-

pensation in the survey as literature suggests that it increases

participation in online surveys [28, 53, 54, 61, 91]. The time

frame for the survey study was July, 2022-August, 2022.

3.2.1 Survey Design

This survey had a total of 30 questions, including open-ended

questions, multiple-choice questions, and a code review sec-

tion. The survey started with questions about demographics

and participants’ current practices around smart contracts,

such as information sources and tools used for smart contract

development and security, and familiarity with smart contract

vulnerabilities. These questions were based on our interview

results (Section 4). Next, the survey included a code review

section. We created five smart contract code snippets and ran-

domly assigned one snippet to each respondent. We asked

them to review the code and suggest any improvements and

they can use any tools/resources as they normally do. Similar

to the code review tasks in the interviews (Section 3.1.4), we

designed these tasks to model real-world code reviews. We

chose to include one vulnerability in each code snippet.

In the exit interviews (Section 3.1.5), some participants

suggested us consider two frequent smart contract exploit

scenarios (i.e., front-running [13] and flash loans [38]). In

a typical front-running attack, transaction order is manip-

ulated by selfish or malicious actors, who copy the original

transaction and have their copy executed first by setting a

higher gas price [13]. Flash loans are a financial mechanism

that allows borrowing a large amount of crypto assets with-

out collateral, but the borrower must return all funds in the

same block or the borrowing is reversed. Attackers can use

flash loans to manipulate the price of a crypto asset on one

exchange and then buy/sell it on another for price differences

(i.e., arbitrage) [38]. The final survey included five vulnerabil-

ities: 1) re-entrancy, 2) integer overflow, 3) improper access

control, 4) front-running, and 5) flash loans. Following the

code review, we asked questions about how they performed

the code review. For instance, we asked “How would you rate

the difficulty of this task? (1 - not difficult at all, 10 - most

difficult)”. We also asked what resources they used during

the code review. Our pilot studies indicate the survey takes

about 30 minutes to complete, participants were instructed

that they can complete the survey within 24 hours of starting

and we recorded progress, timestamps and clicks during the

code review sessions.

3.2.2 Survey Data Analysis

We received more than 1,000 responses but the majority had

poor quality. We manually applied a combination of quality

control/filtering criteria: (1) incomplete responses (i.e., some

participants started but never finished the survey; Qualtrics

flagged these responses as FALSE); (2) clearly meaningless

open-ended answers (e.g., unintelligible characters or random

numbers or words, such as “dfgdfg,” “"Scorpion tail lion The

secret of silver,” “ERUETHY8O3I4Y3OLYHTO3T.”), (3) un-

reasonably short time to complete the survey (<=10 minutes),

and (4) unreasonable short time to complete code review (<=

5 minutes). After the filtering, we had a total of 171 valid

responses. The survey took an average of 26 minutes to com-

plete. We computed descriptive statistics of the demographic

data and smart contract practices (e.g., tools used).

We considered all data from different sources (interviews,

surveys, code reviews) in the overall analysis. Specifically,

we analyzed the interview and survey data in a similar way

(thematic analysis) and analyzed the code-review tasks in

terms of task performance and task behaviors. Following the

best practices of mixed-methods research, we triangulated

the data from all three methods in identifying crosscutting

2550 32nd USENIX Security Symposium USENIX Association

patterns and themes. For instance, task performance data told

us the actual review behavior but it did not tell us why they

had such behavior. The interviews and surveys helped us

understand why they had such behavior.

4 Findings

In this section, we present our study results in diverse views

and practices of smart contract security. We also discuss re-

sults from our lab study and survey in terms of the task success

rate, time to identify security vulnerabilities, and use of dif-

ferent code review approaches. In general, we observed that a

higher percentage of our participants (from both studies) who

had longer experience in smart contract development (e.g.,

3+ years of experience) were able to identify these common

vulnerabilities than the participants with shorter experiences.

4.1 Participants

Phase 1: interviews/code review sessions, we had a total of

29 interviewees (24 male, 5 female). Table 1 summarizes our

interviewees’ demographics. Our interviewees included 14

DeFi practitioners, 3 freelance contract dev., 3 software dev.,

8 students, and 1 professor. For Phase 2: online survey, we

had a total of 171 valid responses for our online survey. 69%

were male and 31% were female. 93% of them had at least

some college education. In terms of their years of experience

in smart contract development, 66.7% of them had +3 years,

followed by 25.7% with 1-3 years and 7.6% with <1 year.

Our interviewees (n=29) and survey respondents (n=171)

used resources including Solidity documentation, Google

search, Stack Overflow, YouTube, and Ethereum Foundation

documents. The most popular tools were Truffle, Remix, and

Ganache. Reusing code from libraries like OpenZepplin was

common. 76% of interviewees had Solidity code review ex-

perience while 72% of survey respondents reported having

it. 13.5% of survey respondents had code review experience

in other programming languages. More details on participant

programming background are in Appendix C.

4.2 Perceptions of Smart Contract Security

4.2.1 Security was not a priority

The majority of participants (83% of interviewees and 61%

of survey respondents) did not claim security as a top prior-

ity and cited three main reasons. First, they needed to ship

products fast (especially for those DeFi projects) and thus

security becomes secondary. Second, many smart contract

projects forked other popular projects (e.g., Uniswap), which

often have already been vetted by the community and thus

are probably secure. Third, they often relied on security au-

dits conducted by someone else internally or externally. For

instance, P8 said “If you’re planning to do an audit anyway, it

kind of makes sense from a business perspective to ship code

and then run it through multiple audits, instead of having

your internal team [...]review the security at the same time.”

However, this approach, driven by business priorities, seems

to substitute the need for proactive and continuous security

practices throughout the development life cycle. In turn, it

may result in delayed identification of security vulnerabilities.

Only five interviewees (P3, P11, P14, P26, P27) considered

security a priority in smart contract development and P3 was

the only one with less than one year of experience in this

group. Similarly, 39% of all survey respondents considered

security a top priority but none of them had less than one

year of experience. These results imply that our participants

with longer experiences were more likely to consider security

as a top priority than their less experienced peers. For those

who treated security as a top priority, they mentioned different

aspects of security. For instance, P11 said: “security [is] the

most important factor because you need to know the address

in the blockchain to send and receive, [...] the address should

be unique and it’s secure and cannot be changed by someone

else.” Our interviewees and survey respondents frequently

mentioned reentrancy and front-running. Other security vul-

nerabilities mentioned were integer overflow, access control,

delegate calls, denial of services, and oracle attacks.

4.2.2 What makes smart contract security hard?

Many interviewees suggested that ensuring smart contract se-

curity is hard. Five interviewees pointed out the inherent limi-

tations in Solidity language design for maintaining security.

For instance, P25 noted the ambiguity of Solidity program-

ming language where function definitions are not explicit

and suggested adopting functions like, in Python. P19 spoke

about another issue with Solidity: “Contract work[s] like state

machine when send a transaction. It only appears like state

changes. But in regular program, you can differentiate read-

only calls and state changes. Solidity can not do that.” He also

added the difficulties of performing proper string and array

manipulations due to a lack of direct language/library support.

To fill this gap, this participant created his own assembler to

map between Solidity instructions and machine code instruc-

tions. P10 spoke about challenges around testing strategies

(i.e., formal verification) due to the complexity of smart con-

tracts. One such example is composite smart contracts which

need to perform tasks through the use of external calls and the

execution of other smart contracts that might belong to other

owners or companies [23]. P10 expressed the difficulties of

using some of the common software testing methods, such as

invariants, fuzzy testing, and formal verification.

4.3 Practices of Smart Contract Security

In our interviews, we asked our interviewees to explain their

practices of ensuring smart contract security. We start by

discussing the different security strategies they followed.
4.3.1 Smart contract security strategies

Our interviewees described three broad categories of strate-

gies: (1) software engineering best practices, (2) common

software testing techniques, and (3) specialized strategies.

USENIX Association 32nd USENIX Security Symposium 2551

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Reentrancy

Low-Level

Call

Overflow

Access

Control

3+ years (n: 9) 1+ to 3 years (n: 10) 0 to 1 year (n: 10)

Figure 1: Interviewees’ success rates of identifying secu-

rity issues. The average success rates for senior, mid-level,

and junior developers are 77.78%, 70% and 20% respec-

tively.

0%

0%

0%

0%

33%

27%

0%

23%

12.50%

16.67%

18%

35%

12%

20.83%

25%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Reentrancy

Overflow

Improper Access

Control

Front Run

Flashloan

3+ years (n: 114) 1+ to 3 years (n: 44) 0 to 1 year (n: 13)

Figure 2: Survey Respondents’ success rates of identifying

security issues. The average success rates for mid-level

and senior developers are 22.9% and 18.18%, respectively,

while for junior developers, its 7.7%.

First, many interviewees talked about applying general soft-

ware engineering best practices to help identify security issues.

For instance, P20 emphasized the importance of code refactor-

ing to “write the most simple code that you can” and this way

makes the detection of security vulnerabilities much easier.

Others mentioned having a modular structure and good doc-

umentation of smart contract code or drawing state machine

diagrams to visualize the flow of smart contract code. In addi-

tion, using popular (vetted) libraries (e.g., Safe Math, Open-

Zeppelin libraries) and referring to official documentation

(e.g., Solidity docs) were frequently mentioned as being help-

ful in avoiding code security problems. Furthermore, some

interviewees said they chose to use more secure programming

languages (e.g., Rust).

The second category of strategies was applying common

software testing practices, such as code reviews, input vali-

dations, unit testing, and static analyses. However, some in-

terviewees pointed out the difficulty of using certain testing

techniques for complex smart contracts, such as formal ver-

ification (e.g., the example from P10 we presented earlier).

Many interviewees also mentioned relying on security audits

from external entities to ensure smart contract security.

The third category is specialized strategies that were cre-

ated by developers because existing methods or techniques

fell short. For instance, P18 explained that he created his own

byte code (error code) dictionary to represent different cases

of reverting transactions in his smart contracts for an NFT

(non-fungible token) project. P23 discussed that his company

doing its own simulations coupled with regular testing. These

specialized strategies could be considered as potential fea-

tures in future security tools. Next, we present their usage of

security tools (and their limitations).

4.3.2 Use of smart contract security tools

While manual inspection of smart contract code was com-

monly reported, nine (31%) interviewees also reported using

smart contract tools for security purposes, such as static anal-

ysis tools (17%), Truffle testing suite (14%), Remix security

plugins (14%), MythX (7%) and Slither (3%). Survey results

corroborate these interview results where manual inspection

(64%) was frequently reported as the main method for ensur-

ing smart contract security. Other tools were also mentioned,

such as, Remix (37%), HardHat (36%), Slither (35%), and

MythX (28%). We are not aware of other empirical data about

usage of smart contract security tools. These results suggest

that most participants relied on manual code inspection and

for those who did use security tools they tended to use them

as part of popular integrated development frameworks or envi-

ronments for smart contracts (e.g., Truffle, HardHat, Remix)

and to a less extent, seperate static analysis tools (e.g., Slither,

MythX). This suggests that future security tools could be in-

tegrated into mainstream smart contract development stacks

(e.g., Truffle, HardHat, Remix) for more adoption.

4.3.3 Limitations of smart contract security tools

76% of interviewees and 42% of survey respondents indicated

the limitations of existing security tools for smart contracts

and the needs for improving these tools.

One limitation is the lack of direct integration of automated

contract testing into the development environments (IDEs).

One concrete suggestion was to develop AI-based risk pre-

dictors and automatic vulnerability detection by leveraging

existing vulnerability databases.

Another frequently mentioned limitation was that existing

symbolic execution based tools, such as Slither and MythX in

identifying edge cases that perform poorly for known vulnera-

bilities. Thus, they desired security libraries that provide more

comprehensive coverage and higher success rates in iden-

tifying known vulnerabilities. A concrete recommendation

frequently suggested was mathematical proof-based formal

verification to enhance code coverage.

Importantly, many interviewees with many years of expe-

riences noted that having better security tools alone is not

enough and they advocated the need for having a security

2552 32nd USENIX Security Symposium USENIX Association

posture when writing smart contracts, “security should be

considered before you write your first line of smart contract

code.” Education can be a way to improve such a security

posture. After presenting how our participants’ self-reported

security practices, next we will see how they actually behaved

in identifying security issues in the code review tasks.

4.4 Smart Contract Code Review Tasks
In this task, we asked both our interviewees and survey re-

spondents to review a smart contract to identify any security

issues or areas of improvement. We also asked their rationale

for any code modifications.

4.4.1 Performance of identifying security vulnerabilities

15 of them were assigned to Task 1 (Reentrancy and Low-

level calls), and the rest were assigned to Task 2 (Overflow,

Access control) randomly. Overall, 55% of (16 out of 29) in-

terviewees were able to identify one or more vulnerabilities

during code review tasks. 28% (N=8) of interviewees identi-

fied both (all) vulnerabilities in the smart contract from which

five were for Task 1 and three were for Task 2. More specifi-

cally, Reentrancy had the highest identification success rate

(53%), followed by improper access control (43%), unchecked

low-level call (40%), and lastly, integer overflow (29%). Av-

erage time in successfully identifying each security issue by

interviewees: integer overflow took least time (average 8.6

minutes, median: 9.1, sd: 1.02), followed by low-level calls

(average 9.8 minutes, median: 10.3, sd: 1.39), re-entrancy

(average 11.6 minutes, median= 12.3, sd: 4.17), and access

control (average 13 minutes, median: 14.1, sd: 2.65).

The code review results from our survey painted a similar

high-level picture. A smaller percentage of survey respon-

dents (20.5%, n: 171) identified vulnerability. More specifi-

cally, Integer overflow had the highest identification success

rate (25.8%, n: 31), followed by flash loan (24.32%, n: 37),

re-entrancy (19%, n: 37), front-running (17.64%, n: 34), and

lastly unprotected Ether withdrawal relating to improper ac-

cess control (15.6%, n: 32). As for participants’ average time

in successfully identifying each security issue: re-entrancy

took the shortest (average 8 minutes, median: 7.9, sd: 1.67),

followed by integer overflow (average 9.3 minutes, median:

8.8, sd: 2.59), front run (average 10 minutes, median: 8.8, sd:

3.35), improper access control (average 10.3 minutes, median:

8.6, sd:5.14), and lastly flash loan (average 12.2 minutes, me-

dian: 9.4, sd: 3.39). Table 2 in the Supplementary in GitHub

summarizes the average time for successful identification.

4.4.2 Longer experiences in smart contract development

positively associated with better task performance

To explore the relationship between developers’ years of ex-

perience in smart contract development and their code review

task performance, we first categorized our interviewees and

survey respondents into different groups based on their years

of experience. Year of experience is easy to understand and

measure and is often used in smart contract job descriptions,

which we used to come up with the thresholds (years of ex-

perience) for different groups. To our knowledge, no prior

literature defines different levels of smart contract developers.

Prior studies in software security have utilized years of expe-

rience as a quantitative proxy measure for expertise level but

their thresholds for experienced developers vary. For instance,

Acar et al. used having more than two years of experience

for professional developers [22] whereas Witschey et al. [93]

used six months for experienced developers.

We turned to smart contract job descriptions for inspira-

tion. Specifically, we crawled Solidity smart contract job posts

for developers from popular sites, including, Indeed (n=503),

Glassdoor (n=74), cryptojoblist (n=58), and web3.career

(n=88). We used keywords such as “Solidity developer/engi-

neer,” “blockchain developer/engineer,” and “Ethereum de-

veloper/engineer” to search for the relevant jobs. For each

of the websites, we crawled the job posts which were open

and available (accessed on 18th November 2022), leading

to a total of 723 job posts. We manually checked the job

posts, deleted overlapped posts across the sites, and only kept

jobs for Solidity developers during the data pre-processing,

leaving a total of 155 smart contract job posts from 75 cryp-

to/blockchain organizations. The vast majority of these posts

mentioned years of experience and there were three broad

types of job posts: 1) Junior, 2) Mid-level, and 3) Senior/Lead.

We found the following years of experience requirement for

Junior (n=9, min: 0, max: 1 year, avg: 5.67 months, median:

6 months), Mid-level (n=77, min: 1, max: 3, avg: 1.93, sd:

0.70, median: 2), and Senior (n=69, min: 2, max: 5.5, avg:

3.57, sd: 1.07, median: 3.5). We used these empirical data

to operationalize the thresholds of years of experience and

put our participants in the following three groups: (Junior: 0 -

1year, Mid-level: more than 1 - 3 years, Senior: 3+ years).

Of the 29 interviewees, 16 identified at least one vulner-

ability, from which two were junior developers, seven were

mid-level, and seven were senior developers. Senior devel-

opers had a higher task success rate (78%, n:9), followed by

mid-level (70%, n:10) and lastly, junior (20%, n:10). For our

survey responses (n=171), 35 identified vulnerabilities, from

which one was a junior developer, eight were mid-level, and

26 were senior developers. Senior developers had a higher

task success rate (23%, n:114), followed by mid-level (18%,

n:44), and lastly, junior (7.6%, n:13). However, we have not

found statistically significant results based on 2-sample pro-

portion tests. Future research can further perform the analysis

with a bigger sample proportion of each category of develop-

ers. To explore whether our high-level results are sensitive

to the categorizations (cutoffs) of the years of experience, we

also tried a few sets of cutoffs, for instance, junior (<1 year),

mid-level (1-2 years) and senior (>2 years). We also tried the

binary categorization of junior (<1 year) and experienced (>1

year). While the descriptive statistics had minor changes, the

high-level results (e.g., positive association between years of

experience and task success rate) were consistent. However,

USENIX Association 32nd USENIX Security Symposium 2553

future research could explore additional measures of smart

contract development experience and those relationships with

a larger sample size for each developer category.

4.4.3 Different approaches to code review

In our interviewees, we were able to directly observe (via

Zoom participant screen sharing upon consent) how our in-

terviewees tried to identify security issues during the task.

Most of them manually read through the code. Only four used

security plugins and/or static analysis tools (the same set of se-

curity tools we presented in Section 4.3.2). For instance, P14

(had three years of experiences) used linting and static analy-

sis tools in his code review. He successfully identified both

vulnerabilities (reentrancy and unchecked low-level calls) in

the contract. We did a hierarchical task analysis [86] to break

down how a participant conducted the code review into de-

tailed steps Figure 3 illustrates P14’s code review process.

P14 started by quickly setting up his development environ-

ment, where he created a folder with a package manager and

installed development dependencies so he could compile the

contract. He stressed the importance of having the folder

ready to compile first to check coverage, test, and clean the

code. After compilation, he utilized common implementations

(e.g., OpenZeppelin) of the ERC20 standard to ensure the task

code followed the correct syntax and used existing proprietary

code to resolve identified vulnerabilities. Importantly, he did

not blindly take or trust the Open Zeppelin implementation

even though it is widely used. After manually checking the

code, he explained some of the possible vulnerabilities. For

instance, he pointed out a potential reentrancy vulnerability in

the withdraw function: “it is withdrawing if the amount is less

than the amount to just return false and subtracts the amount

before it does the accounting before it’s sending anything out,

which is pretty crucial for preventing someone re-entering the

function, which would be bad.” He then ran the static analysis

with Slither to confirm his suspicion.

Unlike P14, many interviewees did manual code inspec-

tions without using any security tools. Some successfully

identified the vulnerabilities while others did not. P4 (less

than one year of experience) manually inspected the code

without using any security tools and did not find any secu-

rity vulnerabilities. He was assigned the same task (task 1)

as P14. Figure 4 illustrates P4’s code review process. He

started to skim through the code, and preliminary commented

there could be a bug and inconsistency to the ERC 20 stan-

dard. However, he didn’t mention what is the exact bug in

there. Then, he started to search topics on “ERC20” in google

and spent much time understanding the functionality of the

ERC20 token. Finally, he found Open Zeppelin ERC20 con-

tracts for reference after spending much time searching. s

the time was close to 25 minutes, he concluded -“I definitely

don’t see a very critical issues at this point.” What is interest-

ing here is that even though P4 found and read some reference

documentation about ERC20 (e.g., Open Zeppelin) similar

to P14, P4 was still unable to identify the security issues. In

addition, many of our participants (e.g., P3, P15, P20, P21)

who did use security tool(s) also missed some security issues.

4.4.4 Code modifications for improvement

For the 16 interviewees who have successfully identified at

least one vulnerability, seven of them modified the contract

code for improvement and six (21% of all participants) cor-

rectly fixed the vulnerabilities. The modified code snippets

are included in the supplementary document. Due to time

constraints, the other nine participants did not modify the

code but verbally commented on how the contract code could

be improved. Conceptually, all the comments would fix the

security vulnerabilities. Of the 35 (20.5% of n=171) survey

respondents who successfully identified the vulnerabilities,

31 provided suggestions on modifications. Conceptually, the

comments would fix the security vulnerabilities. presents the

improvement suggestions for Unprotected Ether Withdrawal

and Front running. They explained how to implement controls

so withdrawals can only be triggered by authorized parties

while another respondent suggested to remedy by commit

reveal hash scheme or to add a field to the inputs of approve

function which is the expected current value to avoid front

running. Detail can be found in supplementary materials.

4.4.5 False positives

We also observed that sometimes our interviewees incor-

rectly thought they identified security vulnerabilities, which

were actually not vulnerabilities (i.e., false positives). Four

(14%) interviewees had false positives and they tended to

have less prior experience with smart contract development.

For instance, P1 thought there was a security issue in the “ap-

prove” function (Figure is in Supplementary document). He

explained, “it is possible for adversary to call the function

in StandardToken and this would bypass ‘whennotpaused’

modifier.” However, there was a “Pausable” base contract,

which can implement an emergency stop mechanism where

“whenNotPaused” modifier was only callable when the con-

tract is not paused. Also when it is called by the owner to

pause, it triggers the stopped state. Hence, one cannot bypass

the “whennotpaused” modifier.

5 Discussion

In this section, we unpack the implications of our key find-

ings/observations for smart contract security as well as com-

pare them to traditional software security practices.

5.1 Summary of Major Findings
Overall, our interview and survey results suggest that a large

portion of our participants did not consider security as a prior-

ity in their smart contract development. For the code review

tasks, the vulnerability identification rate was also alarmingly

low. While participants with longer experiences did better

than their counterparts with shorter experiences, even the rate

2554 32nd USENIX Security Symposium USENIX Association

Start

Open contract via
VS Code

Upload Task.sol code
into new folder

Run Yarn init for
package manager

(package.json)

Add scripts for dev
dependencies

Install Yarn for
compiling/checking

test coverage

Linting
plugin

working?

Check Solidity
version & MIT

identifier

Review ERC20
interface code

Skim through
contract

Proper
code

syntax &
standards?

Reformat code
accordingly

No

Cross check
contract code with
Open Zepplin code

Yes

 Identified
possible

vulnerability?

Modify error with
existing proprietary

code

Compile code with
HardHat

Run Slither to
confirm re- entrancy

Compile code

End

No

Unchecked
low level

call?

Re-
Entrancy?

Yes

No

Yes

Yes

Yes

No

No

Figure 3: P14’s process for the code review task1. He used

linting and static analysis tools and found vulnerabilities.

Figure 4: P4’s process for the code review task1. P2 failed

to identify any security vulnerabilities.

of the most experienced group (those with +3 years) was

concerning. We attributed these results largely to developers’

lack of motivations, knowledge and skills of smart contract

security, and the limitations of existing tools.

One reason that some participants did not consider security

as a priority is the ideology of shipping products fast even

at the cost of security. This ideology could have detrimen-

tal long-term effects on the smart contract ecosystem. How

to counter this ideology? In addition to monetary loss and

reputation cost as results of insufficient attention to security

and associated security breaches, we hope that the market and

users will gravitate towards those projects that treat security

as a key goal. We also hope that the prominent projects can set

good examples by explicitly discussing their system security

practices in their official documents (e.g., white papers) so

that there is an expectation for such information and in turn

can encourage other projects to pay more attention to security.

A second reason is that our participants often reuse existing

code libraries (e.g., Safe Math), which have often been vetted

by the broader community. We believe this practice can be

part of a promising approach, which is to have reference im-

plementations that avoid or fix known security vulnerabilities

(e.g., the Safe Math library fixes the underflow or overflow

vulnerabilities) and then to educate developers about how to

make proper use of these (vetted) libraries.

A third reason is that many participants relied on security

audits often conducted by external entities. Many participants

commented these external audits only occurred in the final

stage of the smart contract development before the public

project launch. These comments and observations suggest

a misconception about security audits in the smart contract

industry - instead of a continuous process, security audits

were thought as a rather ad-hoc or proxy clearance to deploy

the smart contracts or to ship the codes to various clients. In

previous research on traditional software security, security

audits are considered as a continuous process to keep track of

infrastructure changes and to enforce rules accordingly [89].

The over-reliance on one-time external security audits could

also have a negative long-term effect on the security and

success of the smart contract ecosystem.

5.2 Smart Contract Security vs Traditional

Software Security

Compared with traditional software, smart contract develop-

ment is a relatively new landscape. With the recent boom

of the DeFi industry (since 2020), a new pool of developers

joined this industry and started writing smart contracts. Their

knowledge of and experience with smart contract security vary

widely, as observed in our study. There are some information

resources on smart contract security, such as ConsenSys and

Solidity documentation, which provide design patterns that

developers should follow. However, we are not aware of a

framework to assess and communicate smart contract security

during the development life cycle.

Apply software security solutions in smart contracts.

Our results suggest some similarities in practices and chal-

lenges between smart contracts and general software security.

Thus some security strategies of software development can

be applied to smart contracts. For instance, some participants

indicated the importance of relevant documentation within

the IDEs which can support their learning in smart contract

development while software engineering has made similar

suggestions (e.g., [21,70]). Our participants also desired well-

structured, context-specific security warnings. This aligns

with prior literature that suggests effective security warning

to reduce cryptographic API misuse [49]. The prior literature

on cryptographic APIs [21] suggests that simplified libraries

can promote security. However, it might not be the case in

the domain of smart contracts. Many participants in our study

explicitly requested the security/testing libraries to be more

comprehensive in covering most if not all security issues.

Further research is needed to investigate this idea.

Why is smart contract security different and difficult?

Smart contract security have some fairly unique or more

USENIX Association 32nd USENIX Security Symposium 2555

prominent characteristics and often have a significant financial

impact. It is fairly easy to monetize the attacks (e.g., “stealing”

tokens and passing them to a mixer before selling them). In

addition, the system states are visible on public blockchains

and the smart contract code is often open-sourced, thus the

public nature makes them targets for attacks. Besides, the

additional economic considerations (e.g., incentive mecha-

nisms, gas cost) add more complexities to smart contract

security (i.e., economic security) [74]. Furthermore, reusing

library code or calling other smart contracts is common in

smart contract development. In face, DeFi projects are known

as “money lego” because they can be created by composing

smart contracts from different projects [37]. This compos-

ability, however, also opens the door for trusting and calling

untested and potentially vulnerable smart contracts.

5.3 Implications for Smart Contract Security

5.3.1 Education & Standards

Education. Our results suggest that accessing documenta-

tions, reference implementations and security tools is not

enough in helping developers identify smart contract security

vulnerabilities. Education that improves developers’ moti-

vation, knowledge and awareness regarding smart contract

security is crucial. While there are many reading materials for

educational purposes, we believe what is missing is hands-on

exercises or labs for smart contract security, similar to the

SEED projects for computer security in general [45]. Once

these educational materials (e.g., hands-on labs) are created,

they should be brought up when corresponding security is-

sues are detected (i.e., teachable moments) in the various

components of the smart contract ecosystem (e.g., compilers,

security tools, IDEs, testnets).

In addition, the need for educational resources can differ de-

pending on a developer’s expertise/skill level. Smart contract

education could be better designed, case by case basis and

dispatched based on developers’ self-reported expertise, skills,

years of experience, and stages of development (i.e., writing

code, reviewing code). An actual implementation could be a

plugin or browser extension with a resource viewer, which can

generate resources from various online and official sources

upon the request sent by a developer. Such a plugin could be

a part of existing IDE (i.e., Remix, Vscode) and security tools

to support continuous referenced learning. This education tool

can be trained to learn the evolution of developers’ skills and

information search by them. Thus, can suggest materials (i.e.,

updates of solidity language syntax, recent exploitation, why

it happened, and way to resolve, related community discussion

on mainstream media, etc.) from time to time.

Standardization. Survey respondents suggested standard-

izing smart contract security practices. For instance, while

code audit is one of the main techniques for security assess-

ment, they suggested to standardize the process of audit. Spe-

cially, organizations performing automated code audits should

follow an standard agreement that covers the consumers dur-

ing and after the audit especially if there is any exploitation.

Our data also suggests an industry-wide misconception of

audit where it is adopted in an ad-hoc manner before smart

contract deployment rather than an iterative process. This

could be due to resource (i.e., cost, SME) limitations for many

industries. As a remedy, a security awareness program can be

designed for the broader smart contract community to educate

the consequences of an unsuccessful audit and what to expect

from an audit. By nature, smart contract audit needs to be

more frequent than existing software security audit. However,

they can adopt the standard rules for baseline checks from

well-established organizations, ISO/IEC, SOC2, etc.

5.3.2 System/Tool Design

Compilers. Our results indicate that most of our early-stage

developer participants were not familiar with the basic smart

contract security concepts and common vulnerabilities. Some

suggested integrating security analyses (e.g., static analysis)

directly into the Solidity compiler, so that they can obtain the

security assessment without any extra step.

Code libraries. Some participants commented that current

security libraries fall short of covering edge cases. Most of

the recent tools work on the byte code for identifying security

vulnerabilities. The parser and symbolic execution engine

work solely on the byte code, so if developers see a potential

integer under/overflow, they will report it, but they do not

know where it occurs in the source code. A direct mapping

between security vulnerabilities and source code would be

valuable. Survey results confirmed the need of code libraries

for symbolic execution, fuzzing, and linting.

Formal verification. In addition to static analysis, partici-

pants suggested integrating formal verification tools for smart

contract security to enhance code coverage and correctness.

Survey results also highlighted the importance of formal veri-

fication and the need for a formally verified specification of

Solidity with better constructability and manageability.

Development frameworks. Some participants mentioned

existing development frameworks to be heavy-weighted and

difficult to learn and use the security functionalities. For in-

stance, P6 noted Truffle, a popular smart contract development

framework is “unwieldy” to learn and run security tests. One

possibility is for these development frameworks to include

a “security mode” where security analyses are automatically

done as part of the compilation.

Improving existing tools. Survey respondents frequently

expressed the need for improving existing smart contract se-

curity tools, mainly for the following purposes – functional

correctness, fast/efficient assessment, more accurate bug de-

tection, bug repair suggestions, and code optimizations.

5.3.3 User interfaces & user experience

Error / warning messages. Many participants found current

testing library error messages hard to understand and lacking

actionable insights. They suggested including links to detailed

2556 32nd USENIX Security Symposium USENIX Association

explanations, known incidents, and how to correct the issues.

They also suggested having better GUI’s to present the infor-

mation, similar to that of other programming languages like

Python. This would make security assessments more manage-

able and less overwhelming. Survey results also confirmed the

need for better user experience and workflow in security tools

by hierarchically zooming into where exactly the problems

are in the code and how significant the effect can be.

Integrated Development Environments (IDEs). Our

study suggested integrating security concepts into IDEs. A

checklist of common smart contract security issues inside

IDEs would be useful. The security tools (e.g., static anal-

ysis) can show which common security issues from the list

are present in the code. Many participants liked the conve-

nience of the web-based Remix IDE, but wished its features

can match those in the desktop-based IDE (e.g., Visual Studio

Code) where more security plugins are available. Some of

them also desired the security plugins to have better discover-

ability through default enablement or better search tools."

5.4 Limitations and Future Research

Our mixed-methods study has many limitations.

First, while we had a large number of participants (29 inter-

viewees, 171 survey respondents), we still cannot claim our

results can necessarily be generalized to the broader smart

contract developer population.

Second, our study focused on Solidity, the most popular

programming language for smart contracts. There are other

smart contract languages such as Viper and RUST. Further

studies are needed for smart contract security practices in

other languages. In addition, we only tested a few common

smart contract vulnerabilities in our code review tasks. Fu-

ture research is needed to investigate other smart contract

vulnerabilities.

Third, the specific vulnerabilities and their groupings in

the tasks we included might be perceived as having different

levels of complexity, which could affect participants’ code re-

view performance. However, we believe this potential impact

is rather limited for the following reasons. All the code review

tasks were randomly assigned to participants (regardless of

their experience level) and the code snippets were of similar

length (around 80-100 lines of code excluding comments).

In addition, the vulnerabilities were grouped as they have

appeared in smart contracts. One such example is the DAO

hack [8] where low− levelcall function triggers the attacker

contract’s f allback function, and that function tries to re-enter

the withdraw function [19]. Furthermore, the smart contracts

(ERC20) are frequently used by developers and are selected

from real-life exploits with slight modifications [19, 76, 82].

Therefore, we believe the code examples in our tasks can

reasonably represent actual smart contract code in practice.

Furthermore, the time allocation for the code review task

in the interview study was constrained to 25 minutes due to

practical considerations, mainly the inability to schedule a

session exceeding one hour given the participants’ project-

related pressures. We acknowledge that this methodological

choice may limit the ecological validity and impact the task’s

success rate. In contrast, during Phase 2, during the survey, we

instructed participants to complete the task within 24 hours

to simulate practical scenarios, despite the survey’s overall

time was estimated as 30 minutes.

Fourth, our participants were asked about security practices

in the interviews and the survey before doing the code review

task. Therefore, that could prime our participants to think

more about security in the code review and did better than

they would otherwise. We also noticed a positive association

between years of experience and successfully identifying se-

curity vulnerabilities in the code review task, this hypothesis

however needs to be further tested in future studies.

Fifth, during survey data collection, we encountered chal-

lenges pertaining to data quality of 80% responses that were

bogus. We employed a cautious approach involving exten-

sive filtering criteria and manual inspection leading to a total

of 171 responses. We are confident that these responses are

legitimate due to the fact that the code review tasks and open-

ended questions were designed to be answerable only by

individuals knowledgeable in smart contracts. Nonetheless,

we acknowledge the limitations inherent in our recruitment

strategies and propose that future research endeavors focus on

carefully selecting designated forums and leveraging personal

contacts within the targeted community. This can mitigate the

influx of spam or bot-generated responses that were obtained

through social media platforms, particularly Twitter. Finally,

we used our participants’ self-reported years of smart contract

development experience as a reasonable proxy for their smart

contract expertise level to explore its relationship with their

task performance. While years of experience is a reasonable

metric and has been used in the prior developer studies, it

is not the only useful metric. For instance, other reasonable

metrics could include the number of smart contract projects

worked on or smart contract languages used. Our research

was not aimed to identify latent clusters of smart contract

developers based on their knowledge and practices of smart

contract development, which is nevertheless a valuable topic

for future research.

6 Conclusion

To understand smart contract developers’ security perceptions

and practices, we conducted a mixed-methods study consist-

ing of interviews, code review tasks and an online survey.

The majority of our participants did not consider security as

a priority and they often relied on external audits to ensure

security of their projects. Given the recent rise of smart con-

tract projects (e.g., decentralized finance) and their associated

security attacks, providing better educational materials and

tool support especially for developers is paramount for the

healthy growth of this domain.

USENIX Association 32nd USENIX Security Symposium 2557

References

[1] Accessed on 2022. https://ethereum.org/en/developers/docs/evm/.

[2] Accessed on 2022. https://consensys.github.io/

smart-contract-best-practices/known_attacks/.

[3] Accessed on 2022. https://github.com/enzymefinance/oyente.

[4] Accessed on 2022. https://github.com/ivicanikolicsg/MAIAN.

[5] Accessed on 2022. https://github.com/ConsenSys/surya.

[6] Accessed on 2022. https://github.com/ConsenSys/mythril.

[7] Accessed on 2022. https://github.com/trufflesuite.

[8] Accessed on 2022. https://blog.chain.link/

reentrancy-attacks-and-the-dao-hack/.

[9] Blockchain-based venture capital fund hacked for $60 mil-

lion, Accessed on 2022. https://fortune.com/2016/06/18/

blockchain-vc-fund-hacked/4.

[10] Bug bounty., Accessed on 2022. https://0x.org/docs/guides.

[11] Deposit less, get more: ycredit attack details, Ac-

cessed on 2022. https://blocksecteam.medium.com/

deposit-less-get-more-ycredit-attack-details-f589f71674c3.

[12] Etherscan, Accessed on 2022. https://etherscan.io/directory/Smart_

Contracts.

[13] frontrun, Accessed on 2022. https://solidity-by-example.org/hacks/

front-running/.

[14] An in-depth look at the parity multisig bug, Accessed on 2022. https:

//hackingdistributed.com/2017/07/22/deep-dive-parity-bug/.

[15] Openzepplin, Accessed on 2022. https://openzeppelin.com/contracts/.

[16] Owasp secure software development framework, Accessed on 2022.

https://owasp.org/www-project-security-knowledge-framework/.

[17] Owasp security knowledge framework, Accessed on 2022. https://csrc.

nist.gov/Projects/ssdf.

[18] pulse, Accessed on 2022. https://defipulse.com/.

[19] Smart contract weakness classification and test cases, Accessed on

2022. https://swcregistry.io/.

[20] Solidity, Accessed on 2022. https://github.com/protofire/solhint.

[21] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,

Doowon Kim, Michelle L Mazurek, and Christian Stransky. Com-

paring the usability of cryptographic apis. In 2017 IEEE Symposium

on Security and Privacy (SP), pages 154–171. IEEE, 2017.

[22] Yasemin Acar, Sascha Fahl, and Michelle L Mazurek. You are not your

developer, either: A research agenda for usable security and privacy

research beyond end users. In 2016 IEEE Cybersecurity Development

(SecDev), pages 3–8. IEEE, 2016.

[23] Mouhamad Almakhour, Layth Sliman, Abed Ellatif Samhat, and Ab-

delhamid Mellouk. A formal verification approach for composite

smart contracts security using fsm. Journal of King Saud University-

Computer and Information Sciences, 2022.

[24] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum:

building smart contracts and dapps. O’reilly Media, 2018.

[25] Hala Assal and Sonia Chiasson. Security in the software development

lifecycle. In Fourteenth Symposium on Usable Privacy and Security

({SOUPS} 2018), pages 281–296, 2018.

[26] Hala Assal and Sonia Chiasson. ’think secure from the beginning’

a survey with software developers. In Proceedings of the 2019 CHI

conference on human factors in computing systems, pages 1–13, 2019.

[27] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. Static

code analysis to detect software security vulnerabilities-does experi-

ence matter? In 2009 International Conference on Availability, Relia-

bility and Security, pages 804–810. IEEE, 2009.

[28] Michael Bosnjak and Tracy L Tuten. Prepaid and promised incen-

tives in web surveys: An experiment. Social science computer review,

21(2):208–217, 2003.

[29] Richard E. Boyatzis. Transforming Qualitative Information: Thematic

Analysis and Code Development. SAGE, April 1998.

[30] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and

Yannis Smaragdakis. Ethainter: a smart contract security analyzer for

composite vulnerabilities. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation,

pages 454–469, 2020.

[31] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gau-

thier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A

scalable security analysis framework for smart contracts. arXiv preprint

arXiv:1809.03981, 2018.

[32] G. Canfora, A. Di Sorbo, S. Laudanna, A. Vacca, and C. A. Visag-

gio. Profiling gas leaks in solidity smart contracts. arXiv preprint

arXiv:2008.05449, 2020.

[33] Justin Cappos, Yanyan Zhuang, Daniela Oliveira, Marissa Rosenthal,

and Kuo-Chuan Yeh. Vulnerabilities as blind spots in developer’s

heuristic-based decision-making processes. In Proceedings of the 2014

New Security Paradigms Workshop, pages 53–62, 2014.

[34] S. Chaliasos, M. A. Charalambous, L. Zhou, R. Galanopoulou, A. Ger-

vais, D. Mitropoulos, and B. Livshits. Smart contract and defi security:

Insights from tool evaluations and practitioner surveys. arXiv preprint

arXiv:2304.02981., 2023.

[35] J. Chen, X. Xia, D. Lo, and J Grundy. Why do smart contracts self-

destruct? investigating the selfdestruct function on ethereum. ACM

Transactions on Software Engineering and Methodology, 2021.

[36] J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang. Maintenance-related

concerns for post-deployed ethereum smart contract development: is-

sues, techniques, and future challenges. Empirical Software Engineer-

ing, 2021.

[37] Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan Huang, and Zibin

Zheng. Understanding code reuse in smart contracts. In 2021 IEEE

International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 470–479. IEEE, 2021.

[38] Zhiyang Chen, Sidi Mohamed Beillahi, and Fan Long. Flashsyn: Flash

loan attack synthesis via counter example driven approximation. arXiv

preprint arXiv:2206.10708, 2022.

[39] Maria Christakis and Christian Bird. What developers want and need

from program analysis: an empirical study. In Proceedings of the 31st

IEEE/ACM international conference on automated software engineer-

ing, pages 332–343, 2016.

[40] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, and Brad A My-

ers. Smarter smart contract development tools. In 2019 IEEE/ACM 2nd

International Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB), pages 48–51. IEEE, 2019.

[41] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,

Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Fron-

trunning in decentralized exchanges, miner extractable value, and con-

sensus instability. In 2020 IEEE Symposium on Security and Privacy

(SP), pages 910–927. IEEE, 2020.

[42] Chris Dannen. Bridging the blockchain knowledge gap. In Introducing

Ethereum and solidity, pages 1–20. Springer, 2017.

[43] Giuseppe Destefanis, Michele Marchesi, Marco Ortu, Roberto Tonelli,

Andrea Bracciali, and Robert Hierons. Smart contracts vulnerabilities:

a call for blockchain software engineering? In 2018 International

Workshop on Blockchain Oriented Software Engineering (IWBOSE),

pages 19–25. IEEE, 2018.

[44] Ardit Dika. Ethereum smart contracts: Security vulnerabilities and

security tools. Master’s thesis, NTNU, 2017.

2558 32nd USENIX Security Symposium USENIX Association

https://ethereum.org/en/developers/docs/evm/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/enzymefinance/oyente
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ConsenSys/surya
https://github.com/ConsenSys/mythril
https://github.com/trufflesuite
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://fortune.com/2016/06/18/blockchain-vc-fund-hacked/4
https://fortune.com/2016/06/18/blockchain-vc-fund-hacked/4
https://0x.org/docs/guides
https://blocksecteam.medium.com/deposit-less-get-more-ycredit-attack-details-f589f71674c3
https://blocksecteam.medium.com/deposit-less-get-more-ycredit-attack-details-f589f71674c3
https://etherscan.io/directory/Smart_Contracts
https://etherscan.io/directory/Smart_Contracts
 https://solidity-by-example.org/hacks/front-running/
 https://solidity-by-example.org/hacks/front-running/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://openzeppelin.com/contracts/
https://owasp.org/www-project-security-knowledge-framework/
https://csrc.nist.gov/Projects/ssdf
https://csrc.nist.gov/Projects/ssdf
https://defipulse.com/
https://swcregistry.io/
https://github.com/protofire/solhint

[45] Wenliang Du. The SEED project: Providing hands-on lab exercises for

computer security education. In IEEE Security and Privacy Magazine,

September/October, 2011.

[46] Wesley Egbertsen, Gerdinand Hardeman, Maarten van den Hoven, Gert

van der Kolk, and Arthur van Rijsewijk. Replacing paper contracts

with ethereum smart contracts. Semantic Scholar, 35, 2016.

[47] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-

bone protocol with chains of variable difficulty. In Annual International

Cryptology Conference, pages 291–323. Springer, 2017.

[48] David Gerard. Attack of the 50 foot blockchain: Bitcoin, blockchain,

Ethereum & smart contracts. David Gerard, 2017.

[49] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stran-

sky, Sebastian Möller, Yasemin Acar, and Sascha Fahl. Developers

deserve security warnings, too: On the effect of integrated security

advice on cryptographic {API} misuse. In Fourteenth Symposium on

Usable Privacy and Security ({SOUPS} 2018), pages 265–281, 2018.

[50] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard

Scholz, and Yannis Smaragdakis. Madmax: Surviving out-of-gas con-

ditions in ethereum smart contracts. Proceedings of the ACM on Pro-

gramming Languages, 2(OOPSLA):1–27, 2018.

[51] Matthew Green and Matthew Smith. Developers are not the enemy!:

The need for usable security apis. IEEE Security & Privacy, 14(5):40–

46, 2016.

[52] P. Hartel, I. Homoliak, and D. Reijsbergen. An empirical study into the

success of listed smart contracts in ethereum. IEEE Access, 2019.

[53] Dirk Heerwegh. An investigation of the effect of lotteries on web

survey response rates. Field Methods, 18(2):205–220, 2006.

[54] Gary Hsieh and Rafał Kocielnik. You get who you pay for: The im-

pact of incentives on participation bias. In Proceedings of the 19th

ACM conference on computer-supported cooperative work & social

computing, pages 823–835, 2016.

[55] Yongfeng Huang, Yiyang Bian, Renpu Li, J Leon Zhao, and Peizhong

Shi. Smart contract security: A software lifecycle perspective. IEEE

Access, 7:150184–150202, 2019.

[56] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart con-

tracts for vulnerability detection. In 2018 33rd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages

259–269. IEEE, 2018.

[57] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. Why don’t software developers use static analysis tools

to find bugs? In 2013 35th International Conference on Software

Engineering (ICSE), pages 672–681. IEEE, 2013.

[58] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:

Analyzing safety of smart contracts. In Ndss, pages 1–12, 2018.

[59] N. Kannengießer, S. Lins, C. Sander, K. Winter, H. Frey, and A. Sun-

yaev. Challenges and common solutions in smart contract development.

IEEE Transactions on Software Engineering, 2021.

[60] James C King. Symbolic execution and program testing. Communica-

tions of the ACM, 19(7):385–394, 1976.

[61] Jerold S Laguilles, Elizabeth A Williams, and Daniel B Saunders. Can

lottery incentives boost web survey response rates? findings from four

experiments. Research in Higher Education, 52(5):537–553, 2011.

[62] Enmei Lai and Wenjun Luo. Static analysis of integer overflow of smart

contracts in ethereum. In Proceedings of the 2020 4th International

Conference on Cryptography, Security and Privacy, pages 110–115,

2020.

[63] JIANG P LI XQ, T CHEN, et al. A survey on the security of blockchain

systems. Future Generation Computer Systems, 2018.

[64] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas

Hobor. Making smart contracts smarter. In Proceedings of the 2016

ACM SIGSAC conference on computer and communications security,

pages 254–269, 2016.

[65] Daniel Macrinici, Cristian Cartofeanu, and Shang Gao. Smart contract

applications within blockchain technology: A systematic mapping

study. Telematics and Informatics, 35(8):2337–2354, 2018.

[66] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia

medica, 22(3):276–282, 2012.

[67] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, El-

gar Gong, Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and Marek

Laskowski. Understanding a revolutionary and flawed grand experi-

ment in blockchain: the dao attack. Journal of Cases on Information

Technology (JCIT), 21(1):19–32, 2019.

[68] Alexander Mense and Markus Flatscher. Security vulnerabilities in

ethereum smart contracts. In Proceedings of the 20th International

Conference on Information Integration and Web-Based Applications &

Services, pages 375–380, 2018.

[69] M. Möhring, B. Keller, R. Schmidt, A. L. Rippin, J. Schulz, and

K. Brückner. Empirical insights in the current development of smart

contracts. PACIS, 2018.

[70] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Her-

zog, Sergej Dechand, and Matthew Smith. Why do developers get

password storage wrong? a qualitative usability study. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 311–328, 2017.

[71] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

Satoshi Nakamoto Institute, 2008.

[72] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

manubot. Tech. Rep., 2019.

[73] Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh,

Justin Cappos, and Yanyan Zhuang. It’s the psychology stupid: how

heuristics explain software vulnerabilities and how priming can illu-

minate developer’s blind spots. In Proceedings of the 30th Annual

Computer Security Applications Conference, pages 296–305, 2014.

[74] Reza M. Parizi, Amritraj, and Ali Dehghantanha. Smart Contract

Programming Languages on Blockchains: An Empirical Evaluation of

Usability and Security. In Shiping Chen, Harry Wang, and Liang-Jie

Zhang, editors, Blockchain – ICBC 2018, Lecture Notes in Computer

Science, pages 75–91, Cham, 2018. Springer International Publishing.

[75] Reza M Parizi, Ali Dehghantanha, et al. Smart contract programming

languages on blockchains: An empirical evaluation of usability and

security. In International Conference on Blockchain, pages 75–91.

Springer, 2018.

[76] Daniel Perez and Ben Livshits. Smart contract vulnerabilities: Vulnera-

ble does not imply exploited. In 30th {USENIX} Security Symposium

({USENIX} Security 21), 2021.

[77] Daniel Perez and Benjamin Livshits. Smart contract vulnerabilities:

Does anyone care. arXiv preprint arXiv:1902.06710, pages 1–15, 2019.

[78] Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko. Developer-

centered security and the symmetry of ignorance. In Proceedings of

the 2017 New Security Paradigms Workshop, pages 46–56, 2017.

[79] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin

Doss. Security analysis methods on ethereum smart contract vulnera-

bilities: a survey. arXiv preprint arXiv:1908.08605, 2019.

[80] Petri Puhakainen and Mikko Siponen. Improving employees’ compli-

ance through information systems security training: an action research

study. MIS quarterly, pages 757–778, 2010.

[81] Jamie Redman. Flash Loan Attacks Drain 2 Binance Smart Chain Defi

Projects for $6 Million, May 2021.

[82] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract:

Attacks and protections. IEEE Access, 8:24416–24427, 2020.

[83] Jinshan Shi, Ru Li, and Wenhan Hou. A mechanism to resolve the

unauthorized access vulnerability caused by permission delegation in

blockchain-based access control. IEEE Access, 8:156027–156042,

2020.

USENIX Association 32nd USENIX Security Symposium 2559

[84] C. Sillaber, B. Waltl, H. Treiblmaier, U. Gallersdörfer, and M. Felderer.

Laying the foundation for smart contract development: an integrated

engineering process model. Information Systems and e-Business Man-

agement, 2021.

[85] Emin Gün Sirer. Thoughts on the dao hack. Retrieved February,

18:2020, 2016.

[86] Neville A Stanton. Hierarchical task analysis: Developments, applica-

tions, and extensions. Applied ergonomics, 37(1):55–79, 2006.

[87] Tyler W Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emer-

son Murphy-Hill. What questions remain? an examination of how

developers understand an interactive static analysis tool. In Twelfth

Symposium on Usable Privacy and Security (SOUPS 2016), 2016.

[88] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil

Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:

Static analysis of ethereum smart contracts. In Proceedings of the 1st

International Workshop on Emerging Trends in Software Engineering

for Blockchain, pages 9–16, 2018.

[89] Kennedy A Torkura, Muhammad IH Sukmana, Feng Cheng, and

Christoph Meinel. Continuous auditing and threat detection in multi-

cloud infrastructure. Computers & Security, 102:102124, 2021.

[90] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Buenzli, and Martin Vechev. Securify: Practical security anal-

ysis of smart contracts. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, pages 67–82,

2018.

[91] Tracy L Tuten, Mirta Galesic, and Michael Bosnjak. Effects of im-

mediate versus delayed notification of prize draw results on response

behavior in web surveys: An experiment. Social Science Computer

Review, 22(3):377–384, 2004.

[92] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu

Yang. Smart contract security: a practitioners’ perspective. In 2021

IEEE/ACM 43rd International Conference on Software Engineering

(ICSE), pages 1410–1422. IEEE, 2021.

[93] Jim Witschey, Shundan Xiao, and Emerson Murphy-Hill. Technical

and personal factors influencing developers’ adoption of security tools.

In Proceedings of the 2014 ACM Workshop on Security Information

Workers, pages 23–26, 2014.

[94] Gavin Wood et al. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum project yellow paper, 151(2014):1–32,

2014.

[95] Glenn Wurster and Paul C Van Oorschot. The developer is the enemy.

In Proceedings of the 2008 New Security Paradigms Workshop, pages

89–97, 2008.

[96] Jing Xie, Heather Richter Lipford, and Bill Chu. Why do programmers

make security errors? In 2011 IEEE symposium on visual languages

and human-centric computing (VL/HCC), pages 161–164. IEEE, 2011.

[97] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le,

Xin Xia, Yang Feng, Zhenyu Chen, and Baowen Xu. Smart contract

development: Challenges and opportunities. IEEE Transactions on

Software Engineering, 47(10):2084–2106, 2019.

A Pilot Study Results

We conducted a pilot study with 4 smart contract developers to

test our study design including interview questions and code

review tasks. For the code review task, first we implemented

five smart contracts, each including one common smart con-

tract security vulnerability (e.g., reentrancy, under/overflow,

access control). We present details of these smart contracts in

Section 3.1.4.

First round pilot. In the first two pilot sessions, we had

participants who were doctoral student researchers in the

blockchain and smart contract security area. For second part

of study (code review tasks), we asked pilot participants to

review three contracts (10 minutes for each task), but they

suggested that reviewing one contract with common func-

tionalities would be more realistic and comprehensive. They

also noted that the time allowed for review was too tight and

that code review takes effort and can be distracting without

a realistic contract. Therefore, we created two basic smart

contracts based on ERC20 token standard, which have basic

functionalities to transfer tokens as well as allow tokens to

be approved so they can be spent by another on-chain party.

ERC20 is the most common token standard on Ethereum and

should be familiar to smart contract developers. The length

of smart contract code varies significantly: some library/in-

terface code can be 20 lines, while other more complicated

contracts (e.g., Uniswap router code) can be several hundreds

of lines. Practically, to fit into the time frame of our study, the

code cannot be too long. Therefore, our 2 newly created smart

contracts contain 80 lines of code on average. We chose an

average of 80 lines of code based on this 1st round of pilot,

which was sufficient to contain common vulnerabilities in the

ERC20 form. We then embedded at least two common smart

contract security vulnerabilities in each contract.

Second round pilot. To test the updated study materials, we

had a second round of pilot with another two participants who

were blockchain researchers/developers. The estimated time

for the interview session was 30 minutes and 25 minutes for

code review tasks and 5 minutes for exit interview. Specif-

ically, we gave them 20 minutes to review the code (each

participant was assigned only one task). They were asked

to: a) review the contract code; b) update the code if neces-

sary; c) can search for any resources online during the task.

In addition, we gave them 5 minutes to discuss the area of

improvement and their rationale after the task. They made

suggestions on the interview questions. For instance, they sug-

gested that we add questions to understand what role(s) the

participant played in their smart contract projects. Therefore,

we added questions to learn: a) what types of role they play

in smart contract projects, and b) if they have any experience

in deploying smart contracts in a production system or main-

net/testnet. They thought the smart contracts for review were

good, but suggested making them ready to go compile from

GitHub, which we did in the final study.

B Participants

Phase 1: interviews/code review sessions. We had a total of

29 interviewees (24 male, 5 female). Table 1 summarizes our

interviewee demographics. More than one-third of our inter-

viewees were from the US, and the rest were from many other

countries, including India, China, Australia, Ghana, Egypt,

Iran, UK, Canada, Germany, New Zealand, and Greece. They

2560 32nd USENIX Security Symposium USENIX Association

all had experience with smart contract development albeit

with different years of experience. Specifically, 10 intervie-

wees had less than one year of experience, another 10 had

1-3 years of experience, and nine had +3 years of experience.

Our interviewees included 14 full-time DeFi smart contract

practitioners, three freelance smart contract developers, three

software developers mainly worked in other domains, eight

college/graduate students, and one professor.

Phase 2: online survey. We had a total of 171 valid re-

sponses for our online survey. 69% were male and 31% were

female. 93% of them had at least some college education. In

terms of their years of experiences in smart contract develop-

ment, 66.7% of them had +3 years, followed by 25.7% with

1-3 years and 7.6% with up to one year. The majority of them

(79%) worked full-time in the crypto/blockchain industry.

They all had experience with smart contract development but

their main role varied. 44% was employed mainly for smart

contract protocol development, followed by 35% in smart

contract development, and 13% in smart contract research

and security assessment.

C Programming & Development Background

Information resources used for smart contract develop-

ment. Our interviewees (n=29) mentioned a number of infor-

mation resources that they used for smart contract develop-

ment. Common sources are Solidity documentation (34%),

Google search (31%), Stack Overflow (17%), YouTube (14%),

as well as documents published by the Ethereum Foundation

(14%), OpenZeppelin [15] (14%), and ConsenSys [2] (14%).

Our survey respondents (n=171) reported using similar re-

sources such as, Google search (55%), Solidity documentation

(43%), and OpenZeppelin (32%).

Tools for smart contract development. Our interviewees

mentioned several tools that they used to develop, deploy,

and test their smart contracts. Most frequently mentioned

tools included: Truffle (76%), Remix (55%), Ganache (38%),

HardHat(34%), and Waffle (21%). Our survey results were

largely similar: Remix (43%), VS Code (38%), HardHat

(35%), Ganache (34%), Geth (28%), and Truffle (17%). .

Remix was one of the top tools in both studies.

Reusing other project code. Using existing code is a com-

mon practice mentioned by our interview and survey partici-

pants. 52% (15) of our interviewees with various years of ex-

periences talked about using code from open source libraries

such as OpenZepplin, a popular implementation of the ERC-

20 and other ERC standards. 38% of our survey respondents

reported using existing library code such as OpenZepplin, the

Smartdev-contract library, Solmate, ethers-rs, ZKcontract and

ConsenSys libraries.

Experience in code review. 76% of our interviewees had

Solidity code review experiences. Some conducted code re-

view by pen and paper (P1, P6, P20, P25), others used auto-

mated test scripts/tools (e.g., OpenZepplin ERC20 library)

ID Gender Country Occupation Year(s) Exp.

P1 Male USA Developer, DeFi Company <1

P2 Female USA Developer, DeFi Company 2

P3 Male USA Masters Student, CSE <1

P4 Male Australia Researcher, DeFi Company <1

P5 Male India Bachelors student, CSE <1

P6 Male USA PhD Student, CSE 5+

P7 Female USA Masters Student, CSE <1

P8 Male Ghana Freelance Smart Contract Dev 4

P9 Male USA Professor, CSE <1

P10 Male USA Developer, DeFi Company 4+

P11 Female China Dev, DeFi Company 2

P12 Female Egypt Freelance Smart Contract Dev 4.5

P13 Male Iran Software Developer 4

P14 Male UK Co-Founder,dev, DeFi Company 3

P15 Male India Software Developer 2

P16 Male India Freelance Smart Contract Dev <1

P17 Male India Software Developer 2

P18 Male USA Dev, Defi Company 2.5

P19 Male USA CTO, DeFi Company 3+

P20 Male USA Bachelor Student, CSE <1

P21 Male India Bachelor Student 2.5

P22 Male Germany PhD Student, CSE 3.5

P23 Male Australia Developer, DeFi Industry 2

P24 Female Canada PhD Student, CSE <1

P25 Male Greece Developer and Researcher 3

P26 Male Germany Developer, DeFi Industry 3

P27 Male Canada Developer, DeFi Industry 4+

P28 Male USA Developer, De-Fi Industry <1

P29 Male New Zealand Developer, DeFi Industry 4

Table 1: Participant demographics and background.

for code review (P2, P24, P26, P27), and some used both tech-

niques (P14, P19, P24, P26). Among the seven interviewees

who did not have code review experience in Solidity, three

of them had code review experience in other languages, such

as Python (P3), RUST (P8) and Golang (P22). Four intervie-

wees (P4, P5, P13, P17) did not have any prior code review

experience in any language. 72% of survey respondents did

Solidity code review before. About 13.5% of all survey re-

spondents mentioned having code review experience in other

languages, including, Python, Rust, and Java.

Takeaways 1: Most participants mentioned using code

from existing open-source libraries for smart contract de-

velopment and conducting smart contract code reviews.

D Tables

USENIX Association 32nd USENIX Security Symposium 2561

Table 2: Vulnerabilities in code review tasks as well as effective strategies to address these vulnerabilities. The 1st-4th vulnerabil-

ities were used in the interview study, and the 5-6th vulnerabilities were added in the online survey (see details in Section 3.2.1).

Vulnerability Description Possible Prevention Technique

1. Reentrancy Calling external contracts is that they can take over the

control flow, and make changes to the data that the calling

function is not expecting.

Make sure it does not call an external func-

tion or use the Checks-Effects-Interactions

pattern.

2. Unchecked Low-Level

Calls

This can lead to unexpected behaviour and break the pro-

gram logic. A failed call can even be caused by an attacker,

who may be able to further exploit the application

Ensure to handle the possibility that the call

will fail by checking the return value.

3. Integer Overflow An integer overflow occurs when an arithmetic operation

attempts to create a numeric value that is outside of the

range

Use of vetted safe math libraries for arith-

metic operations consistently throughout

the smart contract system.

4. Improper Access Control Exposing initialization functions by wrongly naming a

function intended to be a constructor, the constructor code

ends up in the runtime byte code and can be called by

anyone to re-initialize the contract.

Implement controls so withdrawals can

only be triggered by authorized parties or

according to the specs of the smart contract

system.

5. Front-running In a decentralized exchange where a buy order transaction

can be seen, and a second buy order by bad actors (e.g.,

malicious miners) with higher gas price can be executed

before the first transaction. The buy price is now higher

for the original buyer.

Remove the benefit of front-running, use a

pre-commit scheme, specify an acceptable

price range on a trade

6. Flash loans Bad actors take out a flash loan from a decentralized

lending protocol, uses the borrowed funds to manipulate

the price of a crypto asset on one exchange, and then make

huge profits by transacting the crypto asset on another

exchange if they have a price difference (i.e., arbitrage

opportunities).

Limit the amount that can be borrowed in a

single flash loan, use a time delay in price

oracle or a pre-commit scheme in decen-

tralized exchanges or lending protocols

2562 32nd USENIX Security Symposium USENIX Association

	Introduction
	Related Work
	Blockchains and Smart Contracts
	Software Development Practices
	Smart Contract Development Practices
	Characteristics of Smart Contract Development
	Empirical Research of Smart Contract Developers
	Smart Contract Security Methods/Tools

	Method
	Interview Study
	Participant Recruitment
	Pilot study
	Initial Interviews
	Smart Contract Code Review Task
	Exit Interview
	Data Collection and Analysis

	Online Survey
	Survey Design
	Survey Data Analysis

	Findings
	Participants
	Perceptions of Smart Contract Security
	Security was not a priority
	What makes smart contract security hard?

	Practices of Smart Contract Security
	Smart contract security strategies
	Use of smart contract security tools
	Limitations of smart contract security tools

	Smart Contract Code Review Tasks
	Performance of identifying security vulnerabilities
	Longer experiences in smart contract development positively associated with better task performance
	Different approaches to code review
	Code modifications for improvement
	False positives

	Discussion
	Summary of Major Findings
	Smart Contract Security vs Traditional Software Security
	Implications for Smart Contract Security
	Education & Standards
	System/Tool Design
	User interfaces & user experience

	Limitations and Future Research

	Conclusion
	Pilot Study Results
	Participants
	Programming & Development Background
	Tables

