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Abstract
Auditing mechanisms for differential privacy use proba-

bilistic means to empirically estimate the privacy level of an
algorithm. For private machine learning, existing auditing
mechanisms are tight: the empirical privacy estimate (nearly)
matches the algorithm’s provable privacy guarantee. But these
auditing techniques suffer from two limitations. First, they
only give tight estimates under implausible worst-case as-
sumptions (e.g., a fully adversarial dataset). Second, they
require thousands or millions of training runs to produce non-
trivial statistical estimates of the privacy leakage.

This work addresses both issues. We design an improved
auditing scheme that yields tight privacy estimates for natural
(not adversarially crafted) datasets—if the adversary can see
all model updates during training. Prior auditing works rely on
the same assumption, which is permitted under the standard
differential privacy threat model. This threat model is also
applicable, e.g., in federated learning settings. Moreover, our
auditing scheme requires only two training runs (instead of
thousands) to produce tight privacy estimates, by adapting
recent advances in tight composition theorems for differential
privacy. We demonstrate the utility of our improved auditing
schemes by surfacing implementation bugs in private machine
learning code that eluded prior auditing techniques.

1 Introduction

Training ML models with stochastic gradient descent (SGD)
is not a privacy-preserving function. There is ample evidence
that private information from training data can be inferred
by observing model parameters trained with SGD or other
optimizers [4, 6, 8, 23, 25, 33]. There is also substantial ev-
idence that this privacy risk increases with the number of
model parameters [7, 13], a worrying fact given we are now
firmly in the age of large models with hundreds of billions of
parameters.

Fortunately, we can train models with differential privacy
(DP) guarantees [2, 12], which provably upper bounds any

privacy leakage of the training data. Private training typically
uses a variant of SGD referred to as Differentially Private
Stochastic Gradient Descent (DP-SGD). DP-SGD’s analysis
has been conjectured to be overly conservative, and to provide
a provable guarantee on privacy leakage that overestimates
the leakage in practice [15]. Nasr et al. [24] partially refuted
this conjecture by showing that DP-SGD’s analysis gives a
tight estimate of the empirical privacy leakage in some worst-
case regimes (that fall under the DP threat model). However,
their tightness result only holds in a narrow and very strong
adversarial model, where the adversary chooses the entire
training dataset. This leads to a natural follow-up question:

Q1: Is DP-SGD’s privacy analysis only tight for worst-
case datasets?

A further limitation of the approach of Nasr et al.—and
other techniques for auditing DP-SGD [14, 19, 35]—is the
computational overhead. Differential privacy is a probabilistic
guarantee, and so empirically estimating an algorithm’s pri-
vacy requires computing tight probability estimates of certain
events. Existing auditing techniques do this by running the
training algorithm thousands of times—which is prohibitively
expensive for large models that can cost millions of dollars to
train even once. Our second question is thus:

Q2: Can DP-SGD’s privacy leakage be tightly estimated
with a small number of training runs?

In this work, we design a new auditing scheme for DP-SGD
that resolves Q1 and Q2. Our scheme provides much tighter
empirical privacy estimates compared to prior work [14, 19,
24, 35], which match the provable privacy leakage obtained
from DP-SGD’s analysis even for non-adversarially-chosen
training datasets. We further design methods to reduce the
number of models that need to be trained for auditing, from
tens of thousands to just two. Despite this massive reduction
in computational overhead, our empirical privacy estimates
remain tight.

Our improvements over prior auditing approaches stem
from a fairly simple insight. We observe that existing auditing
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techniques are universal: they make no assumption about the
privacy mechanism. We show that “opening the black box”
and tailoring our scheme to the specific privacy mechanisms
used in DP-SGD results in much tighter empirical privacy esti-
mates and with significantly fewer observations (i.e., training
runs). Intuitively, (ε,δ)-DP—the standard formulation of DP
used in DP-SGD analysis—is concerned with outcomes that
have probability O(δ) and, thus, we need many training runs
to observe such outcomes even once. However, we can make
inferences about these rare outcomes from common outcomes
by leveraging our knowledge about the privacy mechanism.
As an analogy, if we know that data follows a Gaussian distri-
bution, then we could estimate the mean and variance from
a few samples, and make inferences about the tails of the
distribution without ever observing those tails. At a technical
level, we adapt existing DP auditing techniques to Gaussian
DP and functional DP [11] which provide a more fine-grained
characterisation of the privacy leakage for specific mecha-
nisms. We also verify experimentally that our results agree
with existing auditing techniques [24, 35] after sufficiently
many training runs.

Our improved auditing scheme enables new applications.
First, our tight characterization of the empirical privacy leak-
age of DP-SGD unlocks the ability to directly inspect the
impact of various model and training design choices on pri-
vacy. We explore how different choices of hyperparameters,
model architecture, and the assumed attacker model impact
DP-SGD’s empirical privacy leakage.

Second, our tight and computationally efficient auditing
enables us to (probabilistically) verify the correctness of DP-
SGD implementations. Indeed, implementing DP-SGD is
notoriously difficult: subtle privacy bugs resulting from in-
correct gradient clipping or noising are common and hard
to detect [1, 27, 28]. Auditing can help detect such errors by
showing that the implementation empirically leaks more in-
formation than it should provably allow. However, existing
auditing tools are either too expensive to run [24], or provide
leakage estimates that are too loose to catch the most perni-
cious errors [28, 35]. We show that our improved auditing
scheme can surface bugs that would not have been captured
by prior methods [14, 19, 24, 35]. We thus encourage develop-
ers of differentially private learning algorithms to incorporate
our auditing tools into their testing pipeline.

2 Background

We begin with a brief background on differential privacy (DP),
private machine learning, and techniques to audit the privacy
guarantees claimed under DP.

2.1 Differential privacy
Differential privacy (DP) has become the gold standard
method for providing algorithmic privacy [12].

Definition 1 ((ε,δ)− Differential Privacy (DP)). An algo-
rithm M is said to be (ε,δ)-DP if for all sets of events
S ⊆ Range(M ) and all neighboring data sets D,D′ ∈ Dn

(where D is the set of all possible data points) that differ in
one sample we have the guarantee:

Pr[M (D) ∈ S]≤ eε Pr[M (D′) ∈ S]+δ (1)

Informally in the context of machine learning, if a training
algorithm M satisfies (ε,δ)-DP then an adversary’s ability to
distinguish if M was run on D or D′ is bounded by eε, and δ

is the probability that this upper bound fails to hold.

Trade-off functions and functional DP. There are other
useful formalisms of DP. For example, functional differential
privacy ( f -DP) [11] originates from a hypothesis testing inter-
pretation of differential privacy [16, 31], where an adversary
aims to distinguish D from D′ given the output of the privacy
mechanism. Although our results will be framed using (ε,δ)-
DP, our auditing framework will operate using functional
DP. Consider the following hypothesis testing problem, given
some machine learning model f :

H0: the model f is drawn from P

H1: the model f is drawn from Q

where P and Q are the probability distributions M (D) and
M (D′), respectively. If M is differentially private, we can de-
rive a bound on an adversary’s power 1−β (i.e. True Positive
Rate or TPR, where β is the False Negative Rate or Type II er-
ror) for this hypothesis test at a significance level α (i.e. False
Positive Rate, FPR, or Type I error). For example, (ε,δ)-DP
upper-bounds the power of this hypothesis test by eεα+δ.

Dong et al. [11] define a trade-off function to capture the
difficulty in distinguishing the two hypotheses above in terms
of the adversary’s type I and type II errors. Consider a rejec-
tion rule 0≤ φ( f )≤ 1 that takes as input the model f trained
by the mechanism M , and which outputs a probability that
we should reject the null hypothesis H0. This rejection rule
has type I error αφ = EP[φ] and type II error βφ = 1−EQ[φ],
which gives rise to the following trade-off function:

Definition 2 (Trade-off function [11]). For any two proba-
bility distributions P and Q on the same space define the
trade-off function T (P,Q) : [0,1]−→ [0,1] as

T (P,Q)(α) = inf {βφ : αφ ≤ α} (2)

where the infimum is taken over all rejection rules φ.

The trade-off function completely characterizes the bound-
ary of achievable type II errors at a given significance level α,
and the optimal test is given by the Neyman-Pearson Lemma.
For arbitrary functions f ,g defined on [0,1], we say that f ≥ g
if f (α)≥ g(α) for all α ∈ [0,1]. Then, if T (P,Q)≥ T (P̃, Q̃),
this means the distributions P and Q are harder to distinguish
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than P̃ and Q̃ at any significance level. Thus, a privacy mech-
anism that produces distributions P and Q on neighboring
datasets is strictly more private than one that produces dis-
tributions P̃ and Q̃. Dong et al. [11] introduce the following
formulation of differential privacy using this insight:

Definition 3 ( f -differential privacy ( f -DP)). Let f be a trade-
off function. A mechanism M is f -DP if

T (M (D),M (D′))≥ f (3)

for all neighboring datasets D and D′.

Dong et al. show that (ε,δ)-DP is equivalent to f -DP for
the following trade-off function:

fε,δ(α) = max{0,1−δ− eε
α,e−ε(1−δ−α)} (4)

When the underlying distributions P,Q are Gaussian, we
get a special case of f -DP called Gaussian DP (GDP) [11]:

Definition 4 (µ-Gaussian Differential Privacy (µ-GDP)). A
mechanism M is µ-GDP if

T (M (D),M (D′))(α)≥Φ(Φ−1(1−α)−µ) ,∀α∈ [0,1] (5)

for all neighboring datasets D and D′, where Φ is the standard
normal CDF.

One of the main advantages of GDP is that composition
of differential privacy guarantees becomes simple, the com-
position of two mechanisms following µ1-GDP and µ2-GDP

satisfies µ-GDP with µ =
√

µ2
1 +µ2

2. A final fact that will be
useful throughout the paper is that it is possible to interpret
µ-GDP in terms of (ε,δ)-DP:

Corollary 5 (µ-GDP to (ε,δ)-DP conversion [11]). A mech-
anism is µ-GDP iff it is (ε,δ(ε))-DP for all ε≥ 0, where:

δ(ε) = Φ

(
− ε

µ
+

µ
2

)
− eε

Φ

(
− ε

µ
− µ

2

)
(6)

2.2 Differentially Private Machine Learning

Stochastic gradient descent (SGD) can be made differentially
private through two modifications: clipping individual gradi-
ents to maximum Euclidean norm of C and adding random
noise to the average of a batch of gradients; this algorithm
is commonly referred to as DP-SGD. Intuitively, clipping
bounds the individual contribution any sample can make to
the model parameters, θ, and adding random noise serves
to obfuscate the contributions of any individual example. In
practice the update rule for DP-SGD is given as follows: let
B denote a batch of examples sampled independently from a

dataset D, each with probability q, ` be a loss function, and η

a learning rate, then

θ← θ−η

(
N (0,σ2I)+

1
|B| ∑z∈B

clipC (∇θ`(θ,z))

)
(7)

where clipC(v) projects v onto the `2 ball of radius C with

clipC(v) = v ·min
{

1,
C
‖v‖2

}
.

When we refer to a privatized gradient, we mean the gradi-
ent after it has been clipped, then averaged, and then noised.
To achieve (ε,δ)-DP, typically σ is typically on the order
of Ω(q

√
T log(1/δ)ε−1) [2] where T is the number of gradi-

ent descent iterations, but tighter bounds for a given σ have
been found [11, 18, 21]. Each iteration of DP-SGD satisfies a
particular (ε,δ)-DP guarantee through the subsampled Gaus-
sian Mechanism [2]—a composition of data subsampling
and Gaussian noise addition. Since DP is immune to post-
processing, we can compose this guarantee over multiple
updates to reach a final (ε,δ)-DP guarantee.

Unfortunately, a naive composition—by summing the ε’s
from each iteration—gives values of ε� 104 for accurate
neural networks. This yields a trivial upper bound of ≈ 1
on the true positive rate for the hypothesis testing problem
discussed in Section 2.1, for any reasonable value of α. Such
a large ε thus does not guarantee any meaningful privacy.
As a result, many works have proposed more sophisticated
methods for analyzing the composition of DP-SGD iterations,
which can prove much tighter values of ε < 10 for the same
algorithm [2, 11, 18, 21].

2.3 Auditing DP-SGD
Any differentially private algorithm M bounds an adversary’s
ability to infer if M was trained with D or D′. Kairouz et
al. [16] show that if M is (ε,δ)-DP then it defines a privacy
region (a bound on an attacker’s TPR and FPR) given by

R (ε,δ) = {(α,β) | α+ eε
β≥ 1−δ∧ eε

α+β≥ 1−δ ∧
α+ eε

β≤ eε +δ∧ eε
α+β≤ eε +δ}

(8)

In other words, an (ε,δ)-DP algorithm implies a valid re-
gion for the type I (α) and type II (β) error of any test.

The goal of a privacy audit is to design a hypothesis test
that distinguishes D from D′ while minimizing α and β. Then,
we can compute the privacy budget ε, for any fixed value
of δ, using Equation (8) (or as we will see later, via other
means). In practice, for many interesting differentially private
algorithms including DP-SGD, one cannot compute the min-
imum possible values of α and β in closed form, and so we
must rely on empirical estimates. This is done by designing
a distinguisher that predicts if mechanism M operated on D
or D′. We then run the distinguishing experiment multiple
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times (i.e., by running M multiple times to train a model on
a random choice of D or D′), collect these observations, and
compute empirical lower and upper bounds α ∈ (α, ᾱ) and
β ∈ (β, β̄) using a binomial proportion confidence interval,
where the α and ᾱ are lower and upper bound on type I (α)
and β and β̄ are lower and upper bound on type II (β) error.
Nasr et al. [24] use the Clopper-Pearson method to find ᾱ and
β̄. Clopper-Pearson method is a procedure used for calculat-
ing the exact confidence intervals for a binomial proportion.
This method does not rely on approximations like the normal
approximation, which can be unrealistic in many cases. Using
the lower and upper bound Nasr et al. [24] ultimately derived
an empirical lower bound to ε by appealing to Equation (8)
and noting that

ε
lower
emp = max

{
ln
(

1− ᾱ−δ

β̄

)
, ln
(

1− β̄−δ

ᾱ

)
,0
}

(9)

The lower bound εlower
emp comes with an empirical level of

confidence through the confidence level for ᾱ and β̄. Unfor-
tunately, a high level of confidence in εlower

emp often requires
thousands or millions of observations.

The adversary is also free to design D and D′ = D∪{z} in
any way they choose, because the privacy guarantee of DP
must hold for any pair of neighboring datasets. The goal of
the auditor/adversary is thus to design D and z in such a way
that it is easy to design a distinguisher for M (D) and M (D′).

Nasr et al. [24] showed that εlower
emp is close to the upper

bound ε output by a DP accounting mechanism when D = /0

and so the model is trained on either zero points, or one point
z. That is, they designed a test where α and β are minimized
under this setting. In summary, this auditing mechanism has
shown that current DP accounting methods are nearly tight [2,
11, 18, 21], by showing that the lower bounds for ε one can
find through a statistical test are close to the upper bound for ε

given by DP accounting. The drawback of this analysis is that
it only demonstrates the analysis is tight with a worst-case
dataset, D = /0, and to show this it is necessary to train the
model thousands of times in order to find non-trivial lower
bounds εlower

emp .
Zanella-Béguelin et al. [35] propose a refined Bayesian

approach to finding an empirical lower bound for ε through
a non-informative prior on (α,β). Specifically, they define a
lower bound for ε as

ε = sup{ε ∈ R>0 | (α,β) /∈ R (ε,δ)} (10)

From here, they define f(α,β) to be the density function of
the posterior joint distribution of (α,β) given the observed
trials (found through training on M (D) and M (D′) multiple
times). A 100(1-γ)% credible interval [ε, ε̄] is then defined as

ε = argmax
ε

∫ ∫
R (ε,δ)

f(α,β)(x,y)dxdy≤ γ

2

ε̄ = argmin
ε

∫ ∫
R (ε,δ)

f(α,β)(x,y)dxdy≥ 1− γ

2

(11)

There are number of subtle assumptions made in this ap-
proach which require unpacking. Equation (11) cannot be
evaluated in closed form, and so we must approximate it,
and it is not clear how this approximation translates into
a statistically sound lower bound. Moreover, the compari-
son between bounds found through this method and through
Clopper-Pearson may be slightly unfair, as they are distinct
statements about uncertainty of an estimate. Nevertheless,
Zanella-Béguelin et al. [35] show that their method dramati-
cally improves the tightness of the lower bound estimate for ε

in practice. Thus, the number of training runs needed for the
audit is also significantly reduced.

In other recent work, Lu et al. [19] compute an ε lower
bound by replacing the Clopper-Pearson method for finding
bounds on (α,β) with the Katz-log confidence interval [17],
which directly bounds the ratio of binomial proportions and
empirically gives tighter estimates for εlower

emp with fewer ob-
servations (i.e. the method requires fewer number of models
that must be trained on D and D′). However, the Katz-log
method gives a confidence bound on the ratio of α to β, and it
is not clear if this is valid for (ε,δ)-DP where the ratio would
change to α−δ

β
. Lu et al. set δ = 0 in their experiments, giv-

ing a lower bound for (ε,0)-DP. Lu et al. also suggest that
empirical privacy leakage is dataset dependent. Our work di-
rectly contradicts this claim; we argue that their observations
were mostly due to using weaker attacks than are permitted
under the DP threat model. By instantiating a more powerful
attack our results in Section 6 show that the empirical privacy
leakage is close to the theoretical ε across a range of datasets.

While many recent works focus on the DP-SGD. A va-
riety of statistical approaches have been developed to test
simpler differentially private algorithms, primarily to identify
flawed implementations of private algorithms. These methods
offer tools to check if the privacy guarantees claimed by an
algorithm hold in practice.

For instance, StatDP [10] was developed to identify vio-
lations of ε-DP in the sparse vector algorithm. Further im-
provements to StatDP were provided by DP-Sniper [5], which
catered to similar algorithms, like the sparse vector technique
and local differentially private algorithms. DP-Sniper is es-
sentially an advanced testing framework designed to uncover
violations in the privacy promises of the algorithms being
tested. CheckDP [30] offers another approach. It provides
a code analysis-based tool to either prove or generate coun-
terexamples to a variety of algorithms, including the sparse
vector algorithm. This methodology allows researchers and
practitioners to check the validity of their privacy-preserving
algorithms in a more systematic way. Wang et al. [29] re-
cently leveraged auditing estimates to convert them to formal
guarantees.

We note that throughout this work we use the terms trainer,
auditor, and attacker interchangeably. The party that audits
the model takes on the role of an attacker to measure the em-
pirical privacy leakage, and this involves training the model.
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3 Motivation & Threat Model

The goal of our work is to improve the efficiency of empirical
privacy estimation. This allows us to study the gap between
theoretical and practical privacy bounds. And, as a practical
application, auditing methods can be used to validate the
correctness of a DP implementation.

Our empirical privacy estimates depend upon the specific
threat model we instantiate the test within, and assumptions
we place on the adversary. Nasr et al. [24] describe several
threat models and settings for auditing machine learning with
differential privacy. We similarly study multiple threat models,
as there is inevitably a trade-off between the power of the
audit (with a powerful adversary) and generalizability of the
audit to practical machine learning applications (where the
assumptions we make to instantiate a powerful adversary may
be unrealistic). We focus on three threat models in decreasing
order of attack power.

White-box access with gradient canaries: This is the
main threat model considered by the DP-SGD theoretical
analysis, and matches the (implicit) threat model assumed by
DP. The adversary has access to the privatized gradient and
model parameters in every update step and can choose an ar-
bitrary gradient at each update step [4], which we refer to as a
canary gradient. This canary gradient then gets included into
the update with probability q. This mimics an adversary who
has access to all aspects of training other than the randomness
used in noise addition and batch selection (i.e., the knowledge
of when z was used in training, where D′ = D∪{z}).

White-box access with input-space canaries: The threat
model above assumes the adversary can choose an arbitrary
gradient that is sampled into a batch of updates. This may
be an unrealistic capability for an adversary in practice. Our
second threat model removes this assumption, and instead
allows adversaries access to intermediate updates, but restricts
them to choose an arbitrary training sample (from which
gradients are subsequently computed), rather than the ability
to choose a gradient directly. We refer to the training sample
chosen for each update step as the canary sample. This setting
matches the threat model of federated learning particularly
well, where an adversary can access model updates but may
not always have the ability to insert arbitrary gradients into
the training pipeline.

Black-box access: One of the most restrictive threat models
to conduct audits on is that of an adversary who can only
insert a training example at the beginning of training, and
observe the model after it has completed training. In other
words, the adversary does not get to observe or influence
intermediate model updates. While this is the most restrictive
setting from an adversarial perspective, it is perhaps the most

realistic from a practical standpoint. We stress that this threat
model is not the typical setting analyzed in DP, which assumes
intermediate model updates are visible to the adversary. We
choose to evaluate it because it allows us to compare how the
incremental removal of adversarial access to model updates
and gradients affects the tightness of our lower bound for ε.

4 Auditing with f -DP

To audit the privacy of DP-SGD (or other DP mechanisms),
an adversary repeatedly runs a distinguishing attack to infer
if a model’s training set was either D or D′; by measuring
the false positive and false negative rates of the attack we
can bound privacy. All prior work has used (ε,δ)-DP defi-
nition to audit the privacy parameters of the algorithm. The
limitation of this approach is that different differential pri-
vacy mechanisms with identical (ε,δ) guarantees can have
different trade-offs between false positive and false negative
rates, which are upper bounded by the trade-off function of
(ε,δ)-differential privacy. In particular, any (ε,δ)-DP guaran-
tee corresponds to two symmetric supporting linear functions
defining the trade-off between type I and type II errors. How-
ever, any mechanism will have its own “true” trade-off curve
capturing the relationship between the FPR and TPR of the
best possible attack on the mechanism, consisting of the in-
tersection between a collection of (ε,δ(ε))-DP curves where
(ε,δ(ε)) satisfy Corollary 5. While it is possible to audit any
algorithm to lower bound its privacy with an (ε,δ)-DP guar-
antee, we instead use an f -DP guarantee that is as close as
possible to the true trade-off function of the mechanism. By
doing so, we can avoid any looseness that appears in convert-
ing between this f -DP guarantee and its collection of many
(ε,δ)-DP guarantees. It is important to note that our findings
are not limited solely to DP-SGD. They can be applied to
other mechanisms as well. We concentrated on DP-SGD in
this study because it is one of the most commonly used mech-
anisms in this context. However, the principles and strategies
we outlined can certainly be extended and applied to other
relevant mechanisms in the field of differential privacy.

To illustrate this idea, in Figure 1 we plot the trade-off
functions for several different DP mechanisms that all satisfy
(ε,δ)-DP where ε = 1,δ = 10−5. Clearly, the achievable false
positive and false negative rates by an adversary who wants
to audit a (ε,δ)-DP guarantee depends significantly on the
underlying privacy mechanism.

Let us now give a concrete example demonstrating the
benefit of auditing by measuring the privacy region of the pri-
vate mechanism directly, rather than focusing on the privacy
region specified by (ε,δ)-DP. Suppose we want to audit an
instance of the Gaussian mechanism satisfying (1,10−5)-DP;
Figure 2 illustrates the privacy regions of a generic private
mechanism with ε = 1,δ = 10−5 and with a Gaussian mecha-
nism which has an equivalent (ε,δ)-DP guarantee (i.e, µ-GDP
with µ≈ 0.25). Now, if we want to audit the Gaussian mecha-
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Figure 1: Comparison of the trade-of functions for different
DP mechanisms that satisfy (ε,δ)-DP where ε = 1,δ = 10−5.
Note that the trade-off curve for the Random-Response mech-
anism overlaps with (ε,δ)-DP.
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Figure 2: Comparison of the privacy region of (ε,δ)-DP vs
f -DP for the Gaussian mechanism (GDP) with the same ε

budget.

nism by bounding (ε,δ)-DP, our attack needs to have very low
false positive or false negative rates (corresponding to the four
locations where the GDP region and the (ε,δ)-DP region have
tangent borders). As a concrete example, suppose we are au-
diting this Gaussian mechanism (with ε = 1) and we have an
attack that achieves FPR≈ 0.23 and FNR= 1−FPR(e0.3 +δ)
over an infinite number of trials (the red dot in Figure 2). If
we use (ε,δ)-DP to audit this mechanism we get an empir-
ical ε of 0.3, and we might (incorrectly) conclude that our
mechanism is not tight. This is not because our attack is weak,
but rather it is because our attack has a large FNR and no
attack can achieve a lower FNR from the definition of the
Gaussian mechanism (i.e, if an attack can achieve a lower
FNR it violates ∼ 0.25-GDP).

4.1 Lower Bounding f -DP With Clopper-
Pearson

Previous works use Equation (9) which describe the predictive
power of an adversary auditing with (ε,δ)-DP to compute
the privacy parameters from the false positive and negative
rates. However, as we have already seen by appealing to
the hypothesis testing interpretation of DP, the predictive
power of the adversary is by definition equal to the trade-
off function of the privacy mechanism. Therefore, instead of
using Equation (9) to compute the privacy parameters, we can
directly use the trade-off function. Now by upper bounding
the false positive (α) and false negative rates (β) (referred to
as ᾱ, β̄) we can calculate the lower bound on the privacy of
the mechanism. Similar to the previous works [24] we can use
the Clopper-Pearson method to compute the upper bounds on
the attacker errors.

For example, suppose we want to audit the Gaussian mech-
anism. To compute a lower bound on the privacy parameters
of the Gaussian mechanism (i.e, µ), we have:

µlower
emp = Φ

−1(1− ᾱ)−Φ
−1(β̄) (12)

We convert this into a lower bound for ε by noticing that the
lower bound µlower

emp implies an upper bound on the trade-off
function of the mechanism at every α. Such an upper bound
on the trade-off function enables us to use Equation (4) at a
fixed δ, to find the largest lower bound for ε over all α.

Improvement: Nasr et al. [24] showed DP-SGD account-
ing is tight for a worst case dataset (D = /0), assuming the
adversary has white-box access to all iterations of the train-
ing. However, they require many observations to achieve tight
bounds, due to the aforementioned drawbacks of auditing with
(ε,δ)-DP. We re-evaluate this setting using our new approach
of auditing with GDP. In Figure 3, we compare the lower
bounds found through (ε,δ)-DP (Equation (9)) against using
the Gaussian trade-off function and converting the Gaussian
mechanism parameter to (ε,δ)-DP, and we inspect how these
two methods compare as the adversary collects more observa-
tions from which they compute upper bounds ᾱ and β̄. While,
it is possible for (ε,δ)-DP audit to find a lower bound that
is tight to the theoretical value for ε, this is only achieved
when the adversary has 100 million observations. When the
number of the observations is smaller there is a non-trivial
gap between the theoretical bound and the empirical lower
bound. Comparatively, if we use the Gaussian mechanism’s
trade-off function (GDP) to estimate a lower bound on the
privacy parameter µ, and convert this into a bound on ε, we
can achieve a tight estimate even with 1,000 observations.

Approximating the trade off function: While using GDP
to audit can give us a tight lower bound on the estimated pri-
vacy in simple cases, analyzing the privacy cost of a complex
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Figure 3: Comparison of the (ε,δ)-DP definition to audit DP-SGD compared to using f -DP of Gaussian mechanism both
converted in (ε,δ)-DP and lower bounded using Clopper Pearson (20 independent runs, δ = 10−5).

mechanism such as DP-SGD (that needs both sub-sampling
amplification and composition over multiple update steps)
is non-trivial, and the current existing approaches returns
loose privacy estimates for different values of ε. Dong et
al. [11] suggest to use a Central Limit Theorem for DP to
compute a closed form solution, unfortunately, this can lead to
significant underestimation of the privacy cost in general set-
tings [18]. Therefore, to analyze DP-SGD we use an empirical
approach called the “Privacy Loss Distribution (PLD)” [18]
to approximate the trade-off function, which computes a tight
privacy cost of DP-SGD over multiple update steps. We refer
to Koskela et al. [18] for a detailed description of PLD, and
will interact with it as a black-box ε = fM (δ) that for private
mechanism M and a given δ will return the exact theoretical
ε. PLD does not have a closed-form trade-off function, in
Appendix A we explain how we use PLD for auditing. Wang
et al. [29] recently designed a parallalization based approach
for computing PLD which can be used to speed up the PLD
computations specially for settings where δ is very small.

4.2 Lower Bounding f -DP With Bayesian Es-
timation

Recently, Zanella-Béguelin et al. [35] showed it is also pos-
sible to compute credible intervals for ε using a Bayesian
method which can significantly reduce the number of obser-
vations to estimate a tight bound. Here, we show it is possible
to extend their approach to lower bound in f -DP (and then
convert to a lower bound for ε).

Definition 6 (Cumulative Distribution Function of
f (α, .̂)-DP). Let u(FPR,FNR) be the density function of the
joint distribution of (FPR,FNR). The value of cumulative
distribution function of f (α; .̂) evaluated at f (α; .) is:

P̂.(.) =
∫ 1− f (1−α;.)

f (α;.)

∫ 1

0
u(FPR,FNR)(α,β)dαdβ (13)

Using Eq. (13), we can find an empirical lower bound for µ
in µ-GDP, and then convert to a lower bound for (ε,δ)-DP. As
shown by Zanella-Béguelin et al. [35], using the CDF of the

private mechanism parameters given the attack observations
of we can compute credible intervals over ε. As a reminder
Zanella-Béguelin et al. defined u(FPR,FNR) as follows:

u(FPR,FNR)(α,β) :=u(FPR|FP)(α)u(FNR|FN)(β) (14)

=Beta(α;0.5+FN,0.5+N−FN)×
Beta(β;0.5+FP,0.5+N−FP)

where N is the number of observations used to compute
false positive and false negative rates, and FN, FP are the total
number of false negative and false positives, respectively.

5 Auditing Setup

As we have seen, the choice of framework used for auditing
can affect the tightness of our lower bound for ε. In this sec-
tion, we describe our auditing procedure for each threat model
described in Section 3, and then discuss the effect of different
attacker choices—such as attack specific hyperparameters—
have on the audit results.

5.1 Auditing Procedure

As mentioned in Section 3, we consider three main threat
models. For the black-box setting, we use Algorithm 1 which
trains 2T models on datasets D and D′ = D∪{z} where z =
(x′,y′) is the differing example between D and D′, which we
refer to as the canary. Then the auditor evaluates the loss on
the canary example of each model trained on D and D′; using
this set of losses, the auditor chooses a decision threshold and
computes α and β. We refer to the statistics collected by the
adversary as observations.

In the white-box setting, the adversary can observe model
parameters at each update step. We summarize the approach
used for auditing in a white-box setting in Algorithm 2, us-
ing either canary gradients or canary inputs as described in
Section 3. At each iteration of DP-SGD, the trainer indepen-
dently samples two batches of data, B and B′. Theoretically, B
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Algorithm 1 Black-box auditing for DP-SGD
Args: training dataset D, loss function l, canary input (x′,y′), number of
observations T
Observations: O←{}, O′←{}
for t ∈ {T} do

θ← DP-SGD on Dataset D
θ′← DP-SGD on Dataset D∪ (x′,y′)
O[t]← l(θ,(x′,y′))
O ′[t]← l(θ′,(x′,y′))

end for
return θ , O, O′

can be identical to B′. We experimented with both configura-
tions and did not observe any significant difference between
them. Consequently, we opted for this setup as it carries fewer
assumptions, specifically removing the need to fix the ran-
domization process for sampling. In the White-box access
with Input Space Canaries threat model, the trainer creates a
canary sample and adds it to B′ with probability qc.

In the White-box access with Gradient Canaries threat
model, the trainer computes the batch of per-example gra-
dients for B and B′ and adds a canary gradient into B′ with
probability qc. Please note that in both input and gradient
space attacks, the canaries can be chosen dynamically based
on the current parameters of the model.

Batch B has been sampled from the original dataset D,
while B′ has been sampled from a modified dataset D′. In both
threat models, after the canary is added, DP-SGD proceeds as
normal, clipping, aggregating, and noising the gradient sums.
For each batch, the trainer computes the dot product between
the privatized gradient sum and the canary gradient (or the
gradient from the canary input), resulting in a score (which
we again refer to as an observation). The goal of the adversary
is to determine whether a batch was drawn from D or D′. At
the end of each run of the algorithm, the trainer produces 2T
observations, two for each update, and a fully trained model
with parameters θ.

In Algorithm 2, we consider different sampling rates for
the canary example and normal training examples to allow the
model trainer to evaluate the mechanism at different sampling
rates. We use q to represent the sampling rate for the normal
instances and qc for the canary examples. If the trainer sets
qc = 1, the canary is selected in all iterations, and the audit
focuses on the privacy mechanism without data sub-sampling.
This modification allows us to identify bugs in DP-SGD that
are not due to batch sampling.

After collecting observations from a model trained on either
dataset D or D′, they can be compared with a threshold to
compute true and false positive rates. Next, we will focus
on considerations for choosing an appropriate threshold and
their effects on the auditing process. We will also discuss
other important factors in the auditing process, such as canary
selection strategies and the sampling rate qc.

Algorithm 2 White-box auditing for DP-SGD with gradient
or input space canaries

Args: training dataset D, sampling rate q, learning rate η, noise scale σ,
gradient norm clip C, loss function l, canary gradient C(θ)→ g′, canary
input C(θ)→ (x′,y′), canary sampling rate qc, function clip that clips
vectors to max norm C, number of observations T , number of training
iterations τ.

Observations: O←{}, O′←{}
Trained Models: Θ←{}
t← 0
while t ≤ T do

Initiate θ randomly
for τ iterations do

Bt ← sample instances from dataset D with prob q
B′t ← sample instances from dataset D with prob q
∇[t]←~0
for all (x,y) ∈ Bt do

∇[t]← ∇[t]+clip(∇θ(l(x,y)))
end for
∇̃[t]← ∇[t]+N (0,σ2I)
∇′[t]←~0
for all (x,y) ∈ B′t do

∇′[t]← ∇′[t]+clip(∇θ(l(x,y)))
end for
∇̃′[t]← ∇′[t]+N (0,σ2I)
g′←C(θ) canary gradient or g′← clip(∇θ(l(C(θ))))

∇̃′[t]← ∇̃′[t]+g′ with prob qc o.w. ∇̃′[t]+~0
O[t]← 〈g′, ∇̃[t]〉
O′[t]← 〈g′, ∇̃′[t]〉
θ← θ−η∇̃[t]
t = t +1

end for
Θ = Θ+{θ}

end while
return Θ , O, O′

5.2 Choosing a Decision Threshold

The output of Algorithm 1 or Algorithm 2 is a set of ob-
servations, with canaries {o′1,o′2, . . . ,o′T}, and a set without
canaries, {o1,o2, . . . ,oT}. To compute our attack’s FNR and
FPR, we must first choose a decision threshold to distinguish
between observations from the observation space without the
canary, O, or the observation space with canaries O ′.

In the white-box threat model, our observation is o =

〈g′, ∇̃[t]〉 and o′ = 〈g′, ∇̃′[t]〉, where g′ is the canary gradi-
ent, ∇̃[t] is the privatized gradient over a batch B, and ∇̃′[t]
is the privatized gradient over a batch B′. By construction,
we expect g′ to be orthogonal to any other gradient g in the
batch, 〈g′,g〉 = 0. In practice, the clipping norm and batch
size are known to the adversary and so we can re-scale and
normalize the set of observations such that O = N (0,σ2I)
and O ′ = N (1,σ2I), meaning that in expectation o and o′

are sampled from Gaussians with zero and unit mean, respec-
tively. Thus, the attacker’s goal is to distinguish observations
sampled from N (0,σ2I) and N (1,σ2I) – we note that this
is exactly the same hypothesis testing problem considered
in GDP. A benefit of auditing with qc = 1 and GDP is that
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Figure 4: An example comparison between f -DP and (ε,δ)-
DP with Clopper-Pearson lower bounds for 5,000 observa-
tions. The lower bounds found through GDP are approxi-
mately the same for any decision threshold within the obser-
vation’s support, whereas the (ε,δ)-DP with Clopper-Pearson
lower bound varies dramatically. We also visualize observa-
tions when the canary was and wasn’t included in training as
histograms.

the lower bounds we derive with GDP are agnostic to our
choice of decision threshold used to compute type I and type
II errors (in the limit of number of observations), while this
is not true for (ε,δ)-DP. This is due to the perfect match be-
tween the GDP analysis and the true privacy of the Gaussian
mechanism. Figure 4 shows the result that different choices
of threshold have on auditing using either GDP or (ε,δ)-DP.
As we can see, auditing using (ε,δ)-DP is much more sensi-
tive to the decision threshold compared to GDP. Note that if
thresholds we use are found using the same observation data
that we compute the lower bound on, the bound is technically
not valid. However, it has become common to report lower
bounds on the same set of observations that one uses to find
an optimal decision threshold [20,35], and so for each method
we will find the threshold that maximizes the reported lower
bound. We stress that for GDP, any decision threshold will be
equally likely to maximize the lower bound with a sufficient
number of observations; this is not true of (ε,δ)-DP. See our
extended version for full discussion [22, Appendix C.1].

Next, we discuss how to construct the canary point (either
gradient or sample) used in auditing.

5.3 Canary Type
The strength of our bound depends on being able to distin-
guish samples from O and O ′. In turn, this means crafting
canaries that maximize distinguishability.

In the White-box access with Gradient Canaries threat
model, we use what we refer to as a Dirac canary gradient; a
gradient with zeros everywhere except at a single index in the
gradient vector, where we set its value to the clipping norm C.
We compare this choice with other possibilities and also the
effect of generating canaries dynamically in Appendix B.1. I

In the White-box access with Input Space Canaries threat

Algorithm 3 Input canary generation in white-box setting
Args: In-distribution dataset D, model loss function l, model parameters
θ, T crafting steps, η step size
~gdist =

1
|D| ∑(xi ,yi)∈D ∇l(θ,(xi,yi))

ladv(x,y) = | ∇l(θ,(x,y)).~gdist
|∇l(θ,(x,y))||~gdist |

|

(x,y) $← D
for t ∈ {T} do

x = x−η∇ladv(x,y)
end for

return (x,y)

model, we design a new attack that crafts an input for given
model parameters. We evaluate four different canary strate-
gies: (1) a random sample from the dataset distribution with
a wrong label, (2) using a blank sample, (3) an adversarial
example, and (4) and our new canary crafting approach given
in Algorithm 3 and discussed in Appendix B.2. In the black-
box threat model, we consider a similar range of canary types,
which are detailed in Section 6.4. In the main body the work
we only present the results of the best possible attacks.

5.4 Canary Sampling Rate (qc)

The analysis of the sub-sampling mechanism in the worst
case is tight using PLD/ f -DP [18]. From Figure 13, we see
that when qc = 1, the observations closely match the theoreti-
cal FPR-FNR trade-off. Instead, in Figure 5 we audit a sub-
sampled Gaussian mechanism with sampling rate of qc =

1
4 ,

setting σ2 = 0.3 and the number of collected observations
to 10,000. This figure plots the FPR-FNR curve predicted
by using the PLD accounting and also GDP accounting with
an equivalent ε with δ = 10−5, and compares it to the em-
pirical curve found through auditing this sub-sampled Gaus-
sian mechanism. Clearly, both PLD and GDP upper bounds
the observed FPR-FNR curve, but tends to overestimate the
trade-off between FPR and FNR, particularly at higher false
positive rates [11]. This suggests that to accurately audit a
sub-sampled privacy-preserving mechanism, it may be nec-
essary to use attacks with more precise false positive rates
and optimal thresholds in order to achieve tight bounds. As
mentioned in Section 5.2 (and expanded upon in ??) by using
qc = 1 (and a sufficient number of observations) we do not
need to find the optimal threshold, as the lower bound found
using GDP auditing is threshold agnostic, and any threshold
will results in tight auditing (which ensures a valid confidence
interval and lower bound).

When using auditing to debug an implementation of DP-
SGD, we focus on the auditing of the privacy mechanism
itself, rather than the sub-sampling process. We therefore
set qc = 1 throughout most of the experiments in Section 6.
However, we will experiment with the sub-sampled Gaussian
mechanism (qc < 1) in the black-box threat model, where we
are more focused on effect of the threat model on privacy
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Figure 5: PLD or GDP analysis does not describe the achiev-
able error rate from a sub-sampled Gaussian mechanism.

leakage rather than debugging to check if an implementation
of DP-SGD is correct.

5.5 From Step-wise to End-to-end Auditing

Our white-box audit observes each step of DP-SGD. As
such, we generate privacy lower bounds for individual steps.
We convert these into a privacy lower bound for the end-
to-end training procedure by appealing to tight composition
results. For instance, if we assume that each step is tightly
characterized by Gaussian DP, then the tightness of Gaussian
DP composition allows us to infer that the end-to-end training
procedure is also tightly characterized by Gaussian DP and
that we can sum up the privacy parameters. In other words, if
the privacy loss distribution of one step is Gaussian, then the
privacy loss distribution of the end-to-end procedure is also
Gaussian; this is because composition simply adds/convolves
the privacy losses. Given a lower bound for a single step of
DP-SGD, εlower

emp (δ), we find a Gaussian noise scale σ that
corresponds to this (ε,δ)-DP guarantee. The we compose the
corresponding Gaussian DP guarantees to obtain our final
estimate.

In DP-SGD, there is also subsampling. That is, we must
account for the randomness of the batch selection. In this
case, the privacy is not tightly characterized by Gaussian
DP.1 However, it can be characterized by a more general f -
DP guarantee and then we can use PLD to compose over
the number of update steps. In Section 6, we show that this
method of conversion gives empirical estimates for ε that are
close to the end-to-end theoretical ε value. We note that a
similar idea has been explored by Maddock et al. [20].

1Although it is not tightly characterized by Gaussian DP, a subsampled
Gaussian can be approximated by Gaussian DP. In practice, this approxima-
tion yields conservative estimates of the final (ε,δ)-DP guarantee. Hence this
would also be an acceptable auditing methodology.

6 Experiments

We now evaluate the performance of our proposed auditing
technique. We first demonstrate that auditing with f -DP gives
a tight bound on privacy leakage. After this, we show that
tight auditing can be used for a multitude of purposes, such
as investigating if certain choices of training hyperparameters
lead to more or less privacy leakage, and debugging imple-
mentations of DP-SGD.

6.1 Experiment Setup
We experiment with two commonly used datasets in the pri-
vacy literature: CIFAR-10 (with Wide ResNet (WRN-16) [34]
and ConvNet architectures) and Purchase. In addition we also
evaluate our experiment on a randomly initialized dataset.
Please to our extended version [22, Appendix B] where we
describe the hyperparameters and details used to train models.
Unless otherwise stated, all lower bounds are given with a
95% confidence (Clopper-Pearson as in Nasr et al. [24]) /
credible interval (Zanella-Béguelin et al. [35]), and we audit
in the White-box access with Gradient Canaries threat model
using Algorithm 2. In all of our experiment the initial param-
eters of the models are equal between different runs, however,
the random processes use different seeds.
Terminology: We describe below the approaches we use to
compute lower bounds; our work introduces the f -DP strate-
gies. f -DP (CP): using the trade-off function of the privacy
mechanism with Clopper-Pearson. When we do not have the
exact trade-off function (e.g, if there are multiple composi-
tion of sub-sampled Gaussian mechanisms) we use approxi-
mated trade-off function of the privacy mechanism from PLD
accounting and Algorithm 4.(ε,δ)-DP (CP) [14, 24]: using
the (ε,δ)-DP (Equation (4)) trade-off function with Clopper-
Pearson. f -DP (ZB) and (ε,δ)-DP (ZB) are similar to f -DP
(CP) and (ε,δ)-DP (CP), however, we use the Bayesian es-
timation approach (Section 4.2) to compute lower bounds
instead of Clopper-Pearson. (ε,δ)-DP (ZB) is equivalent to
the approach used by Zanella-Béguelin et al. [35]. ε−DP
(Katz) [19] audits ε−DP with the Katz log confidence inter-
val.

6.2 (Almost) Tight Auditing of DP-SGD For
Natural Datasets Using f -DP

Nasr et al. [24] showed that DP-SGD is tight with worst-
case training sets; however, they observed a noticeable gap
between the empirically estimated lower bound and theo-
retic upper bound for ε when they replace these worst-case
datasets with datasets commonly used for DP-SGD bench-
marking, even when the adversary has white-box access to
the model and can insert canary gradients (e.g., they achieved
an empirical ε lower bound of < 1 with a theoretical ε of 8
on CIFAR-10).
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Figure 6: Auditing with f -DP provides the strongest lower
bounds with theoretical upper bound ε = 8 on CIFAR-10.
Table 1: Comparison of the empirical lower bounds on ep-
silon with 95% (confidence or credible interval), where the
adversary has access to every intermediate model and the ad-
versary can insert a canary gradient vector (white-box setting).
We include results on a Random dataset—random pixels and
labels—of the same cardinality as CIFAR-10.

Lower Bounding Theoretical ε CIFAR-10 WRN-16 CIFAR-10 ConvNet Purchase Random WRN-16

f -DP (CP)

1 0.75 0.77 0.78 0.74
4 3.40 3.34 3.54 3.14
8 5.80 6.12 6.40 7.14

16 11.14 12.08 12.42 13.14

f -DP (ZB)

1 0.95 0.94 0.89 0.90
4 3.73 3.80 3.60 3.52
8 7.09 7.12 6.94 7.12

16 13.95 13.80 13.80 15.14

(ε,δ)-DP (CP)

1 0.41 0.45 0.36 0.35
4 1.37 1.80 1.65 1.14
8 3.63 3.85 3.25 4.09

16 5.25 6.22 6.34 6.96

(ε,δ)-DP (ZB)

1 0.62 0.62 0.57 0.61
4 2.65 2.69 2.45 2.75
8 5.07 5.15 4.65 5.09

16 5.25 6.22 6.34 6.96

ε−DP (Katz)

1 0.49 0.51 0.46 0.41
4 1.65 1.95 2.05 2.14
8 4.17 3.95 4.24 4.15

16 7.52 7.63 7.69 8.01

We first demonstrate that by auditing with f -DP, we can
now compute strong lower bounds with the standard CIFAR-
10 training set, where we train and audit a model with 79% test
accuracy at (ε = 8,δ = 10−5)-DP. We evaluate and compare
our auditing technique against the state-of-the-art auditing
methods of Zanella-Béguelin et al. [35] and Lu et al. [19].
Results are given in Figure 6, where we report the average
lower bound found over ten independent executions of the
experiment along with standard deviation, and the theoretical
upper bound for ε given by the privacy accountant. Regardless
of if we use Zanella-Béguelin et al.’s method for finding cred-
ible intervals, or use the Clopper-Pearson confidence interval,
the main gain in estimating ε comes from auditing with f -DP.
Auditing with f -DP is almost tight, while the strongest upper
bound from prior work is ∼ 5.

Our method of auditing with f -DP gives a tight analysis
for privacy leakage for both small and large ε and across dif-
ferent datasets (CIFAR-10, Purchase, and a Random dataset—
random pixels and labels—of the same cardinality as CIFAR-
10). The results, reported in Table 1, show that our approach
does not require the use of a worst-case dataset to achieve

tight estimation of the privacy parameters. Lu et al. [19] hy-
pothesize that privacy is dataset dependent even in a white-box
setting, however, our experiments contradict this hypothesis.
Given that our results show that tight lower bounds are largely
independent of the choice of dataset if the adversary audits in
a white-box threat model with canary gradients, our remain-
ing experiments will focus primarily on the CIFAR-10 dataset
unless stated otherwise.

We next demonstrate that auditing with f -DP can be useful
for detecting implementations of DP-SGD that violate the
purported upper bound for ε. As discussed previously, we
will concentrate on violations that are not directly caused by
sub-sampling, and so our experiments will audit the Gaussian
mechanism without composition or sub-sampling, for which
we will use the exact trade-off function (GDP instead of the
PLD approximation detailed in Section 4.1).

6.3 Auditing and Debugging DP-SGD Imple-
mentations

Implementing DP-SGD correctly is notoriously difficult. Au-
diting can help identify issues of correctness, as demonstrated
by Tramèr et al. [27] who used black-box auditing to show
the DP-SGD implementation proposed by Stevens et al. [26]
was incorrect and reported a much lower value of ε than its
true privacy leakage.

We investigate how easily our method of auditing with
f -DP can detect incorrect implementations of DP-SGD com-
pared to prior work on CIFAR-10. The upper bound for ε

claimed by each DP-SGD implementation throughout the fol-
lowing experiments is 1.27. For all experiments in this section
we audit a step of DP-SGD, that is, we do not convert our
lower bounds into a guarantee of the ε reported after compos-
ing across all training steps with PLD. We do this because
even if we were to report a lower bound on the final value
of ε (via finding a lower bound for a step of DP-SGD and
composing with the (almost) lossless PLD), there will be bugs
that cannot be captured by this auditing method. For example,
a bug that is caused by implementing a biased sub-sampling
method from the training dataset will likely not be captured
by our audit.

Violation 1: Clipping after gradient averaging. In DP-
SGD, individual gradients must be clipped to a maximum
norm C before aggregation. If the order of these operations
is reversed, clipping after aggregation, then the model will
not be (ε,δ)-DP. In Figure 7, we see all auditing methods
are able to identify a violation as the lower bound found is
much larger than the reported upper bound. However, one
may still incorrectly assume that the implementation retains
some privacy if we do not audit with f -DP, as the best lower
bound we can find is < 10. By auditing with f -DP, it becomes
clear that the implementation is completely broken.
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Figure 7: Clipping after gradient averaging bug. We plot the
lower bound for ε we can find with each auditing technique
when the implementation clips the gradient after averaging in
a batch, and so is not (ε,δ)-DP with the claimed ε = 1.27. All
methods are able to detect a violation but only f -DP auditing
can show the implementation is completely broken, as we can
show ε > 35.
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Figure 8: Biased noise bug. The Gaussian noise used to pri-
vatize gradients in DP-SGD is not sampled randomly. Both
f -DP and Lu et al. detect this implementation issue while
auditing with (ε,δ)-DP fails to detect the issue.

Violation 2: Biased noise sampling. At every step of DP-
SGD, random Gaussian noise must be added to gradients. If
the noise is not randomly sampled then the model will not be
(ε,δ)-DP. In practice, we generate a Gaussian noise sample
by seeding a random number generator. We train a model
where the seed can only take on 100 different possible values,
meaning there are only 100 different possible Gaussian noise
vectors. It may seem that this is a rather contrived example
of a DP-SGD bug, but a similar error appeared in the JAX
canonical example of how to implement DP-SGD, where a
random seed was re-used when adding noise to different sets
of model parameters [1].

Results are shown in Figure 8. We can detect violations
when auditing with f -DP; the auditing method introduced
by Lu et al. [19] also successfully detects the bug. However,
auditing with (ε,δ)-DP directly, either using Clopper-Pearson
or the method proposed by Zanella-Béguelin et al. was not
able to identify a violation of the claimed upper bound.

Violation 3: Noise scale is too small. The value of ε is in-
versely proportional to the scale of noise we add to gradients.
As we decrease the scale of noise, ε increases. The third bug
we investigate is when the noise scale we add is unexpectedly
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Figure 9: Incorrect noise scale bug. We measure how quickly
each auditing method can detect a violation of the purported
upper bound of ε = 1.27 when the scale of noise we add to
gradients is incorrectly set.

smaller than the target scale we set. This bug often arises
because the the sensitivity (clipping value) needs to calibrated
to the batch size in order to compute the correct noise scale,
and this is easy to get wrong (c.f. Tramèr et al. [27]). For
example, in settings where gradient computations are dis-
tributed across multiple machines, we could incorrectly add
noise to the average gradient found on each machine, and then
aggregate.

We train models with decreasing scales of noise, implying
larger values of ε than the claimed upper bound. Results are
shown in Figure 9, where we find auditing with f -DP closely
follows the true upper bound, meaning we can detect a viola-
tion to reported ε = 1.27 when the true value is ε = 1.57. Au-
diting with (ε,δ)-DP directly, either using Clopper-Pearson,
Lu et al. [19], or the method proposed by Zanella-Béguelin et
al. does not successfully identify a violation of the claimed
upper bound, even when the true upper bound for ε is as large
as 2.17.

6.4 Investigating Privacy Leakage with Tight
Auditing

In this section, we expand our analysis to examine the impact
of various settings and parameters on privacy leakage.

Is there a difference between auditing in gradient and in-
put space? Auditing with gradient canaries can be useful
in specific contexts, such as in federated learning or when
debugging a model. However, in most cases, practitioners
are more concerned with understanding the effect of a single
input space example on the model. This is because this set-
ting more closely measures the privacy leakage that could be
experienced by a worst-case training example.

To evaluate how privacy leakage could change by removing
the ability to insert a canary gradient, we run experiments in
the White-box access with Input Space Canaries threat model,
as described in Section 3. In particular, we use Algorithm 3
to create the canaries. Note that for this experiment we only
use the first 250 iterations of DP-SGD to collect observations
and estimate the per-step ε lower bound. We found that, in
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Figure 10: Comparison of the empirical lower bounds on epsilon with 95% (confi-
dence or credible interval), where the adversary has access to every intermediate
model and the adversary can insert a canary in input space (white-box setting).

Table 2: Comparison of the empirical
lower bounds on ε (using f -DP (ZB)) in
the black-box threat model where the ad-
versary inserts a canary point at the begin-
ning of training, and only gradient clipping
is applied on CIFAR-10.

Clipping norm C ε lower bound

0.1 23.4
1.0 26.8

10.0 41.0

Maximum ε lower bound at
this number of observations

44.0

this threat model, the first few hundred iterations of DP-SGD
leaks more privacy than the entire training run; in other words,
the lower bound we compute using the first 250 steps is larger
than the lower bound we compute over the entire training run
(2,500 update steps). In general, we find that auditing in the
input space becomes weaker if the observations are collected
from updates towards the end of training. We discuss this
further in Appendix C.1.

As shown in Figure 10, even if the attacker can only insert
canary samples (rather than gradients), we can compute tight
bounds for ε < 10. We also observe that the choice of the
model architecture has an impact on auditing in input space.
Specifically, we can get an (almost) tight lower bound when
using Wide Resnet architecture regardless of the datasets.
Moreover, when we compare the CIFAR-10 dataset results
between Wide Resnet and ConvNet models, we see a large
gap which further emphasizes the significance of the model
architecture on privacy leakage.

Does clipping alone help? It has been conjectured that
clipping individual gradients can provide some privacy even
without adding noise [6]. Technically, these models are not
differentially private but we can measure the privacy that clip-
ping provides by computing an ε lower bound. Of course, it
doesn’t make sense to audit clipping alone in a white-box
access threat model; no noise is added and so the dot-product
value we compute to find type I and type II error rates (as
described in Section 5.1 and Section 5.2) will not be masked
by any noise. Instead, we audit in the black-box threat model
by creating a canary point, inserting it into the training set,
and then training a CIFAR-10 WRN-16 model. We then mea-
sure the loss after training on the canary image. We do this
1,000 times when the canary image was included in training
and when it wasn’t, and record the loss of the canary image in
each case. We experimented with a range of different canary
inputs, but found that blank (white) and mislabeled images
produced the strongest lower bounds for ε. In other words,
these two canary types had losses that were easily separable

depending on if they were included in training or not.
In total, we train 2,000 models: 1,000 when the canary input

was in training and 1,000 when the canary wasn’t included.
Our results are shown in Table 2, where we see that clipping
alone provides no privacy. The lower bounds for a clipping
norm of 10 are close to the maximum possible lower bound
at this number of observations.

How much privacy is leaked in a black-box threat model?
To measure the impact of switching to a black-box threat
model on privacy leakage estimation, we follow a similar
auditing procedure as set out by Nasr et al. [24]. We select a
canary example, then we train 1,000 models with the canary
point (+ training set), and 1,000 models with only the training
set (canary excluded). We then measure the log( p

1−p ) for
each model, where p is the probability of the canary point
with respect to its label. We take the distribution of log( p

1−p )
when the canary point was and wasn’t in the training set, and
compute ε lower bounds using our f -DP method.

Results are shown in Fig. 11, where all models are trained
up to ε = 8. On CIFAR-10 with a Wide ResNet architecture
we are able to find a lower bound of ∼ 1.6 using f -DP (ZB)
auditing. However, it is difficult to separate the effects of the
black-box threat model from the effect that sub-sampling has
on privacy leakage estimation, as we saw in Figure 5, both
GDP and PLD tend to overestimate the observed trade-off
between type I and type II errors in the sub-sampled Gaussian
mechanism (with composition over multiple iterations). Ad-
ditionally, the auditing results on other datasets/architectures
are significantly lower compared to those obtained with the
Wide ResNet architecture on the CIFAR-10 dataset. Specif-
ically, when examining the random dataset, no non-trivial
lower bounds for auditing can be achieved. One of the key
factors that distinguishes these experiments is the final accu-
racy the model is able to attain. At ε = 8, the Wide ResNet
architecture for CIFAR-10 is able to achieve a test dataset
accuracy of greater than 70%, compared to less than 50% for
the ConvNet architecture and less than 50% for the Purchase
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Figure 11: Auditing the black-box threat model with f -DP. We train 1,000 models with and without the canary sample that we
insert at the beginning of training. We either use a blank or mislabeled image as the canary input.
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Figure 12: Comparison of attacks on CIFAR10 WRN-16 in
different settings

dataset. Our results suggest that there remains a gap between
the theoretical privacy upper bound and the empirical lower
bound that can be achieved in a black-box setting, but the
size of this gap is highly dependent on the dataset and model
architecture.

7 Discussion and Future Directions

As demonstrated in our work, our gradient attacks achieve
highly tight results in the majority of settings. These find-
ings suggest that in practice, the bounds of DP-SGD are not
excessively loose, thereby requiring practitioners to exercise
caution when selecting their parameters. This is particularly
crucial in settings like Federated Learning, where an adver-
sary may have white-box access to the model.

When looking at the comparison of our attack in different
settings (e.g, Figure 12), we can observe that our attacks are
still weak in the fully black-box setting. A significant direc-
tion for future research in the area of auditing differential

privacy methods lies in improving tightness in a black-box
setting. Although our results substantially outperform existing
approaches, we observe a large gap, particularly in end-to-end
settings, between practical attacks in this threat model and
the theoretical upper bounds. Future work should strive to
enhance results in these settings. We believe that important
steps towards this goal include comprehending the specific
model parameters that can influence such results and design-
ing superior attacks for black-box settings.

8 Conclusion

As differentially private machine learning becomes more pop-
ular and fewer expert users begin to implement such meth-
ods, the possibility of bugs and implementation errors will
increase. We provide a simple auditing technique that can
achieve tight estimates of privacy leakage on standard ML
benchmark datasets. Our method can be easily integrated
with privacy preserving libraries (TF-privacy, Opacus, JAX
privacy) to give online estimation of the private mechanism
parameters and provide an empirical test for the assumed pri-
vacy budget, and only increases the computational overhead
by a factor of two.
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A Using PLD to approximate the trade off
function

PLD does not have a closed-form trade-off function, but we
can evaluate empirically a lower bound for a given FPR. We
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Figure 13: Comparison of the trade-off functions when using
an approximation of PLD compared to the optimal curve.

approximate the trade-off function using Algorithm 4, which
will give us a looser bound for ε, however, the difference is
in the order of 10−1. Figure 13 compares the approximation
approach in Algorithm 4 to the optimal trade-off function, as
we can see, even with 10 approximations we can get a good
estimation of the trade-off function. In Section 6, we will
present experiments that provide lower bounds for a single
step of DP-SGD and multiple steps, they will use the GDP
and PLD formulations, respectively.

Algorithm 4 Approximating a lower bound on trade-off func-
tion using PLD

Args: fM privacy analysis function (outputs ε for a given
δ), n number of approximation lines, δ target delta in pri-
vacy analysis
∆← n linearly spaced points between [δ,1−δ]
for δ′ ∈ ∆ do

ε̂← fM (δ′)

lδ′(x) := max(0,1−δ′− (xeε̂),e−ε̂(1−δ′−x))
end for
l(x) := minδ′∈∆ lδ′(x)
return l

B Effect Of Auditing Choices

B.1 Choosing a Canary Gradient
We first investigate how the canary gradient affects the es-
timated privacy bound. We construct the canary gradient in
three ways:

1. Dirac canary: All gradient values are zero except at a
single index.

2. Constant canary: All gradient values have the same
value.

3. Random canary: Gradient sampled from a Gaussian.
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(a) We compare three different ways to create a canary gradient.
The Dirac canary gradient, with zeros everywhere except for
a single position which has a value set to the clipping norm,
slightly outperforms other approaches.
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(b) At each iteration we can either insert the same (static) canary
gradient, or compute a new canary gradient (moving). There is
little difference between these two approaches in terms of the ε

lower bound we can find.

Figure 14: How design decisions for the canary gradient
change the lower bound we compute for ε with f -DP.

In each setting, gradient values are re-scaled such that the
canary gradient has a maximum norm equal to the clipping
norm. We also measure if there is a difference between using
the same canary gradient at each iteration of DP-SGD or
creating a new canary gradient. For example, in the Dirac
canary we would randomly sample a new index to set to the
clipping norm at each update. Results are shown in Fig. 14;
using a Dirac canary that is reset at each update performs best.

B.2 Choosing a Canary Input in The White-
box Setting

We evaluate how different types of input canaries can affect
auditing in a white-box setting. We construct the canaries in
four different ways:

1. Mislabeled example: We select a random example from
the test dataset of the model and we select a random label
(that is not equal to the original label).

2. Blank example: We craft an input where all dimensions
of the input are equal to zero.

3. Adversarial example: We apply Projected Gradient De-
scent (PGD) to generate adversarial example on a ran-
dom example from the test dataset.
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Figure 15: Comparison of the different canary crafting ap-
proaches in input space for CIFAR-10 dataset using WRN
architecture.

4. Crafted example: We use Algorithm 3 to generate an
input example.

As we saw from our gradient experiment using the dot
product between the privatized gradient and the canary gra-
dient is a sufficient metric for auditing DP-SGD. Therefore
we use the same idea in our crafting algorithm (Algorithm 3)
in input space. We look for a canary such that its gradient is
orthogonal to other gradients in the training batch. However,
we cannot use the example in the training batch directly to
craft such an example as it will violate the DP-assumptions
(the adversary cannot have access to non-noisy gradients).
Therefore, we assume the adversary has access to an example
from the same distribution as the training dataset and uses
that data to estimate the gradient of the model on the training
example. Then, it crafts an example such that its gradient is
orthogonal to the estimated gradient. Thus, creating a gradient
that is significantly different from other examples in the batch
and its presence can be detected.

Figure 15 compares the effectiveness of different input ca-
naries in the white-box setting. As can be seen, using our
canary crafting approach we can achieve significantly tighter
bounds on DP-SGD compared to other canary crafting strate-
gies. Unfortunately, it is not trivial to extend either the ad-
versarial example or our crafting approach to the black-box
setting and therefore we do not use them in the black-box
experiments.

C The effect of model related parameters

C.1 Do earlier training steps leak more infor-
mation?

Recent work on measuring the amount of privacy leaked
when training convex models with DP has shown that the true
amount of leakage plateaus as the model converges [3, 32].
This means that after a certain number of steps, training for
more iterations does not consume any more of the privacy
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(a) CIFAR-10 dataset with a WRN-16 model.
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(b) Random dataset with a WRN-16 model.

Figure 16: Lower bounding ε with the input space attack (white-box setting) for different number of iterations of training and
values of ε, using f -DP (ZB).

budget. The analysis for this result is specific to convex mod-
els; and we cannot prove such properties for the deep models.
However, when can evaluate if a similar phenomenon holds
empirically. We measure the lower bounds when we only use
the first n iterations of the training in the White-box access
with Input Space Canaries threat model. Results are shown in
Figure 16. We find that indeed, the first part of training does
leak more information than later in training on the CIFAR-10
dataset. However, when we evaluate the random dataset we
do not see the same behavior (please note that, if we only look
at a very small number (<100) of the iterations we get a very
loose bound on ε because we do not have enough observations
to have a sufficiently confident estimation). Understanding
why we cannot lower bound from our audit becomes looser in
later iterations requires further investigation which we leave
for future work. Nevertheless, the results suggest that when
we limit the adversary to canaries in the input space then
model architecture, underlying dataset and the how well a
model has been trained all have an effect on privacy leakage.

C.2 Do larger models leak more privacy?
Recent work has shown the larger models have a greater capac-
ity to memorize training data verbatim [7]. We investigate if
the same trend holds when training with DP-SGD by compar-
ing lower bounds on a WRN-16 and WRN-40 model. Results
are shown in Figure 17. Interestingly, if one was to use a non
f -DP auditing method, one would make an incorrect conclu-
sion that the WRN-16 leaks more than the WRN-40. Using
our f -DP auditing method, we identify that, indeed, the larger
WRN-40 model leaks slightly more than the WRN-16 model.

C.3 Does augmentation multiplicity affect pri-
vacy lower bounds?

In De et al. [9], data augmentation was a key ingredient in
achieving state-of-the-art results on CIFAR-10. In particu-
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Figure 17: Comparison of how model architecture (WRN-16
and -40) affects the ε lower bound.
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Figure 18: How the value for Augmult [9] affects the ε lower
bound.

lar, De et al. use a data augmentation technique they term
augmentation multiplicity (Augmult), where they augment
a single example multiple times and compute the average
gradient over these augmentations before clipping. They find
that increasing the Augmult value (number of augmentations)
improves performance; increasing this value does not increase
the privacy cost as it does not change the sensitivity of the pri-
vatized gradient to any single example in the batch. In Fig. 18,
we measure lower bounds at different Augmult values, and
observe no clear trend between lower bounds and the value
for Augmult.
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