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Private information retrieval

Goal: Privately read an entry from a remote database
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Correctness: learns i-th entry in D, Privacy: learns nothing about i,
if the server Is honest even If the server Is malicious




Private information retrieval

Goal: Privately read an entry from a remote database
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However, PIR inherently requires lots of server-side computation.
» Database read with no privacy: O(1) time
» Database read with privacy: > N time* (even with crypto)




25 years of work on single-server PIR
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This talk

* 1. New tool: Fast linearly homomorphic encryption

2. Our results
» SimplePIR: High throughput

» DoublePIR: Less communication

3. Evaluation



Starting point: a classic PIR scheme [KO97]
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Starting point: a classic PIR scheme [KO97]
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decrypts to get
How fast can we multiply an encrypted vector
by a plaintext matrix”?

& denotes linearly homomorphic encryption



New tool: Fast linearly homomorphic encryption

Regev encryption |Reg09] of a message 1 € Z\/N with 1-byte entries:
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New tool: Fast linearly homomorphic encryption

Regev encryption |Reg09] of a message 1 € Z\/N with 1-byte entries:
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New tool: Fast linearly homomorphic encryption

Regev encryption
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of a message U Z\/N with 1-byte entries:

Our observations:

» Precompute D X A once
99.9% of the work

» The per-message work is D X b
one 32-bit mul per entry in D

= Multiplying an encrypted vector

with a plaintext matrix is cheap
with preprocessing.
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SimplePIR: fast PIR with one-time preprocessing
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SimplePIR: fast PIR with one-time preprocessing
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After downloading the hint,

can make any number of
queries cheaply!



Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,
» the client downloads a one-time “hint” of size 4096 - \ﬁ\f bytes,

» the per-query communicationis 8 - \ﬁV bytes, and
» the server performs N 32-bit adds and muls per query [10 GB/s/core].



Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,
» the client downloads a one-time “hint” of size 4096 - \ﬁ\/ bytes,

» the per-query communicationis 8 - \ﬁV bytes, and
» the server performs N 32-bit adds and muls per query [10 GB/s/core].

Result 2: DoublePIR

On databases with 1-byte entries, we can shrink the hint to a constant 16 VB
with a small decrease in throughput [7 GB/s/core].

See paper
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Implementation
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Open-source code at github.com/ahenzinger/simplepir

» 1,600 lines of Go/C for SimplePIR and DoublePIR

» No external libraries

» For speed: SIMD instructions, optimized memory access locality

Experimental setup

» Server runs on an AWS cbhn.metal instance
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» All experiments on a 1 GB database, with a single thread of execution


https://github.com/ahenzinger/simplepir

SimplePIR is the fastest known single-server PIR
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SimplePIR is almost as fast as two-server PIR
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SimplePIR saves compute at the cost of communication
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(amortized over 100 queries) PIR costs on a 1 GB database,
with the optimal entry size.




With SimplePIR, PIR can be fast... what’s next?

1. Reduce the communication cost.


https://playground.blyss.dev/passwords

With SimplePIR, PIR can be fast... what’s next?

1. Reduce the communication cost.

2. Deploy PIR to protect our privacy.

» This paper: DoublePIR to privately audit webpage certificates
» Blyss demo: DoublePIR to privately check for password compromise

y SOSP 2023: SimplePIR for private web search

See paper


https://playground.blyss.dev/passwords
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Paper: eprint.iacr.org/2022/949 Alexandra Henzinger

ahenz@csail.mit.edu

Code: github.com/ahenzinger/simplepir
Independent demo: playground.blyss.dev/passwords
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