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Private information retrieval [CGKS95,KO97]
Goal: Privately read an entry from a remote database

index 
i ∈ {1,…, N}

Privacy: learns nothing about , 
even if the server is malicious

iCorrectness: learns -th entry in ,     
if the server is honest

i D

database 
D ∈ {0,1}N
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database 
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 communication 
[CMS99,BGI16,DG16]

≪ N

However, PIR inherently requires lots of server-side computation.

‣ Database read with no privacy:   time

‣ Database read with privacy:        time* (even with crypto) [BIM04, PY22]

O(1)
≥ N



25 years of work on single-server PIR
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This talk

1. New tool: Fast linearly homomorphic encryption


2. Our results

➤ SimplePIR: High throughput

➤ DoublePIR: Less communication


3. Evaluation



Starting point: a classic PIR scheme [KO97]
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How fast can we multiply an encrypted vector 
by a plaintext matrix?
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,

A

1024 1
Ωb

Random, 

fixed matrix     
(32-bit entries)

Message 

dependent  
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Regev encryption [Reg09] of a message  with 1-byte entries:μ ∈ ℤ N
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New tool: Fast linearly homomorphic encryption
Ωμ =

,

A

1024 1
Ωb =D × ΩDμ

Random, 

fixed matrix     
(32-bit entries)

Message 

dependent  
(32-bit entries)

D × D ×

Our observations:


‣ Precompute  once

99.9% of the work


‣ The per-message work is  

one 32-bit mul per entry in 


 Multiplying an encrypted vector 
with a plaintext matrix is cheap 
with preprocessing.

D × A

D × b
D

⇒

Regev encryption [Reg09] of a message  with 1-byte entries:μ ∈ ℤ N
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SimplePIR: fast PIR with one-time preprocessing

A

D × AN

1024

Hint

Online

ΩbN

1

j
i

D ∈ ℤ N× N

N ΩDb

1

After downloading the hint,    
can make any number of 

queries cheaply!

A



Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an -byte database,


‣ the client downloads a one-time “hint” of size  bytes,


‣ the per-query communication is  bytes, and


‣ the server performs  32-bit adds and muls per query [10 GB/s/core].


N
4096 ⋅ N

8 ⋅ N
N

On databases with 1-byte entries, we can shrink the hint to a constant 16 MB 
with a small decrease in throughput [7 GB/s/core].

Result 2: DoublePIR
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Implementation

Open-source code at github.com/ahenzinger/simplepir


‣ 1,600 lines of Go/C for SimplePIR and DoublePIR 


‣ No external libraries


‣ For speed: SIMD instructions, optimized memory access locality


Experimental setup


‣ Server runs on an AWS c5n.metal instance


‣ All experiments on a 1 GB database, with a single thread of execution

https://github.com/ahenzinger/simplepir
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PIR costs on a 1 GB database, 
with entries of increasing size.
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SimplePIR is almost as fast as two-server PIR

PIR costs on a 1 GB database, 
with entries of increasing size.



SimplePIR saves compute at the cost of communication

PIR costs on a 1 GB database, 
with the optimal entry size.



1. Reduce the communication cost.


2. Deploy PIR to protect our privacy.


‣ This paper:    DoublePIR to privately audit webpage certificates


‣ Blyss demo:  DoublePIR to privately check for password compromise


‣ SOSP 2023:  SimplePIR for private web search [HDCZ23]

With SimplePIR, PIR can be fast… what’s next?

https://playground.blyss.dev/passwords
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• Almost as fast as 2-server PIR

• Moderate communication

• 1,600 lines of code

 Paper: eprint.iacr.org/2022/949       

 Code:  github.com/ahenzinger/simplepir

Independent demo: playground.blyss.dev/passwords

https://eprint.iacr.org/2022/949
https://github.com/ahenzinger/simplepir

