





# SimplePIR: Simple and Fast Single-Server Private Information Retrieval

Alexandra Henzinger

MIT

Matthew M. Hong
MIT

Henry Corrigan-Gibbs
MIT

Sarah Meiklejohn Google

Vinod Vaikuntanathan MIT

## Private information retrieval [CGKS95,KO97]

Goal: Privately read an entry from a remote database



Correctness: learns i-th entry in D, if the server is honest

Privacy: learns nothing about i, even if the server is malicious

## Private information retrieval [CGKS95,KO97]

Goal: Privately read an entry from a remote database



However, PIR inherently requires lots of server-side computation.

- $\blacktriangleright$  Database read with no privacy: O(1) time
- ▶ Database read with privacy:  $\geq N$  time\* (even with crypto) [BIM04, PY22]

## 25 years of work on single-server PIR



## This talk



1. New tool: Fast linearly homomorphic encryption

### 2. Our results

- SimplePIR: High throughput
- ➤ DoublePIR: Less communication

### 3. Evaluation













denotes linearly homomorphic encryption

# New tool: Fast linearly homomorphic encryption

Regev encryption [Reg09] of a message  $\mu \in \mathbb{Z}^{\sqrt{N}}$  with 1-byte entries:



# New tool: Fast linearly homomorphic encryption

Regev encryption [Reg09] of a message  $\mu \in \mathbb{Z}^{\sqrt{N}}$  with 1-byte entries:



# New tool: Fast linearly homomorphic encryption

Regev encryption [Reg09] of a message  $\mu \in \mathbb{Z}^{\sqrt{N}}$  with 1-byte entries:



#### Our observations:

- ► Precompute **D** × **A** once 99.9% of the work
- The per-message work is  $\mathbf{D} \times b$  one 32-bit mul per entry in  $\mathbf{D}$
- ⇒ Multiplying an encrypted vector with a plaintext matrix is cheap with preprocessing.

## This talk

1. New tool: Fast linearly homomorphic encryption



- 2. Our results
  - SimplePIR: High throughput
  - ➤ DoublePIR: Less communication
- 3. Evaluation

# SimplePIR: fast PIR with one-time preprocessing



# SimplePIR: fast PIR with one-time preprocessing



### Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,

- $\blacktriangleright$  the client downloads a one-time "hint" of size  $4096 \cdot \sqrt{N}$  bytes,
- the per-query communication is  $8 \cdot \sqrt{N}$  bytes, and
- $\blacktriangleright$  the server performs N 32-bit adds and muls per query [10 GB/s/core].

#### Result 2: DoublePIR

On databases with 1-byte entries, we can shrink the hint to a constant 16 MB with a small decrease in throughput [7 GB/s/core].

### Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,

- the client downloads a one-time "hint" of size  $4096 \cdot \sqrt{N}$  bytes,
- the per-query communication is  $8 \cdot \sqrt{N}$  bytes, and
- $\blacktriangleright$  the server performs N 32-bit adds and muls per query [10 GB/s/core].

#### Result 2: DoublePIR

On databases with 1-byte entries, we can shrink the hint to a constant 16 MB with a small decrease in throughput [7 GB/s/core].

See paper

## This talk

- 1. New tool: fast linearly homomorphic encryption
- 2. Our results
  - SimplePIR: High throughput
  - ➤ DoublePIR: Less communication



3. Evaluation

## Implementation







### Open-source code at github.com/ahenzinger/simplepir

- ▶ 1,600 lines of Go/C for SimplePIR and DoublePIR
- No external libraries
- For speed: SIMD instructions, optimized memory access locality

### Experimental setup

- Server runs on an AWS c5n.metal instance
- ▶ All experiments on a 1 GB database, with a single thread of execution

## SimplePIR is the fastest known single-server PIR



## SimplePIR is almost as fast as two-server PIR



## SimplePIR saves compute at the cost of communication



## With SimplePIR, PIR can be fast... what's next?

1. Reduce the communication cost.

- 2. Deploy PIR to protect our privacy.
  - This paper: DoublePIR to privately audit webpage certificates
  - Blyss demo: DoublePIR to privately check for password compromise
  - SOSP 2023: SimplePIR for private web search [HDCZ23]

## With SimplePIR, PIR can be fast... what's next?

1. Reduce the communication cost.

- 2. Deploy PIR to protect our privacy.
  - This paper: DoublePIR to privately audit webpage certificates
  - ▶ Blyss demo: DoublePIR to privately check for password compromise
  - ▶ SOSP 2023: SimplePIR for private web search [HDCZ23]

See paper



Paper: eprint.iacr.org/2022/949

Code: github.com/ahenzinger/simplepir
Independent demo: playground.blyss.dev/passwords

Alexandra Henzinger ahenz@csail.mit.edu