ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

usenix usenix usenix
gp ASSOCIATION g ASSOCIATION g ASSOCIATION

AVAILABLE m REPRODUCED

SimplePIR: Simple and Fast Single-Server
Private Information Retrieval

Alexandra Henzinger Matthew M. Hong Henry Corrigan-Giblbs Sarah Meiklejohn Vinod Vaikuntanathan
MIT MIT MIT Google MIT

USENIX Security 2023

Private information retrieval

Goal: Privately read an entry from a remote database

<~
_— § database
-— = D e {0,1}V

Correctness: learns i-th entry in D, Privacy: learns nothing about i,
if the server Is honest even If the server Is malicious

Private information retrieval

Goal: Privately read an entry from a remote database

<< N communication
_ § database
- = D e {01}V

However, PIR inherently requires lots of server-side computation.
» Database read with no privacy: O(1) time
» Database read with privacy: > N time* (even with crypto)

25 years of work on single-server PIR

12 +
10 SimplePIR
8 _
DoublePIR
Server
throughput 67
(GB/s/core)
4 _
FastPIR
2T KO SealPIR OnionPIR | FrodoPIR
| Pailler XPIR__ I\/IuIPIR/Spira|

O © RS N AL Aad
S SRS VY
S Year S

This talk

* 1. New tool: Fast linearly homomorphic encryption

2. Our results
» SimplePIR: High throughput

» DoublePIR: Less communication

3. Evaluation

Starting point: a classic PIR scheme [KO97]

J
i
ts entry at —~
~—
wants sy @ = D e 7VI/N
position (i,]) =

& denotes linearly homomorphic encryption

Starting point: a classic PIR scheme [KO97]

0]
1 J l
wants entry at \/N 0 —
&y L [
position (i,]) =

& denotes linearly homomorphic encryption

Starting point: a classic PIR scheme [KO97]

0 J
1 J I 0
wants entry at VN | ~ L
=D = el
a A

& denotes linearly homomorphic encryption

Starting point: a classic PIR scheme [KO97]

0 J
1 J I 0
wants entry at VN | ~ L
=D = el
a A

decrypts to get

& denotes linearly homomorphic encryption

Starting point: a classic PIR scheme [KO97]

0 J
1 J I 0
wants entry at VN | ~ L
=D = el
n a A

decrypts to get
How fast can we multiply an encrypted vector
by a plaintext matrix”?

& denotes linearly homomorphic encryption

New tool: Fast linearly homomorphic encryption

Regev encryption |Reg09] of a message 1 € Z\/N with 1-byte entries:

/
\

1()24

Random, I\/Iessage

fixed matrix dependent
(32-bit entries) (32-bit entries)

New tool: Fast linearly homomorphic encryption

Regev encryption |Reg09] of a message 1 € Z\/N with 1-byte entries:

N

DX |p| = =

\

1()24

Random, I\/Iessage

fixed matrix dependent
(32-bit entries) (32-bit entries)

New tool: Fast linearly homomorphic encryption

Regev encryption

\

/ l
Dx u =|Dx| A

—

Random,

fixed matrix
(32-bit entries)

\z
/

N

Message

dependent
(32-bit entries)

of a message U Z\/N with 1-byte entries:

Our observations:

» Precompute D X A once
99.9% of the work

» The per-message work is D X b
one 32-bit mul per entry in D

= Multiplying an encrypted vector

with a plaintext matrix is cheap
with preprocessing.

This talk

1. New tool: Fast linearly homomorphic encryption

* 2. Our results
» SimplePIR: High throughput

» DoublePIR: Less communication

3. Evaluation

SimplePIR: fast PIR with one-time preprocessing

Offline @ 1024 @

Online

VN
wants entry at i
position (i,])

SimplePIR: fast PIR with one-time preprocessing

Offline @ 1024 @

o @ Hlnt o J
; \/N DXA e ;
—
i § D c Z\/ﬁx\/ﬁ
Online o
VN
wants entry at
. 1
7 G

After downloading the hint,

can make any number of
queries cheaply!

Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,
» the client downloads a one-time “hint” of size 4096 - \ﬁ\f bytes,

» the per-query communicationis 8 - \ﬁV bytes, and
» the server performs N 32-bit adds and muls per query [10 GB/s/core].

Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an N-byte database,
» the client downloads a one-time “hint” of size 4096 - \ﬁ\/ bytes,

» the per-query communicationis 8 - \ﬁV bytes, and
» the server performs N 32-bit adds and muls per query [10 GB/s/core].

Result 2: DoublePIR

On databases with 1-byte entries, we can shrink the hint to a constant 16 VB
with a small decrease in throughput [7 GB/s/core].

See paper

This talk

1. New tool: fast linearly homomorphic encryption

2. Our results
» SimplePIR: High throughput

» DoublePIR: Less communication

=) 3. Evaluation

Implementation

ARTIFACT
EVALUATED

rusenix
é" ASSOCIATION

AVAILABLE

Open-source code at github.com/ahenzinger/simplepir

» 1,600 lines of Go/C for SimplePIR and DoublePIR

» No external libraries

» For speed: SIMD instructions, optimized memory access locality

Experimental setup

» Server runs on an AWS cbhn.metal instance

ARTIFACT
EVALUATED

rusenix
é(’ ASSOCIATION

ARTIFACT
EVALUATED

FuUsenix
é’ ASSOCIATION

REPRODUCED

» All experiments on a 1 GB database, with a single thread of execution

https://github.com/ahenzinger/simplepir

SimplePIR is the fastest known single-server PIR

-
-
-
-

Throughput (MB/s/core)

10 ¢

100

Memory bandwidth per core

W
- _ - - - e

B - * ° Spiral
- FastPIR
— T~ > SealPIR
OnionPIR
1 10 100 1000 10000

Entry size (in bits) ’

0000 ... SimplePIR

SpiralStream

R costsonal G

53 database,

with entries of increasing size.

SimplePIR is almost as fast as two-server PIR

10000

=
-
-
-

Throughput (MB/s/core)

10 F

100

::_:——__—’_T_:\

_Q—o’../.

XOR PIR non-constant-time [two-server]
SimplePIR
XOR PIR [two-server]
DoublePIR

SpiralStream

Entry size (in bits)

— Spiral
- FastPIR
— T~ SealPIR
OnionPIR
1 10 100 1000 10000

Pl

R costsonal G

53 database,

with entries of increasing size.

SimplePIR saves compute at the cost of communication

E ‘y@
—~ ?
Up) i
! SealPIR |
0 10. ea xé)monPl’F:
8 il . FastPIR
& [xéplral x
@ | L2 SpiralStream
= | e *®
o i T e
c 1 1T AR e
S _
O .

_ SimplePIR

&3
100 KB 1 MB 10 MB 100 MB

Communication

(amortized over 100 queries) PIR costs on a 1 GB database,
with the optimal entry size.

With SimplePIR, PIR can be fast... what’s next?

1. Reduce the communication cost.

https://playground.blyss.dev/passwords

With SimplePIR, PIR can be fast... what’s next?

1. Reduce the communication cost.

2. Deploy PIR to protect our privacy.

» This paper: DoublePIR to privately audit webpage certificates
» Blyss demo: DoublePIR to privately check for password compromise

y SOSP 2023: SimplePIR for private web search

See paper

https://playground.blyss.dev/passwords

- Almost as fast as 2-server PIR

12+
- Moderate communication
10« 1,600 lines of code SimplePIR |
8 n
DoublePIR
Server
throughput 67
(GB/s/core)
4_
FastPIR
2T KO + SealPIR OnionPIR | FrodoPIR
ol Pailler XPIR MUIPI&/SpiraI
& Year o SRS

Paper: eprint.iacr.org/2022/949 Alexandra Henzinger

ahenz@csail.mit.edu

Code: github.com/ahenzinger/simplepir
Independent demo: playground.blyss.dev/passwords

https://eprint.iacr.org/2022/949
https://github.com/ahenzinger/simplepir

