
SimplePIR: Simple and Fast Single-Server

Private Information Retrieval

MIT
Alexandra Henzinger

MIT
Matthew M. Hong

MIT
Henry Corrigan-Gibbs

Google
Sarah Meiklejohn

MIT
Vinod Vaikuntanathan

USENIX Security 2023

Private information retrieval [CGKS95,KO97]
Goal: Privately read an entry from a remote database

index
i ∈ {1,…, N}

Privacy: learns nothing about ,
even if the server is malicious

iCorrectness: learns -th entry in ,
if the server is honest

i D

database
D ∈ {0,1}N

Private information retrieval [CGKS95,KO97]
Goal: Privately read an entry from a remote database

index
i ∈ {1,…, N}

database
D ∈ {0,1}N

 communication
[CMS99,BGI16,DG16]

≪ N

However, PIR inherently requires lots of server-side computation.

‣ Database read with no privacy: time

‣ Database read with privacy: time* (even with crypto) [BIM04, PY22]

O(1)
≥ N

25 years of work on single-server PIR

19
99

20
16

20
18

20
21
20
22
20
23Year

0

2

4

6

8

10

12

Server

throughput

(GB/s/core)

KO +

Pailler XPIR

SealPIR

MulPIR

OnionPIR
FastPIR

Spiral

FrodoPIR

SimplePIR

DoublePIR

Fastest two-server PIR

1

This talk

1. New tool: Fast linearly homomorphic encryption

2. Our results

➤ SimplePIR: High throughput

➤ DoublePIR: Less communication

3. Evaluation

Starting point: a classic PIR scheme [KO97]

 denotes linearly homomorphic encryption

j
i

D ∈ ℤ N× Nwants entry at
position (i, j)

N 0

0

0
0

1 j

Starting point: a classic PIR scheme [KO97]

 denotes linearly homomorphic encryption

j
i

D ∈ ℤ N× Nwants entry at
position (i, j)

N 0

0

0
0

1 j

Starting point: a classic PIR scheme [KO97]

 denotes linearly homomorphic encryption

× =0

0

0
0

1 j

Ω

j
i

D ∈ ℤ N× Nwants entry at
position (i, j)

decrypts to get

Ω
N 0

0

0
0

1 j

Starting point: a classic PIR scheme [KO97]

 denotes linearly homomorphic encryption

× =0

0

0
0

1 j

Ω

j
i

D ∈ ℤ N× Nwants entry at
position (i, j)

decrypts to get

Ω
N 0

0

0
0

1 j

Starting point: a classic PIR scheme [KO97]

 denotes linearly homomorphic encryption

× =0

0

0
0

1 j

Ω

j
i

D ∈ ℤ N× Nwants entry at
position (i, j)

How fast can we multiply an encrypted vector
by a plaintext matrix?

New tool: Fast linearly homomorphic encryption
Ωμ =

,

A

1024 1
Ωb

Random,

fixed matrix
(32-bit entries)

Message

dependent
(32-bit entries)

Regev encryption [Reg09] of a message with 1-byte entries:μ ∈ ℤ N

New tool: Fast linearly homomorphic encryption
Ωμ =

,

A

1024 1
Ωb =D × ΩDμ

Random,

fixed matrix
(32-bit entries)

Message

dependent
(32-bit entries)

D × D ×

Regev encryption [Reg09] of a message with 1-byte entries:μ ∈ ℤ N

New tool: Fast linearly homomorphic encryption
Ωμ =

,

A

1024 1
Ωb =D × ΩDμ

Random,

fixed matrix
(32-bit entries)

Message

dependent
(32-bit entries)

D × D ×

Our observations:

‣ Precompute once

99.9% of the work

‣ The per-message work is

one 32-bit mul per entry in

 Multiplying an encrypted vector
with a plaintext matrix is cheap
with preprocessing.

D × A

D × b
D

⇒

Regev encryption [Reg09] of a message with 1-byte entries:μ ∈ ℤ N

This talk

1. New tool: Fast linearly homomorphic encryption

2. Our results

➤ SimplePIR: High throughput

➤ DoublePIR: Less communication

3. Evaluation

A

wants entry at
position (i, j)

Offline

SimplePIR: fast PIR with one-time preprocessing

A

D × AN

1024

Hint

ΩbN

1

N ΩDb

1

j
i

D ∈ ℤ N× N

Online

wants entry at
position (i, j)

Offline

SimplePIR: fast PIR with one-time preprocessing

A

D × AN

1024

Hint

Online

ΩbN

1

j
i

D ∈ ℤ N× N

N ΩDb

1

After downloading the hint,
can make any number of

queries cheaply!

A

Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an -byte database,

‣ the client downloads a one-time “hint” of size bytes,

‣ the per-query communication is bytes, and

‣ the server performs 32-bit adds and muls per query [10 GB/s/core].

N
4096 ⋅ N

8 ⋅ N
N

On databases with 1-byte entries, we can shrink the hint to a constant 16 MB
with a small decrease in throughput [7 GB/s/core].

Result 2: DoublePIR

Result 1: SimplePIR

Assuming LWE, we build single-server PIR where, on an -byte database,

‣ the client downloads a one-time “hint” of size bytes,

‣ the per-query communication is bytes, and

‣ the server performs 32-bit adds and muls per query [10 GB/s/core].

N
4096 ⋅ N

8 ⋅ N
N

On databases with 1-byte entries, we can shrink the hint to a constant 16 MB
with a small decrease in throughput [7 GB/s/core].

Result 2: DoublePIR

See paper

This talk

1. New tool: fast linearly homomorphic encryption

2. Our results

➤ SimplePIR: High throughput

➤ DoublePIR: Less communication

3. Evaluation

Implementation

Open-source code at github.com/ahenzinger/simplepir

‣ 1,600 lines of Go/C for SimplePIR and DoublePIR

‣ No external libraries

‣ For speed: SIMD instructions, optimized memory access locality

Experimental setup

‣ Server runs on an AWS c5n.metal instance

‣ All experiments on a 1 GB database, with a single thread of execution

https://github.com/ahenzinger/simplepir

1 10 100 1000 10000
Entry size (in bits)

10

100

1000

10000
Th

ro
ug

hp
ut

(M
B/
s/
co
re
)

SimplePIR

DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack
SpiralStream

SpiralStreamPack

Memory bandwidth per core XOR PIR non-constant-time

SimplePIR is the fastest known single-server PIR

PIR costs on a 1 GB database,
with entries of increasing size.

1 10 100 1000 10000
Entry size (in bits)

10

100

1000

10000
Th

ro
ug

hp
ut

(M
B/
s/
co
re
)

SimplePIR

DoublePIR

SealPIR
FastPIR

OnionPIR

Spiral
SpiralPack
SpiralStream

SpiralStreamPack

Memory bandwidth per core

XOR PIR

XOR PIR non-constant-time [two-server]

[two-server]

SimplePIR is almost as fast as two-server PIR

PIR costs on a 1 GB database,
with entries of increasing size.

SimplePIR saves compute at the cost of communication

PIR costs on a 1 GB database,
with the optimal entry size.

1. Reduce the communication cost.

2. Deploy PIR to protect our privacy.

‣ This paper: DoublePIR to privately audit webpage certificates

‣ Blyss demo: DoublePIR to privately check for password compromise

‣ SOSP 2023: SimplePIR for private web search [HDCZ23]

With SimplePIR, PIR can be fast… what’s next?

https://playground.blyss.dev/passwords

1. Reduce the communication cost.

2. Deploy PIR to protect our privacy.

‣ This paper: DoublePIR to privately audit webpage certificates

‣ Blyss demo: DoublePIR to privately check for password compromise

‣ SOSP 2023: SimplePIR for private web search [HDCZ23]

With SimplePIR, PIR can be fast… what’s next?

See paper

https://playground.blyss.dev/passwords

Alexandra Henzinger
ahenz@csail.mit.edu

19
99

20
16

20
18

20
21
20
22
20
23Year

0

2

4

6

8

10

12

Server

throughput

(GB/s/core)

KO +

Pailler XPIR

SealPIR

MulPIR

OnionPIR
FastPIR

Spiral

FrodoPIR

SimplePIR

DoublePIR

Fastest two-server PIR

1

• Almost as fast as 2-server PIR

• Moderate communication

• 1,600 lines of code

 Paper: eprint.iacr.org/2022/949

 Code: github.com/ahenzinger/simplepir

Independent demo: playground.blyss.dev/passwords

https://eprint.iacr.org/2022/949
https://github.com/ahenzinger/simplepir

