Authenticated private information retrieval

USENIX Security Symposium 2023

Private information retrieval (PIR) [CGKS95]

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$

Private information retrieval (PIR) [CGKS95]

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$

learns d_i

Private information retrieval (PIR) [CGKS95]

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ learns nothing learns d_i

Private information retrieval (PIR) [CGKS95,WYGVZ17]

holds function $f: \mathbb{F}^N \to \mathbb{F}$ holds database $d \in \mathbb{F}^N$

Private information retrieval (PIR) [CGKS95,WYGVZ17]

holds function $f: \mathbb{F}^N \to \mathbb{F}$ holds database $d \in \mathbb{F}^N$

learns f(d)

Private information retrieval (PIR) [CGKS95,WYGVZ17]

holds function $f: \mathbb{F}^N \to \mathbb{F}$ holds database $d \in \mathbb{F}^N$ learns nothing learns f(d)

An example application: PGP key server

PGP key server

An example application: PGP key server

An example application: PGP key server

PIR does not consider integrity

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ learns nothing

PIR does not consider integrity

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1, ..., N\}$ learns nothing learns wrong d_i'

PIR does not consider integrity

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ learns wrong pkadversary learns nothing

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ d_i, σ_i

holds index $i \in \{1,...,N\}$

if $Verify(pk, d_i, \sigma_i) = T$ return d_i else abort

holds database $d \in \mathbb{F}^N$

holds index $i \in \{1,...,N\}$

holds database $d \in \mathbb{F}^N$

if $Verify(pk, d_i, \sigma_i) = T$ return d_i else abort

holds index $i \in \{1,...,N\}$

holds database $d \in \mathbb{F}^N$

if $Verify(pk, d_i, \sigma_i) = T$ return d_i else abort

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ rand if $Verify(pk, d_i, \sigma_i) = T return d_i$ else abort

holds database $d \in \mathbb{F}^N$ holds index $i \in \{1,...,N\}$ rand

if $Verify(pk, d_i, \sigma_i) = T return d_i$ else abort

The accept/reject bit reveals if the client is reading the ith entry: selective-failure attack [KS06].

holds index $i \in \{1, ..., N\}$

holds database $d \in \mathbb{F}^N$

A new primitive is necessary: authenticated private information retrieval.

Related works require a majority of honest servers for recovery [BS02,BS07,G07,DGN12,K19,YXB02], stronger assumptions [ZS14] or do not consider selective-failure attacks [KO97,WZ18,ZWH21].

if $\operatorname{Verify}(\operatorname{pk}, d_i, \sigma_i) = \operatorname{T} \operatorname{return} d_i$ else abort

The accept/reject bit reveals if the client is reading the ith entry: selective-failure attack [KS06].

Correctness: If client and server are honest, the client recovers pk_{Bob}.

- Correctness: If client and server are honest, the client recovers pk_{Bob}.
- Privacy: The server(s) learns nothing about the content of the client's query, even if the server(s) learns whether the client aborted during reconstruction.

- Correctness: If client and server are honest, the client recovers pk_{Bob}.
- Privacy: The server(s) learns nothing about the content of the client's query, even if the server(s) learns whether the client aborted during reconstruction.

Selective-failure attacks.

- Correctness: If client and server are honest, the client recovers pk_{Bob}.
- Privacy: The server(s) learn nothing about the content of the client's query, even if the server(s) learn whether the client aborted during reconstruction.
- Integrity: The client either outputs the authentic pk_{Bob} or aborts, except with negligible probability.

Multi-server schemes: honest server's view of the database.

Multi-server schemes: honest server's view of the database.

Multi-server schemes: honest server's view of the database.

Multi-server schemes: honest server's view of the database.

Single-server schemes: digest of the true database.

Our results: multi-server schemes

Our results: multi-server schemes

(1) Multi-servers, single-record query

Given a Merkle-tree scheme, on a database of size N

• the per-query communication is $O(\log N)$, same as unauthenticated PIR,

See paper

the integrity error is negligible.

13

Our results: multi-server schemes

(1) Multi-servers, single-record query

Given a Merkle-tree scheme, on a database of size N

- the per-query communication is $O(\log N)$, same as unauthenticated PIR,
- the integrity error is negligible.

(2) Two-servers, single-record and aggregate queries

Given PRG and a field $\mathbb F$, on a database of size N

- the per-query communication is $O(\log N)$, same as unauthenticated PIR,
- the integrity error is $1/|\mathbb{F}|$

This talk (roughly)

Our results: single-server schemes

Our results: single-server schemes

(3) Single-record query from LWE

Under the LWE secret dimension s and ciphertext modulus q, on a N-bit database

- the client downloads a one-time digest of size $n\sqrt{N}$ elements of \mathbb{Z}_q ,
- the per-query communication cost is $2\sqrt{N}$ elements of \mathbb{Z}_q ,
- the integrity error is roughly \sqrt{N}/q , can be amplified generically.

See paper

Our results: single-server schemes

(3) Single-record query from LWE

Under the LWE secret dimension s and ciphertext modulus q, on a N-bit database

- the client downloads a one-time digest of size $n\sqrt{N}$ elements of \mathbb{Z}_q ,
- the per-query communication cost is $2\sqrt{N}$ elements of \mathbb{Z}_q ,
- the integrity error is roughly $\sqrt{N/q}$, can be amplified generically.

See paper

(4) Single-record query from DDH

Under the DDH assumption in a group \mathbb{G} , on a N-bit database

- the client downloads a one-time digest of size \sqrt{N} elements of \mathbb{G} ,
- the per-query communication cost is $2\sqrt{N}$ elements of \mathbb{G} ,
- the integrity error is negligible.

See paper

Classic multi-server PIR [CGKS95]

pk_{Bob} is in d_{22} , i.e., $2^{\rm nd} \ {\rm column}$

Classic multi-server PIR [CGKS95]

pk_{Bob} is in d_{22} , i.e., $2^{\rm nd} \ {\rm column}$

0
1
0

Classic multi-server PIR [CGKS95]

Classic multi-server PIR [CGKS95]

 pk_Bob is in d_{22} , i.e., 2nd column

Classic multi-server PIR [CGKS95]

pk_{Bob} is in d_{22} , i.e., 2nd column

Classic multi-server PIR [CGKS95]

 pk_Bob is in d_{22} , i.e., 2nd column

Classic multi-server PIR [CGKS95]

pk_{Bob} is in d_{22} , i.e., 2nd column

pk_{Bob} is in d_{22} , i.e., 2nd column

Classic multi-server PIR [CGKS95]

Classic multi-server PIR [CGKS95]

Classic multi-server PIR [CGKS95]

Key idea: two correlated queries, one for data and one to authenticate

samples random $\alpha \in_R \mathbb{F}$

samples random $\alpha \in_R \mathbb{F}$

0	0
1	α
0	0
0	0

samples random $\alpha \in_R \mathbb{F}$

samples random $\alpha \in_R \mathbb{F}$

42

$$\inf lpha \cdot \left(egin{array}{c|c} d_{12} & d_{12} \ d_{22} \ d_{32} & d_{32} \ d_{42} \ \end{array}
ight) = egin{array}{c|c} lpha d_{12} & lpha d_{12} \ lpha d_{22} \ lpha d_{32} \ \end{array} + egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) = egin{array}{c|c} lpha d_{22} & lpha d_{32} \ lpha d_{42} \ \end{array}
ight)$$

$$if \ lpha \cdot \left(egin{array}{c|c} d_{12} & d_{12} \ d_{22} \ d_{32} \ d_{42} \ \end{array}
ight) = \left(egin{array}{c|c} lpha d_{12} & lpha d_{12} \ lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ lpha d_{32} \ \end{array}
ight) + \left(egin{array}{c|c} lpha d_{22} \ \end{array}$$

return second element of

return second element of

else abort

return second element of

else abort

communication $O(\sqrt{N})$, see paper for $O(\log N)$ with function secret sharing [BGI16]

Evaluation: single-record queries

Cost of retrieving a 1KiB record

Evaluation: aggregate queries

SELECT COUNT(*) FROM keys WHERE email LIKE "%s"

Evaluation: aggregate queries

ratio of authenticated and classic unauthenticated PIR

SELECT COUNT(*) FROM keys WHERE email LIKE "%s"

Evaluation: aggregate queries

ratio of authenticated and classic unauthenticated PIR

Count emails that end with string "s"

SELECT COUNT(*) FROM keys WHERE email LIKE "%s"

Conclusion

- New integrity definition for PIR schemes: either authentic record or abort.
 - In multi-server setting comes almost for free.
 - In single-server setting imposes 30-100x overhead: can we do better?
- Key directory service: PoC, but not deployed yet.
- Full paper: https://ia.cr/2023/297, code: https://github.com/dedis/apir-code.
- Keyd: https://keyd.org/.