
MVP: Detecting Vulnerabilities using
Patch-Enhanced Vulnerability Signatures

Yang Xiao1,2 , Bihuan Chen3 , Chendong Yu1,2 , Zhengzi Xu4 , Zimu Yuan1,2 , Feng Li1,2 , Binghong
Liu1,2 , Yang Liu4 , Wei Huo1,2 , Wei Zou1,2 , Wenchang Shi5

1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3. School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China
4. School of Computer Science and Engineering, Nanyang Technological University, Singapore

5. Renmin University of China, Beijing, China

Background

• Vulnerabilities can be exploited to attack software systems,
threatening system security.
• Detect and patch vulnerabilities as early as possible.

• Reusing code base or sharing code logic is common.
• E.g., Same action for processing different kinds of files (bmp/dib/…)

in ImageMagick.

• Recurring vulnerabilities (share the similar characteristics
with each other) widely exist but remain undetected.

Existing Approaches

• Clone-based approaches
• They consider the recurring vulnerability detection problem as a code clone

detection problem
• [12 S&P] ReDeBug: Finding Unpatched Code Clones in Entire OS Distributions
• [17 S&P] VUDDY: A Scalable Approach for Vulnerable Code Clone Discovery

• Function matching based approaches
• They use vulnerable functions in a known vulnerability as the signature and

detect code clones to those vulnerable functions
• [16 ICSE] SourcererCC: Scaling Code Clone Detection to Big-Code
• [18 ICSE] CCAligner: A Token Based Large-Gap Clone Detector

//patch for CVE-2017-14041
1 @@ -1185,7 +1185,7 @@ opj_image_t* pgxtoimage(const char *filename, opj_cparameters_t *parameters)
2 }
3
4 fseek(f, 0, SEEK_SET);
5 - if (fscanf(f, "PG%[\t]%c%c%[\t+-]%d%[\t]%d%[\t]%d", temp, &endian1,
6 + if (fscanf(f, "PG%31[\t]%c%c%31[\t+-]%d%31[\t]%d%31[\t]%d", temp, &endian1,
7 &endian2, signtmp, &prec, temp, &w, temp, &h) != 9) {
8 fclose(f);
9 fprintf(stderr,

//vulnerable function: pgxtoimage (src/bin/jp2/convert.c)
1 opj_image_t* pgxtoimage(const char *filename, opj_cparameters_t *parameters)
2 {
3 FILE *f = NULL;
4 ...
5 fseek(f, 0, SEEK_SET);
6 if (fscanf(f, "PG%[\t]%c%c%[\t+-]%d%[\t]%d%[\t]%d", temp, &endian1,
7 &endian2, signtmp, &prec, temp, &w, temp, &h) != 9) {
8 fclose(f);
9 fprintf(stderr,
10 "ERROR: Failed to read the right number of element from the fscanf() function!\n");
11 return NULL;
12 }

//target function (found by MVP): pgxtoimage (src/bin/jpwl/convert.c)
1 opj_image_t* pgxtoimage(const char *filename, opj_cparameters_t *parameters)
2 {
3 FILE *f = NULL;
4 ...
5 fseek(f, 0, SEEK_SET);
6 if (fscanf(f, "PG%[\t]%c%c%[\t+-]%d%[\t]%d%[\t]%d", temp, &endian1,
7 &endian2, signtmp, &prec, temp, &w, temp, &h) != 9) {
8 fprintf(stderr,
9 "ERROR: Failed to read the right number of element from the fscanf() function!\n");
10 fclose(f);
11 return NULL;
12 }

ReDeBug
Line 5 – line 8 => hash r1
Line 6 – line 9 => hash r2
Line 7 – line 10 => hash r3

VUDDY
All statements => hash v

X
X
X

X

Motivation

When Sim(V,P) is large, existing
approaches can introduce high false
positives. Sim(V,P) is above 70% for
91.3% of pairs.

When Sim(V,T) is small, existing
approaches may introduce high false
negatives. 35.1% of pairs <V, T> have a
Sim(V,T) of lower than 70% and existing
approaches miss most of them.

Note: Sim(f1, f2) denotes the similarity score between function f1 and f2.

Challenges

• C1: How to distinguish already
patched vulnerabilities to reduce
false positives.

Motivation

• C2: How to precisely generate the
signature of a known vulnerability to
reduce both false positives and false
negatives.

Approach

• Vulnerability signature +
patch signature

Challenges

C1: How to distinguish
already patched
vulnerabilities to reduce
false positives.

• Novel slicing method +
entropy-based statement
selection

• Syntactic + semantic
• Abstraction + normalization

C2: How to precisely
generate the signature of
a known vulnerability to
reduce both false positives
and false negatives.

Overview of MVP

Formal parameters -> PARAM
Local variables -> VARIABLES
String -> STRING (except format string)

Removing all comments, braces, tabs and white
spaces.

syntactic

semantic

Target information:
• Changed files and its corresponding commits
• Vulnerable functions, patched functions
• Deleted/Added statements

Target information:
• Changed files and its corresponding commits

• wma.c, 0cb2ab8bd (vul ver), cac414969 (pat ver)
• Vulnerable functions, patched functions

• Changed function: WDA_TxPacket
• Deleted/Added statements

• Line 18 – 22 (add lines)

Too many statements are
included while some of them
are not relevant to the
vulnerability.

Back data flow
Back control flow
Forward data flow
Forward control flow

Backward slicing
• Perform normal backward slicing on PDG

Forward slicing
• Assignment statement

• Normal forward slicing
• Conditional statement

• Conduct backward slicing on data dependencies in the
PDG to obtain the direct source for each
variable/parameter

• Set each statement in the first step as the slicing criterion,
and perform forward slicing on data dependencies

• Only if the previous forward slicing result is empty,
perform normal forward slicing on control dependencies.

• Return statement
• No need for forward slicing

• Others
• Similar to conditional statement, following the same first

and second steps for conditional statements.

Back data flow
Back control flow
Forward data flow
Forward control flow

The number of statements in 𝑉𝑠𝑦𝑛 varies for different patches.
If the number of statements is very large, 𝑉𝑠𝑦𝑛 may introduce
noise and result in false negatives.

If 𝐼 > 𝑡𝑚𝑎𝑥
𝐼 , we iteratively remove from 𝑉𝑠𝑦𝑛 statements which

are farthest from the slicing criterion on the PDG until 𝐼 is
less than 𝑡𝑚𝑎𝑥

𝐼 .

Dataset

Result

Result

Thank you!

• Contact: xiaoyang@iie.ac.cn

